1
|
Liu Y, Su X, Liu H, Zhu G, Ge G, Wang Y, Zhou P, Zhou Q. Construction of eco-friendly dual carbon dots ratiometric fluorescence probe for highly selective and efficient sensing mercury ion. J Environ Sci (China) 2025; 148:1-12. [PMID: 39095148 DOI: 10.1016/j.jes.2024.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 08/04/2024]
Abstract
In present work, blue carbon dots (b-CDs) were derived from ammonium citrate and guanidine hydrochloride, and red carbon dots (r-CDs) were stemmed from malonate, ethylenediamine and meso‑tetra (4-carboxyphenyl) porphin based on facile hydrothermal method. Eco-friendly ratiometric fluorescence probe was innovatively constructed to effectively measure Hg2+ utilizing b-CDs and r-CDs. The developed probe displayed two typical emission peaks at 450 nm from b-CDs and 650 nm from r-CDs under the excitation at 360 nm. Mercury ion has strong quenching effect on the fluorescence intensity at 450 nm due to the electron transfer process and the fluorescence change at 450 nm was used as the response signal, whereas the fluorescence intensity at 650 nm kept unchangeable which resulted from the chemical inertness between Hg2+ and r-CDs, serving as the reference signal in the sensing system. Under optimal circumstances, this probe exhibited an excellent linearity between the fluorescence response values of ΔF450/F650 and Hg2+ concentrations over range of 0.01-10 µmol/L, and the limit of detection was down to 5.3 nmol/L. Furthermore, this probe was successfully employed for sensing Hg2+ in practical environmental water samples with satisfied recoveries of 98.5%-105.0%. The constructed ratiometric fluorescent probe provided a rapid, environmental-friendly, reliable, and efficient platform for measuring trace Hg2+ in environmental field.
Collapse
Affiliation(s)
- Yongli Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Xiaoyan Su
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Huanjia Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Guobei Ge
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yuxin Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Penghui Zhou
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
2
|
Zhang Y, Ren D, Shi Y, Yuan R, Ye H, Yin XB, Chi H. A smartphone sensing fluorescent detection of mercury ion based on silicon quantum dots in environment water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125135. [PMID: 39299073 DOI: 10.1016/j.saa.2024.125135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Mercury ion (Hg2+) pose a significant hazard to the natural environment. Conventional techniques like Inductively coupled plasma mass spectrometry, X-ray absorption spectroscopy, among others, pose some disadvantages as they demand a lot of money, need trained employees, and cannot provide on-site detection in real-time. A smartphone sensing technique based on silicon quantum dots (Si-QDs) was presented to detect Hg2+ in the environment without the usage of sophisticated equipment. Meanwhile, the technology was built by utilizing a smartphone to capture gray values of fluorescent images of the Si-QDs-Hg2+ system. Microwave-assisted Si-QDs with tiny particle size, high fluorescence, and good optical stability were created. The fluorescence of the Si-QDs was gradually quenched by raising the Hg2+ concentration from 0.5 μmol/L to 5.0 μmol/L for fluorescent detection with a detection limit of 28 nmol/L. The 94.8-97.1 % recovery demonstrated the viability of the Si-QDs approach for detecting Hg2+. Meanwhile, a smartphone sensing strategy was built by recording the gray value of the fluorescent images of the Si-QDs-Hg2+ systems using a smartphone, and the detection limit of the established approach was 3 nmol/L. The accuracy and reliability of the smartphone strategy were verified with the recovery rates of 80.3-92.5 % in tap water and 87.6-109 % in river water. Electron transfer quenching mechanism between Si-QDs and Hg2+ was evidenced by ultraviolet-visible spectroscopy, fluorescent decay curves, cyclic voltammetry, and Zeta potential. Finally, the suggested approach was used to detect Hg2+ in water samples from various environments.
Collapse
Affiliation(s)
- Yuanxing Zhang
- Laboratory of Aquatic Product Quality, Safety and Processing, Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China
| | - Yongfu Shi
- Laboratory of Aquatic Product Quality, Safety and Processing, Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Rui Yuan
- Laboratory of Aquatic Product Quality, Safety and Processing, Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Hongli Ye
- Laboratory of Aquatic Product Quality, Safety and Processing, Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; Key Laboratory of Control of Safety and Quality for Aquatic Product, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China.
| | - Xue-Bo Yin
- Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Hai Chi
- Laboratory of Aquatic Product Quality, Safety and Processing, Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China.
| |
Collapse
|
3
|
Zhang W, Sun J, Li X, Wang S, Zhang W, Gong Y, Liu L, Su Z. Lanthanide MOF-based luminescent sensor array for detection and identification of contaminants in water and biomarkers. Talanta 2025; 281:126853. [PMID: 39317068 DOI: 10.1016/j.talanta.2024.126853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024]
Abstract
In today's society, heavy metal ions and antibiotic contaminants have caused great harm to water systems and human health. In this study, six isostructural lanthanide metal-organic frameworks [Ln(H3imda)2(TPA)(H2O)2](Tb for CUST-881, Eu for CUST-882, Dy for CUST-883, Er for CUST-884, Nd for CUST-885, Sm for CUST-886) were constructed by selecting terephthalic acid (TPA) and 4,5-Imidazoledicarboxylic acid (H3imda) and lanthanide metal ions via solvethermal method. Among them, CUST-881 and CUST-882 can selectively detect Fe3+, Cr2O72-, CrO42, and ceftriaxone sodium (CRO) in water systems and uric acid in urine. CUST-881 shows very low detection limits for these five substances. Furthermore, Principal Component Analysis (PCA) was used to distinguish Fe3+, Cr2O72-, CrO42-, and CRO in water. To our knowledge, this is the first time that they have been able to be simultaneously distinguished. In addition, the possible sensing mechanism was studied through UV-visible spectroscopy, Infrared spectroscopy, and PXRD analysis. Furthermore, the probe also showed satisfactory repeatability and recovery when applied to UA samples that simulated urine. Based on the above results, lanthanide metal-organic frameworks have great potential for practical monitoring of contaminants in water environments.
Collapse
Affiliation(s)
- Wenxi Zhang
- Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, International Joint Research Center for Optical Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China
| | - Jing Sun
- Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, International Joint Research Center for Optical Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Xiao Li
- Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, International Joint Research Center for Optical Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Sibo Wang
- Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, International Joint Research Center for Optical Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China
| | - Weitao Zhang
- Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, International Joint Research Center for Optical Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yaru Gong
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Lei Liu
- Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, International Joint Research Center for Optical Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China
| | - Zhongmin Su
- Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, International Joint Research Center for Optical Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China; School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Cao C, Guo W. Synthesis of metal framework-modified carbon dots with super large stokes shift using Hami melon as a green precursor for detecting thiophanate-methyl residue in leafy vegetables. Food Chem 2024; 460:140703. [PMID: 39098191 DOI: 10.1016/j.foodchem.2024.140703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Consuming leafy vegetables with excessive thiophanate-methyl (TM) residue poses serious risks to human health. To realize rapidly and sensitively detecting TM in leafy vegetables, we developed a fluorescent probe based on zeolitic imidazolate framework-8-modified carbon dots using Hami melon as the green precursor (HM-CDs@ZIF-8). Meanwhile, the mechanism of HM-CDs@ZIF-8 for detecting TM was investigated and explained. The results of the performance tests showed that the prepared HM-CDs@ZIF-8 exhibited high sensitivity, excellent selectivity, robust anti-interference capability, reliable reproducibility and repeatability, and long-term stability. After optimization experiments, the fluorescence intensity of HM-CDs@ZIF-8 showed a strong linear correlation with the concentration of TM (0.00171-3.4239 mol/L) with a detection limit of 2.025 μmol/L. The HM-CDs@ZIF-8 was successfully applied to determine TM in spiked leafy vegetables with satisfactory recoveries of 96-105%. The relative standard deviations were in the range of 0.26-2.55%. The sensor has a promising application for detecting TM in leafy vegetables.
