1
|
Rong Q, Zhang C, Ling