Collapse
Affiliation(s)
- Chunhao Cao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenchuan Guo
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Wei JH, Xing J, Hou XF, Chen XM, Li Q. Light-Operated Diverse Logic Gates Enabled by Modulating Time-Dependent Fluorescence of Dissipative Self-Assemblies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411291. [PMID: 39402764 DOI: 10.1002/adma.202411291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Indexed: 12/06/2024]
Abstract
Light-fueled dissipative self-assembly possesses enormous potential in the field of optical information due to controllable time-dependent optical signals, but remains a great challenge for constructing intelligent light-operated logic circuits due to the limited availability of optical signal inputs and outputs. Herein, a series of light-fueled dissipative self-assembly systems with variable optical signals are reported to realize diverse logic gates by modulating time-dependent fluorescence variations of the loaded fluorophores. Three kinds of alkyl trimethylammonium homologs are employed to co-assemble with a merocyanine-based photoinduced amphiphile separately to construct a series of dissipative self-assemblies, showing unexpectedly different fluorescence control behaviors of loaded fluorophores during light irradiation and thermal relaxation processes. The opposite monotonicity of time-dependent emission intensity is achieved just by changing the excitation wavelength. Furthermore, by varying the types of trimethylammoniums and excitation wavelengths, a robust logic system is accomplished, integrating AND, XNOR, and XOR functions, which provides an effective pathway for advancing information transmission applications.
Collapse
Affiliation(s)
- Jia-Hao Wei
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Junfei Xing
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiao-Fang Hou
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
6
|
Zhao C, Aziz A, Lu W, Xu H, Asif M, Shuang S, Dong C. A turn-on anthraquinone-derived colorimetric and fluorometric dual-mode probe for highly selective Hg 2+ determination and bioimaging in living organisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135694. [PMID: 39217944 DOI: 10.1016/j.jhazmat.2024.135694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Mercury ion (Hg2+) is considered a harmful neurotoxin, and real-time monitoring of Hg2+ concentrations in environmental and biological samples is critical. Fluorescent probes are a rapidly emerging visualization tool owing to their simple design and good selectivity. Herein, a novel fluorescence (FL) probe 2-(4-((6-((quinolin-8-yloxy)methyl)pyridin-2-yl)methyl)piperazin-1-yl)anthracene-9,10-dione (QPPA) is designed using piperazine as a linker between the anthraquinone group, which serves as a fluorophore, and N4O as the Hg2+ ligand. The probe exhibits FL "turn-on" sensing of Hg2+ because the complex inhibits the photo-induced electron transfer (PET) process. Moreover, QPPA can overcome the invasion by other possible cations, resulting in a clear color change from orange to colorless with the addition Hg2+. The chelation of QPPA with Hg2+ in a 1:1 ratio. Subsequently, the theoretically determined binding sites of the ligand to Hg2+ are validated through 1H NMR titration. The in situQPPA-Hg2+ complex can be subjected to Hg2+ extraction following the introduction of S2- owing to its robust binding capacity. The exceptional limit of detection values for Hg2+ and S2- are obtained as 63.0 and 79.1 nM (S/N = 3), respectively. Moreover, QPPA can display bright red FL in the presence of Hg2+ in different biological specimens such as HeLa cells, zebrafish, onion root tip tissues, and water flea Daphnia carinata, further providing an effective strategy for environmental monitoring and bioimaging of Hg2+ in living organisms.
Collapse
Affiliation(s)
- Chen Zhao
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Ayesha Aziz
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Wenjing Lu
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Hongmei Xu
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Muhammad Asif
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Chuan Dong
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
7
|
Zhao X, Yang D, Li Q, Zhong Z, Li H, Yang Y. A colorimetric platform for sensitive sensing of Hg 2+ and S 2- based on Se-AuNPs with Hg 2+-activated peroxidase-like activity. Anal Chim Acta 2024; 1320:343014. [PMID: 39142785 DOI: 10.1016/j.aca.2024.343014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
Herein, the selenium (Se) modified gold nanoparticles (Se-AuNPs) was synthesized using cerium doped carbon dots (Ce-CDs) as a reducing agent and template. As desired, Se-AuNPs displays enhanced peroxidase (POD)-like activity in the presence of Hg2+. The mechanism for the enhanced activity was attributed to the increased affinity between Se-AuNPs-Hg2+ and the substrate, in which Se and Au elements have a strong binding capacity to Hg2+, forming Hg-Se bonds and Au-Hg amalgam to generate more ·OH. This POD-like activity of Se-AuNPs-Hg2+ correlates with the colorimetric reaction by the catalytic reaction between 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2. The oxidation of TMB was completely inhibited by the introduction of the reductive S2-. Based on the above findings, a strategy for the colorimetric detection of Hg2+ and S2- by Se-AuNPs was established with linear ranges of 0.33-66 μg/L and 0.625-75 μg/L, and low detection limits of 0.17 μg/L and 0.12 μg/L (3.3 δ/k), respectively. When the colorimetric probes for detection of Hg2+ and S2- was applied in environmental water samples, the recoveries were in the range of 90.3-108.0 %. This method will provide a new idea for the colorimetric detection strategy of Hg2+ due to the strong interaction between Hg and Se.
Collapse
Affiliation(s)
- Xiaorong Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Zitao Zhong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Hong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China; Yunnan Agricultural University, Kunming, 650201, China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|
8
|
Zhang M, Tong C. Real-time and specific monitoring of nitric oxide and evaluating of the oxidative stress in living cells and zebrafish under the pollutant exposure using a carbon dot-based composite fluorescent probe. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134558. [PMID: 38739958 DOI: 10.1016/j.jhazmat.2024.134558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Nitric oxide (NO) functions as an essential signalling molecule in various physiological and pathological pathways. In vitro and vivo redox processes mediated by reactive oxygen species (ROS) and nitric oxide (NO) directly influence the intracellular state. In this study, a red-emitting fluorescent nanoprobe, N,S-CDs@Zn-ICA, was synthesized to monitor NO fluctuations in living cells and zebrafish under the exposure to various pollutants. Red-emissive carbon dots (N,S-CDs) were synthesized by a hydrothermal method using o-phenylenediamine and urea as carbon / nitrogen sources, and H2SO4 as sulfur source. Glutathione (GSH) was introduced to link N,S-CDs with metal organic complexes (Zn-ICA) through an amidation reaction to fabricate a carbon dot-based composite fluorescent probe, which greatly improved the selectivity, stability, and response time of the N,S-CDs. The composite probe has high selectivity and sensitivity with limit of detection (LOD) of 96.0 nM. Furthermore, the proposed probe was successfully used to monitor the dynamic changes in NO levels and evaluate oxidative stress in MCF-7 cells and zebrafish under the exposure to various pollutants, including seven heavy metal ions (such as Pb2+, Cd2+, and Hg2+) and nine organic pollutants at different concentrations and exposure times. This work provides a novel strategy for constructing highly selective and red-emitting fluorescent probe for real-time and dynamic monitoring of NO and further evaluating oxidative stress induced by pollutants in vitro and in vivo via fluorescence imaging.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Changlun Tong
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Luo H, Tian L, Zhang Y, Wu Y, Li B, Liu J. Recent advances in molecular and nanoparticle probes for fluorescent bioanalysis. NANO RESEARCH 2024; 17:6443-6474. [DOI: 10.1007/s12274-024-6659-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 01/06/2025]
|
10
|
Tran A, Valleix R, Réveret F, Frezet L, Cisnetti F, Boyer D. Encapsulation of InP/ZnS Quantum Dots into MOF-5 Matrices for Solid-State Luminescence: Ship in the Bottle and Bottle around the Ship Methodologies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3155. [PMID: 38998238 PMCID: PMC11242582 DOI: 10.3390/ma17133155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
The utilization of InP-based quantum dots (QDs) as alternative luminescent nanoparticles to cadmium-based QDs is actively pursued. However, leveraging their luminescence for solid-state applications presents challenges due to the sensitivity of InP QDs to oxidation and aggregation-caused quenching. Hence, an appealing strategy is to protect and disperse InP QDs within hybrid materials. Metal-organic frameworks (MOFs) offer a promising solution as readily available crystalline porous materials. Among these, MOF-5 (composed of {Zn4O}6+ nodes and terephthalate struts) can be synthesized under mild conditions (at room temperature and basic pH), making it compatible with InP QDs. In the present work, luminescent InP/ZnS QDs are successfully incorporated within MOF-5 by two distinct methods. In the bottle around the ship (BAS) approach, the MOF was synthesized around the QDs. Alternatively, in the ship in the bottle (SIB) strategy, the QDs were embedded via capillarity into a specially engineered, more porous variant of MOF-5. Comparative analysis of the BAS and SIB approaches, evaluating factors such as operational simplicity, photoluminescence properties, and the resistance of the final materials to leaching were carried out. This comparative study provides insights into the efficacy of these strategies for the integration of InP/ZnS QDs within MOF-5 for potential solid-state applications in materials chemistry.
Collapse
Affiliation(s)
- Alexis Tran
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Rodolphe Valleix
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - François Réveret
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Lawrence Frezet
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Federico Cisnetti
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Damien Boyer
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Wang L, Xu S, Chen J, Li R, Chen Q, Chen X. Ratiometric fluorescence method comprising carbon dots and rhodamine 6G encapsulated in metal-organic framework microcubes for curcumin detection. Mikrochim Acta 2024; 191:337. [PMID: 38777890 DOI: 10.1007/s00604-024-06430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
A ratiometric fluorescence method comprising carbon dots (CDs) and rhodamine 6G (Rh-6G) encapsulated in the microcubes of metal-organic framework (MOF-5) is introduced for the sensitive detection of curcumin (Cur) in condiments. CDs@MOF-5@Rh-6G, synthesized by the adsorption of Rh-6G on MOF-5 embedded with CDs, showed two distinct emission peaks at 435 and 560 nm under excitation at 335 nm, and could be used for Cur detection by ratiometric fluorescence. In the presence of Cur, the fluorescence of the CDs at 435 nm (F435) was quenched by Cur owing to internal filtering and dynamic quenching effects, whereas the emission of Rh-6G at 560 nm (F560) remained unchanged (335 nm is the excitation wavelength, 435 and 560 nm are the emission wavelengths, in which F435/F560 values are used as the output results). Under optimal conditions, a linear relationship was observed between the Cur concentration (in the range 0.1-5 μmol/L) and F435/F560 value for CDs@MOF-5@Rh-6G, with a detection limit of 15 nmol/L. Notably, the proposed method could accurately detect Cur in mustard, curry, and red pepper powders. Therefore, this study could improve the quality control of food and facilitate the development of sensitive ratiometric fluorescence probes.
Collapse
Affiliation(s)
- Li Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shifen Xu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jing Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Rundong Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
12
|
Liu Y, Xia G, Xu R, Chen X, Yao C. Eu 3+-based InP/ZnS quantum dot fluorescence platform for multi-color and sensitive visualization of tetracycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124167. [PMID: 38498963 DOI: 10.1016/j.saa.2024.124167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/02/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
A turn-on type ratiometric fluorescence sensing system of blue quantum dot Eu-MPA-InP/ZnS was established for multi-color visualization determination of tetracycline (TC). Mercaptopropionic acid (MPA)-capped InP/ZnS quantum dots (MPA-InP/ZnS QDs) both modify the hydrophilicity of InP/ZnS QDs and serve as a scaffold for coordinating of Eu3+ ions. The blue fluorescence of Eu-MPA-InP/ZnS at 478 nm is reduced by the TC through the inner filter effect (IFE) under a single excitation wavelength of 365 nm. Rich colour gradients and a highly discriminative colour change were features of this multicolour response to TC, which allowed visual quantification of TC in a dose-dependent manner. Furthermore, by cross-linking Eu-MPA-InP/ZnS with agarose (Aga.), a mouldable Eu-MPA-InP/ZnS@Aga 96-well gel sensing device was designed to serve as a handheld sensor for on-site detection of TC. This probe expands the use of InP QDs in analytical sensing and has been effectively applied to the visual detection of tetracycline in milk and the environment.
Collapse
Affiliation(s)
- Ying Liu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Guopeng Xia
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Rentao Xu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Xiong Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
13
|
Zhang L, Zhang X, Xu Y, Xu J, Huang Y, Yuan Y, Jia L. Portable luminescent fiber- and glove-based nanosensor for multicolor visual detection of tetracycline in food samples. Mikrochim Acta 2024; 191:225. [PMID: 38557876 DOI: 10.1007/s00604-024-06306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
An intelligent fluorescent nanoprobe (lignite-CDs-Eu) was constructed by an effective and facile method based on lignite-derived carbon dots (CDs) and lanthanide europium ions (Eu3+), which exhibited high sensitivity, low detection limit (13.35 nM) and visual color variation (from blue to red) under ultraviolet light towards tetracycline (TC) detection. Significantly, portable and economical sensors were developed using lignite-CDs-Eu immobilized fiber material of filter paper and wearable glove with the aid of color extracting and image processing application (APP) in the smartphone. Facile, fast and real-time visual detection of TC in food samples was realized. Moreover, logic gate circuit was also designed to achieve intelligent and semi-quantitative inspection of TC. To some extent, this study extended the cross-application of intelligent computer software in food analytical science, and provided a certain reference for the development of small portable detection sensors which were suitable for convenience and non-professional use in daily life.
Collapse
Affiliation(s)
- Lina Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. #2001 Shiji Road, Jiaozuo, Henan, 454000, China
| | - Xia Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. #2001 Shiji Road, Jiaozuo, Henan, 454000, China
| | - Yiru Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. #2001 Shiji Road, Jiaozuo, Henan, 454000, China
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. #2001 Shiji Road, Jiaozuo, Henan, 454000, China.
| | - Yuanyuan Huang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. #2001 Shiji Road, Jiaozuo, Henan, 454000, China
| | - Yingqi Yuan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. #2001 Shiji Road, Jiaozuo, Henan, 454000, China
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. #2001 Shiji Road, Jiaozuo, Henan, 454000, China.
| |
Collapse
|
14
|
Zhang S, Xiao J, Zhong G, Xu T, Zhang X. Design and application of dual-emission metal-organic framework-based ratiometric fluorescence sensors. Analyst 2024; 149:1381-1397. [PMID: 38312079 DOI: 10.1039/d3an02187d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Metal-organic frameworks (MOFs) are novel inorganic-organic hybridized crystals with a wide range of applications. In the last twenty years, fluorescence sensing based on MOFs has attracted much attention. MOFs can exhibit luminescence from metal nodes, ligands or introduced guests, which provides an excellent fluorescence response in sensing. However, single-signal emitting MOFs are susceptible to interference from concentration, environment, and excitation intensity, resulting in poor accuracy. To overcome the shortcomings, dual-emission MOF-based ratiometric fluorescence sensors have been proposed and rapidly developed. In this review, we first introduce the luminescence mechanisms, synthetic methods, and detection mechanisms of dual-emission MOFs, highlight the strategies for constructing ratiometric fluorescence sensors based on dual-emission MOFs, and classify them into three categories: intrinsic dual-emission and single-emission MOFs with luminescent guests, and non-emission MOFs with other luminescent materials. Then, we summarize the recent advances in dual-emission MOF-based ratiometric fluorescence sensors in various analytical industries. Finally, we discuss the current challenges and prospects for the future development of these sensors.
Collapse
Affiliation(s)
- Shuxin Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Jingyu Xiao
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Geng Zhong
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
15
|
Xue J, Mao K, Cao H, Feng R, Chen Z, Du W, Zhang H. Portable sensors equipped with smartphones for organophosphorus pesticides detection. Food Chem 2024; 434:137456. [PMID: 37716150 DOI: 10.1016/j.foodchem.2023.137456] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
Organophosphorus pesticides (OPs) play an important role in agricultural production and the accurate detection of OP residues is essential to ensure food safety. Portable sensors are expected to be a potential device due to their high detection efficiency, easy-to-use processes and low cost. Due to the widespread popularity and powerful capabilities of smartphones, smartphone-based sensing systems have rapidly developed into ideal tools for portable detection, however, a systematic review on the detection of OPs is still lacking. Therefore, a comprehensive overview of sensors equipped with smartphones for OP detection in recent year is provided; this overview includes their sensing signals (colorimetric, fluorescent, chemiluminescent and electrochemical signals), detection mechanism, analysis applications, advantages/disadvantages and perspectives. Moreover, the progress of sensors equipped with smartphones for the detection of OPs in food is thoroughly summarized. This review contributes to food safety and the development of efficient and reliable methods for smartphone-based OPs detection.
Collapse
Affiliation(s)
- Jiaqi Xue
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rida Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhuo Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
16
|
Guo X, Yao W, Bai S, Xiao J, Wei Y, Wang L, Yang J. A graphitic C 3N 4 nanocomposite-based fluorescence platform for label-free analysis of trace mercury ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:930-938. [PMID: 38258552 DOI: 10.1039/d3ay01880f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In this study, a nanocomposite consisting of graphitic carbon nitride nanosheets loaded with graphitic carbon nitride quantum dots (CNQDs/CNNNs) was synthesized via a one-step pyrolysis method. This nanocomposite exhibited excellent thermal stability, photobleaching and salt resistance. Then a new fluorescence sensing platform based on CNQDs/CNNNs was constructed, which showed high sensitivity and selectivity towards trace mercury ions (Hg2+). By using X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectra and density functional theory, the fluorescence response mechanism was elucidated where Hg2+ could interact with CNQDs/CNNNs, causing a structural change in the nanocomposite, further affecting its bandgap structure, and finally leading to fluorescence quenching. The linear range for detecting Hg2+ was found to be 0.025-4.0 μmol L-1, with a detection limit of 7.82 nmol L-1. This strategy provided the advantages of a rapid response and a broad detection range, making it suitable for quantitative detection of Hg2+ in environmental water.
Collapse
Affiliation(s)
- Xinrong Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| | - Wen Yao
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| | - Silan Bai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Junhui Xiao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Yubo Wei
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, College of Modern Biomedical Industry, Kunming Medical University, People's Republic of China.
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Jie Yang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| |
Collapse
|
17
|
Qu J, Zhang X, Zhou W, Yao R, Zhang X, Jing S. Carbon dots/Ruthenium(III) nanocomposites for FRET fluorescence detection and removal of mercury (II) via assembling into nanofibers. Talanta 2024; 268:125322. [PMID: 37918247 DOI: 10.1016/j.talanta.2023.125322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
The determination and removal of mercury(II) (Hg2+) are essential for human health and environmental ecosystems. Herein, an ingenious carbon dots (CDs)-based Förster resonance energy transfer (FRET) system (N, S-CDs/Ru) was fabricated employing CDs and Ru3+ units as energy-transfer doner/acceptor pairs for visual detection and efficient removal of Hg2+. The treatment of Hg2+ induced a remarkable linear enhancement of the ratiometric fluorescence (F613 nm/F478 nm) with a detection limit (LOD) of 95 nM, along with continuous fluorescence color variations from blue to red. Given that the fluorescence color recognition and processing realized the real-time and rapid quantitation of Hg2+ by paper-based smartphone sensing platform. The mechanistic study revealed that the N/S/O-rich surface of the system enabled the Hg2+-triggered self-assembly from dots to nanofibers, combing with the active FRET process. Also, the efficient removal of Hg2+ with a removal efficiency of ∼98 % and an adsorption capacity of ∼372 mg/g was obtained. Furthermore, it was found that N, S-CDs/Ru loaded commercialized SiO2 or SBA-15 could facilitate the removal of Hg2+ with a removal efficiency over 99 % and an adsorption capacity up to ∼562 mg/g. This study provides a potential strategy for environmental monitoring and remediation.
Collapse
Affiliation(s)
- Jian Qu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Xin Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| | - Wanxin Zhou
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Renyi Yao
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Xiyang Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
18
|
Wang M, Zhou M, Wang M, Du J, Liu C, Wang Y, Xia Z. Fabrication of a bifunctional fluorescent chiral composite based on magnetic Fe 3O 4/chiral carbon dots@hierarchical porous metal-organic framework. Talanta 2024; 266:125113. [PMID: 37651904 DOI: 10.1016/j.talanta.2023.125113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Considering the selective pharmacological activity and ecotoxicity of chiral drugs, the development of chiral materials with the dual functions of enantiomeric recognition and adsorption is of great significance. Herein, a novel bifunctional chiral composite (Fe3O4/CCDs@HP-ZIF-8) which does not contain expensive and rare fluorescent chiral ligands or metal ions, was constructed for the first time by encapsulating chiral carbon dots (CCDs) and magnetic Fe3O4 nanoparticles into hierarchical porous metal-organic frameworks (HP-MOFs). Fe3O4/CCDs@HP-ZIF-8, which integrates fluorescent chiral property, magnetism, and hierarchical porosity, shows enormous potential in enantiomeric recognition and adsorption. Fluorescence detection results demonstrate that Fe3O4/CCDs@HP-ZIF-8 presents different fluorescence quenching for naproxen enantiomers. The limits of detection are determined to be 0.05 μM for S-naproxen (S-Nap) and 0.30 μM for R-naproxen (R-Nap), respectively. Furthermore, the isothermal, kinetic, and thermodynamic adsorption behaviors of Fe3O4/CCDs@HP-ZIF-8 to naproxen enantiomers were systematically studied. Due to its hierarchical porosity, the composite exhibits higher adsorption capacity to naproxen enantiomers compared to the non-hierarchical porous composite. Studies of enantiomeric recognition and adsorption mechanisms affirm that the synergistic effect of multiple mechanisms exists between Fe3O4/CCDs@HP-ZIF-8 and naproxen enantiomers. Finally, the satisfactory recoveries and relative standard deviations in the actual sample assays demonstrate the practicality of Fe3O4/CCDs@HP-ZIF-8 for S-Nap detection. This non-destructive functionalization method creates an innovative pathway for developing advanced multifunctional chiral materials, holding great promise for enantiomeric recognition and adsorption.
Collapse
Affiliation(s)
- Min Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Meiling Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Min Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Jiayin Du
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Chunlan Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yue Wang
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Zhining Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
19
|
Zhang S, Luo Y, Zhuang W, Zhong G, Su L, Xu T, Zhang X. Fully Integrated Ratiometric Fluorescence Enrichment Platform for High-Sensitivity POC Testing of Salivary Cancer Biomarkers. Anal Chem 2023; 95:18739-18747. [PMID: 38079568 DOI: 10.1021/acs.analchem.3c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The point-of-care (POC) testing of cancer biomarkers in saliva with both high sensitivity and accuracy remains a serious challenge in modern clinical medicine. Herein, we develop a new fully integrated ratiometric fluorescence enrichment platform that utilizes acoustic radiation forces to enrich dual-emission sandwich immune complexes for a POC visual assay. As a result, the color signals from red and green fluorescence (capture probe and report probe, respectively) are enhanced by nearly 10 times, and colorimetric sensitivity is effectively improved. When illuminated using a portable UV lamp, the fluorescence color changing from red to green can be clearly seen with the naked eye, which allows a semiqualitative assessment of the carcinoembryonic antigen (CEA) level. In combination with a homemade smartphone-based portable device, cancer biomarkers like CEA are quantified, achieving a limit of detection as low as 0.012 ng/mL. We also directly quantify CEA in human saliva samples to investigate the reliability of this fully integrated platform, thus validating the usefulness of the proposed strategy for clinical diagnosis and home monitoring of physical conditions.
Collapse
Affiliation(s)
- Shuxin Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yong Luo
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wenxuan Zhuang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Geng Zhong
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Lei Su
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
20
|
Yue J, Wang J, Zhang L, Wang C, Han L, Cui Z, Zhang D, Shi Z, Chen C. Programmable optical switching integrated chip for 4-bit binary true/inverse/complement code conversions based on fluorinated photopolymers. OPTICS EXPRESS 2023; 31:39140-39152. [PMID: 38018000 DOI: 10.1364/oe.505459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
In this work, programmable optical switching integrated chips for 4-bit binary true/inverse/complement optical code conversions (OCCs) are proposed based on fluorinated photopolymers. Fluorinated bis-phenol-A novolac resin (FAR) with low absorption loss and fluorinated polyacrylate (FPA) with high thermal stability are self-synthesized as core and cladding layer, respectively. The basic architecture of operating unit for the photonic chip designed is composed of directional coupler Mach-Zehnder interferometer (DC-MZI) thermo-optic (TO) switching, X-junction, and Y-bunching waveguide structures. The waveguide module by cascading 16 operating units could realize OCCs function through optical transmission matrix. The response time of the 4-bit binary OCCs is measured as about 300 µs. The insertion loss and extinction ratio of the actual chip are obtained as about 10.5 dB and 15.2 dB, respectively. The electric driving power consumption for OCCs is less than 6 mW. The true/inverse/complement OCCs are achieved by the programmable modulation circuit. The proposed technique is suitable for achieving optical digital computing system with high-speed signal processing and low power consumption.
Collapse
|
21
|
Ji C, Zhang J, Fan R, Sun T, Yang Y. Tetranuclear Cluster-Based Eu(III)-Metal-Organic Framework: Ratiometric Platform Design and Ultrasensitive Phenylglyoxylic Acid Detection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37878990 DOI: 10.1021/acsami.3c12705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Phenylglyoxalic acid (PGA) is a typical metabolite produced by the invasion of styrene into the human body. The detection of PGA can not only reflect the health status of the human body but also assess the level of styrene contamination in the environment. Herein, a novel Eu(III)-MOF (Eu-ttpd) with excellent fluorescence properties was designed by employing the tetrazole-based ligand of 5-((4'-(tetrazol-5'-yl)benzyl)oxy) isophthalic acid (H2ttpd), which successfully used a fluorescent sensor for PGA. The as-synthesized Eu-ttpd features the unique 10-connected tetranuclear cluster [Eu4(μ3-O)2(COO)8]4+ and exhibits a novel (3,10)-connected topological. Benefiting from the perfectly matched excited-state energy levels of the employed H2ttpd ligand with PGA, rapid photoinduced electron transfer (PET) and Dexter-ET can occur, which entitle Eu-ttpd a fast fluorescence quenching response to PGA with a remarkable LOD of 0.269 μM. More importantly, by integrating Eu-ttpd and Mg,N-CDs into the polyacrylamide hydrogel, we optimized Eu-ttpd into a hydrogel sensor which exhibited enhanced detection ability (LOD = 0.052 μM) accompanied by a distinguished color transformation (red-to-blue) and realized ultrasensitive and visual detection of PGA. This work offers an indication for the development of smart sensing materials for human health and environmental safety.
Collapse
Affiliation(s)
- Chengshan Ji
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ruiqing Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Tiancheng Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
22
|
Chen X, Jiang Y, Liu Y, Yao C. Y 3+@CdTe quantum dot nanoprobe as a fluorescence signal enhancement sensing platform for the visualization of norfloxacin. Analyst 2023. [PMID: 37455634 DOI: 10.1039/d3an00921a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Quinolone antibiotics (norfloxacin) pose a serious threat to animal and human health due to their misuse and difficulty in being broken down in surface water and food. Rapid and effective detection of norfloxacin (NOR) is essential for environmental testing and ecosystems. In this study, yttrium was coordinated with mercaptopropionic acid (MPA)-modified CdTe quantum dots (QDs) to obtain a novel fluorescence sensor Y3+@CdTe QDs for the sensitive detection of NOR. NOR can bind to Y3+ to form a complex (NOR-Y3+). This complex enhances the luminescence of NOR and blue-shifts to 423 nm. The fluorescence intensity of NOR-Y3+ at 423 nm (I423) gradually increased with increasing NOR concentration; meanwhile, the fluorescence intensity of CdTe QDs at 634 nm (I634) gradually decreased due to aggregation induction. The ratio of I423 to I634 was used for the quantitative determination of NOR. The linear range of the constructed fluorescent probes was from 1.0 to 150.0 μM, with a detection limit of 31.8 nM. CdTe QDs act as a red fluorescent background, and with the addition of NOR, the color of the system transitions from red to purple and finally blue. This method was rapid (immediate) and visual, providing a simple analysis of various actual samples (tap water, lake water, honey, milk and human serum) for NOR.
Collapse
Affiliation(s)
- Xiong Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yuanhang Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Ying Liu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
23
|
Li Q, Zhou Y. Recent advances in fluorescent materials for mercury(ii) ion detection. RSC Adv 2023; 13:19429-19446. [PMID: 37383685 PMCID: PMC10294291 DOI: 10.1039/d3ra02410e] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Invading mercury would cause many serious health hazards such as kidney damage, genetic freak, and nerve injury to human body. Thus, developing highly efficient and convenient mercury detection methods is of great significance for environmental governance and protection of public health. Motivated by this problem, various testing technologies for detecting trace mercury in the environment, food, medicines or daily chemicals have been developed. Among them, the fluorescence sensing technology is a sensitive and efficient detection method for detecting Hg2+ ions due to its simple operation, rapid response and economic value. This review aims to discuss the recent advances in fluorescent materials for Hg2+ ion detection. We reviewed the Hg2+ sensing materials and divided them into seven categories according to the sensing mechanism: static quenching, photoinduced electron transfer, intramolecular charge transfer, aggregation-induced emission, metallophilic interaction, mercury-induced reactions and ligand-to-metal energy transfer. The challenges and prospects of fluorescent Hg2+ ion probes are briefly presented. We hope that this review can provide some new insights and guidance for the design and development of novel fluorescent Hg2+ ion probes to promote their applications.
Collapse
Affiliation(s)
- Qiuping Li
- Key Laboratory of Chronic Diseases, School of Pharmacy, Fuzhou Medical College of Nanchang University Fuzhou 344000 China
| | - You Zhou
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| |
Collapse
|
24
|
Mohan B, Ma S, Kumar S, Yang Y, Ren P. Tactile Sensors: Hydroxyl Decorated Silver Metal-Organic Frameworks for Detecting Cr 2O 72-, MnO 4-, Humic Acid, and Fe 3+ Ions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17317-17323. [PMID: 36961965 DOI: 10.1021/acsami.2c22871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Anionic, acidic, and metal ions are common contaminants in water and cause serious concerns for human and aquatic life. With the goal of rapid detection of analytes, we herein design a new array of ligand 5-(4H-1,2,4-triazol-4-yl)pyridin-3-ol-linked silver coordinated metal-organic frameworks Ag-MOFs as a promising sensor for Cr2O72-, MnO4-, humic acid (HA), and Fe3+ ions down to the micro level. Furthermore, as evidenced by luminescence, excitation-emission matrix (EEM) spectroscopic, and PXRD measurements, designed metal-organic frameworks (MOFs) can be fast, stable, and reusable for analyte detection in water.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shixuan Ma
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Sandeep Kumar
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yang Yang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
25
|
Souto FT, Machado VG. Hybrid films composed of ethyl(hydroxyethyl)cellulose and silica xerogel functionalized with a fluorogenic chemosensor for the detection of mercury in water. Carbohydr Polym 2023; 304:120480. [PMID: 36641189 DOI: 10.1016/j.carbpol.2022.120480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Ethyl(hydroxyethyl)cellulose (EHEC) and a silica-based xerogel (SBX) were functionalized with a (18-crown-6)-styrylpyridine precursor (1) to obtain the modified polymers EHEC-1 and SBX-1, respectively. Films were obtained and the resulting materials were used as fluorogenic devices for the detection of Hg2+ in water. The films produced from EHEC-1 showed high water retention, making it difficult to apply as a reusable optical chemosensor. Since SBXs are recognized in the literature for their hydrophobicity, a hybrid film composed of EHEC and SBX-1 which did not show water retention was produced and characterized. This system showed rapid response time, outstanding selectivity compared to several other studied metal ions, and sensitivity for the detection of Hg2+ in water. The detection limit for this material using fluorescence technique was 2 ppb (∼10-8 mol L-1). The reversibility of the complex formed between EHEC-SBX-1 film and Hg2+ was demonstrated by the addition of cysteine to the medium. The result obtained also allowed the assembly of INHIBIT and IMPLICATION molecular logic gates, using Hg2+ and cysteine as inputs. The results described in this article have important significance in the development of novel reversible fluorogenic chemosensors and adsorbent materials for the effective removal of Hg2+ ions.
Collapse
Affiliation(s)
- Francielly Thaís Souto
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil
| | - Vanderlei Gageiro Machado
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
26
|
Issaka E, Wariboko MA, Johnson NAN, Aniagyei OND. Advanced visual sensing techniques for on-site detection of pesticide residue in water environments. Heliyon 2023; 9:e13986. [PMID: 36915503 PMCID: PMC10006482 DOI: 10.1016/j.heliyon.2023.e13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Pesticide usage has increased to fulfil agricultural demand. Pesticides such as organophosphorus pesticides (OPPs) are ubiquitous in world food production. Their widespread usage has unavoidable detrimental consequences for humans, wildlife, water, and soil environments. Hence, the development of more convenient and efficient pesticide residue (PR) detection methods is of paramount importance. Visual detecting approaches have acquired a lot of interest among different sensing systems due to inherent advantages in terms of simplicity, speed, sensitivity, and eco-friendliness. Furthermore, various detections have been proven to enable real-life PR surveillance in environment water. Fluorometric (FL), colourimetric (CL), and enzyme-inhibition (EI) techniques have emerged as viable options. These sensing technologies do not need complex operating processes or specialist equipment, and the simple colour change allows for visual monitoring of the sensing result. Visual sensing techniques for on-site detection of PR in water environments are discussed in this paper. This paper further reviews prior research on the integration of CL, FL, and EI-based techniques with nanoparticles (NPs), quantum dots (QDs), and metal-organic frameworks (MOFs). Smartphone detection technologies for PRs are also reviewed. Finally, conventional methods and nanoparticle (NPs) based strategies for the detection of PRs are compared.
Collapse
Affiliation(s)
- Eliasu Issaka
- School of Environmental Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mary Adumo Wariboko
- School of Medicine, Faculty of Dermatology and Venereology, Jiangsu University, Zhenjiang 212013, PR China
| | | | | |
Collapse
|
27
|
Cao XQ, Wu WP, Li Q, Zheng TF, Chen YQ, Chen JL, Liu SJ, Wen HR. Selective recognition of Hg 2+ ions in aqueous solution by a Cd II-based metal-organic framework with good stability and vacant coordination sites. Dalton Trans 2023; 52:652-658. [PMID: 36537347 DOI: 10.1039/d2dt03386k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
A novel water-stable CdII-based metal-organic framework, namely {[Cd(BIBT)(TDC)]·2H2O}n (JXUST-28, BIBT = 4,7-bi(1H-imidazol-1-yl)benzo-[2,1,3]thiadiazole and H2TDC = 2,5-thiophenedicarboxylic acid), was synthesized using a mixed-ligand strategy. Structural analysis demonstrates that JXUST-28 exhibits a two-dimensional layer structure with 4-connected sql topology. Intriguingly, JXUST-28 presents good stability in boiling water (at least 5 days), common organic solvents and aqueous solutions with different pH values of 2-12 (more than 24 hours). Furthermore, fluorescence experiments revealed that JXUST-28 could sense Hg2+ ions in aqueous solution via a quenching effect with a detection limit of 0.097 μM. Meanwhile, JXUST-28 can also be regenerated at least 5 times to detect Hg2+ ions. In addition, light-emitting diode lamps, luminescent films, and test papers of JXUST-28 have been successfully developed for practical applications.
Collapse
Affiliation(s)
- Xiao-Qin Cao
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Wei-Peng Wu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Qiang Li
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Yong-Qiang Chen
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, Shanxi Province, P.R. China.
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
28
|
Tang K, Chen Y, Tang S, Wu X, Zhao P, Fu J, Lei H, Yang Z, Zhang Z. A smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor for visual detection of mercury ions and l-penicillamine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159073. [PMID: 36179841 DOI: 10.1016/j.scitotenv.2022.159073] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Establishment of a rapid, sensitive, visual, accurate and low-cost fluorescence detection system to detect multiple targets was of great significance in food safety evaluation, ecological environment monitoring and human health monitoring. In this work, a smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor was proposed based on metal-organic framework (NH2-MIL-101(Fe)) and CdTe quantum dots (CdTe QDs) for visual detection of mercury ions (Hg2+) and L-penicillamine (L-PA), in which NH2-MIL-101(Fe) was used as the reference signal and CdTe QDs was used as the response signal. The down-conversion fluorescence system at excitation wavelength of 300 nm (ex: 330 nm) was used to detect Hg2+ and L-PA, in which the detection limit of Hg2+ was 0.053 nM with the fluorescence color changed from green to blue, and the detection limit of L-PA was 1.10 nM with the fluorescence color changed from blue to green. Meanwhile, the up-conversion fluorescence system at excitation wavelength of 700 nm (ex: 700 nm) was used to detect Hg2+ and L-PA. The detection limits of Hg2+ and L-PA were 0.11 nM and 2.93 nM, respectively. The detection of Hg2+ and L-PA were also carried out based on the color extraction RGB values identified by the smartphone with a detection limit of 0.091 nM for Hg2+ and 8.97 nM for L-PA. In addition, the concentrations of Hg2+ and L-PA were evaluated by three-dimensional dynamic analysis in complex environments. The smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor system provides a new strategy for detection Hg2+ and L-PA in food safety evaluation, environmental monitoring and human health monitoring.
Collapse
Affiliation(s)
- Kangling Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Yu Chen
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Sisi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Xiaodan Wu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Pengfei Zhao
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Jinli Fu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Huibin Lei
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Zhaoxia Yang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Zhaohui Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; School of Pharmaceutical Sciences, Jishou University, Jishou 416000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
29
|
Alshatteri AH, Omer KM. Dual-Nanocluster of Copper and Silver as a Ratiometric-Based Smartphone-Assisted Visual Detection of Biothiols. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Multicolor fluorescence assay of tetracycline: lanthanide complexed amino clay loaded with copper nanoclusters. Mikrochim Acta 2022; 189:462. [DOI: 10.1007/s00604-022-05546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
|
31
|
Gui Y, Zeng J, Wang L, Long W, You M, Tao X, Huang Y, Xia Z, Rao L, Fu Q. Homomesoporous Metal–Organic Framework for High-Performance Electrochromatographic Separation. Anal Chem 2022; 94:16720-16727. [DOI: 10.1021/acs.analchem.2c03185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yuanqi Gui
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lujun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wenwen Long
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mingyue You
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xueping Tao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yike Huang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Li Rao
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
32
|
Gu Y, Jiao L, Cao F, Liu X, Zhou Y, Yang C, Gao Z, Zhang M, Lin P, Han Y, Dong D. A Real-Time Detection Method of Hg 2+ in Drinking Water via Portable Biosensor: Using a Smartphone as a Low-Cost Micro-Spectrometer to Read the Colorimetric Signals. BIOSENSORS 2022; 12:bios12111017. [PMID: 36421135 PMCID: PMC9688040 DOI: 10.3390/bios12111017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 05/31/2023]
Abstract
This paper reported a real-time detection strategy for Hg2+ inspired by the visible spectrophotometer that used a smartphone as a low-cost micro-spectrometer. In combination with the smartphone's camera and optical accessories, the phone's built-in software can process the received light band image and then read out the spectral data in real time. The sensor was also used to detect gold nanoparticles with an LOD of 0.14 μM, which are widely used in colorimetric biosensors. Ultimately, a gold nanoparticles-glutathione (AuNPs-GSH) conjugate was used as a probe to detect Hg2+ in water with an LOD of 1.2 nM and was applied successfully to natural mineral water, pure water, tap water, and river water samples.
Collapse
Affiliation(s)
- Yifan Gu
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Leizi Jiao
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fengjing Cao
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xinchao Liu
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China
| | - Yunhai Zhou
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chongshan Yang
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhen Gao
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Mengjie Zhang
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Peng Lin
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuxing Han
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- RIOS Lab, Tsinghua University, Shenzhen 518055, China
| | - Daming Dong
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
33
|
Bu Y, Wang K, Yang X, Nie G. Photoelectrochemical sensor for detection Hg2+ based on in situ generated MOFs-like structures. Anal Chim Acta 2022; 1233:340496. [DOI: 10.1016/j.aca.2022.340496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/01/2022]
|
34
|
pH-responsive hybrid materials with dynamic photoluminescence for anti-counterfeiting, encryption and biogenic amines detection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Okla MK, Balasurya S, Alaraidh IA, Mohebaldin A, Al-Ghamdi AA, Al-Okla MA, Abdel-Maksoud MA, Abdelaziz RF, Soufan W, Balakrishnaraja R, Raju LL, Thomas AM, Sudheer Khan S. Plasma-assisted in-situ preparation of L-cystine functionalized silver nanoparticle: An intelligent multicolor nano-sensing of cadmium and paracetamol from environmental sample. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121330. [PMID: 35605418 DOI: 10.1016/j.saa.2022.121330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
L-cystine (L-cys) functionalized plasmonic silver nanomaterial (Ag NPs) was fabricated toward the selective and sensitive detection of paracetamol and cadmium. The prepared L-cys-Ag nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD) and fourier transform infrared spectroscopy (FTIR) analyses. SEM imaging show that Ag NPs was decorated on the surface of L-cysteine 3D cubic nanosheet. L-cys-Ag NPs showed selective and sensitive detection towards paracetamol and cadmium. The interference study confirms that the presence of other metal ions didn't inhibit the detection of cadmium by L-cys-Ag NPs. The limit of detection of paracetamol and cadmium by L-cys-Ag NPs was calculated to be 1.2 and 2.82 nM respectively. In addition, the real sample detection of paracetamol on blood serum and urine, and cadmium on STP were performed and the recovery percentage was above 97%. Further, the real sample analysis was performed in tap and drinking water and the recovery percentage was more than 98%. The analytic logic gate on the multicolour detection of cadmium and paracetamol was performed for the semi-quantitative monitoring of paracetamol and cadmium by L-cys-Ag NPs. The developed L-cys-Ag NPs were found to be an effective tool for the monitoring of cadmium in environmental water bodies and paracetamol in blood and urine.
Collapse
Affiliation(s)
- Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - S Balasurya
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Ibrahim A Alaraidh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Asmaa Mohebaldin
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah A Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed A Al-Okla
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ramadan F Abdelaziz
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Walid Soufan
- College of Food and Agriculture Sciences, King Saud University. P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - R Balakrishnaraja
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Lija L Raju
- Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, India
| | - Ajith M Thomas
- Department of Botany and Biotechnology, St Xavier's College, Thumba, Thiruvananthapuram, India
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|
36
|
Li X, Wei L, Nie R, Wang Z, Huang W, Liu J, Zhang X, Chen Y. Integrating magnetic metal-organic frameworks-based sample preparation with microchannel resistance biosensor for rapid and quantitative detection of aflatoxin B 1. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129425. [PMID: 35785736 DOI: 10.1016/j.jhazmat.2022.129425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Aflatoxin B1, a secondary metabolite produced by fungi, is one of the most toxic mycotoxins that poses a major food security and public health threat worldwide. Effective sample pretreatment and high sensitivity detection techniques are urgently needed due to its trace amount in complex samples. Herein, an integrated detection strategy was developed by combining Mg/Zn-metal organic framework-74 modified Fe3O4 magnetic nanoparticles (Mg/Zn-MOF-74 @Fe3O4 MNPs)-based sample preparation and microchannel resistance biosensor for rapid and highly sensitive detection of aflatoxin B1 in food samples. The synthesis and characterization of Mg/Zn-MOF-74 @Fe3O4 MNPs was reported, which exhibited efficient separation and enrichment capacity when exposed to complex grain samples. The competitive immunoassay-based microchannel resistance biosensor enabled specific and high-sensitive analysis of aflatoxin B1 by using current as a readout, which caused by the blocking effect between the functionalized-polystyrene microspheres and microchannel. Under optimized conditions, this biosensor was capable to quantitatively analysis aflatoxin B1 from 10 pg/mL to 20 ng/mL, and with a limit of detection of 4.75 pg/mL. This integrated detection strategy has been tested for the quantitative detection of aflatoxin B1 in grain samples that is a potential protocol for food safety control and environmental monitoring.
Collapse
Affiliation(s)
- Xiaohan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Luyu Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Rongbin Nie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiya Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
37
|
A Novel Turn-On Fluorescence Probe Based on Cu(II) Functionalized Metal–Organic Frameworks for Visual Detection of Uric Acid. Molecules 2022; 27:molecules27154803. [PMID: 35956753 PMCID: PMC9369708 DOI: 10.3390/molecules27154803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
As an important biomarker in urine, the level of uric acid is of importance for human health. In this work, a Cu(II) functionalized metal–organic framework (Cu2+@Tb-MOFs) is designed and developed as a novel fluorescence probe for wide-range uric acid detection in human urine. The study shows that this fluorescence platform demonstrated excellent pH-independent stability, high water tolerance, and good thermal stability. Based on the strong interaction between metal ions and uric acid, the designed Cu2+@Tb-MOFs can be employed as efficient turn-on fluorescent probes for the detection of uric acid with wide detection range (0~104 µM) and high sensitivity (LOD = 0.65 µM). This probe also demonstrates an anti-interference property, as other species coexisted, and the possibility for recycling. The sensing mechanisms are further discussed at length. More importantly, we experimentally constructed a molecular logic gate operation based on this fluorescence probe for intelligent detection of uric acid. These results suggest the Cu(II) functionalized metal–organic framework can act as a prominent candidate for personalized monitoring of the concentration of uric acid in the human urine system.
Collapse
|
38
|
Pundi A, Chang CJ. Recent Advances in Synthesis, Modification, Characterization, and Applications of Carbon Dots. Polymers (Basel) 2022; 14:2153. [PMID: 35683827 PMCID: PMC9183192 DOI: 10.3390/polym14112153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/22/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Although there is significant progress in the research of carbon dots (CDs), some challenges such as difficulty in large-scale synthesis, complicated purification, low quantum yield, ambiguity in structure-property correlation, electronic structures, and photophysics are still major obstacles that hinder the commercial use of CDs. Recent advances in synthesis, modification, characterization, and applications of CDs are summarized in this review. We illustrate some examples to correlate process parameters, structures, compositions, properties, and performances of CDs-based materials. The advances in the synthesis approach, purification methods, and modification/doping methods for the synthesis of CDs are also presented. Moreover, some examples of the kilogram-scale fabrication of CDs are given. The properties and performance of CDs can be tuned by some synthesis parameters, such as the incubation time and precursor ratio, the laser pulse width, and the average molar mass of the polymeric precursor. Surface passivation also has a significant influence on the particle sizes of CDs. Moreover, some factors affect the properties and performance of CDs, such as the polarity-sensitive fluorescence effect and concentration-dependent multicolor luminescence, together with the size and surface states of CDs. The synchrotron near-edge X-ray absorption fine structure (NEXAFS) test has been proved to be a useful tool to explore the correlation among structural features, photophysics, and emission performance of CDs. Recent advances of CDs in bioimaging, sensing, therapy, energy, fertilizer, separation, security authentication, food packing, flame retardant, and co-catalyst for environmental remediation applications were reviewed in this article. Furthermore, the roles of CDs, doped CDs, and their composites in these applications were also demonstrated.
Collapse
Affiliation(s)
| | - Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan;
| |
Collapse
|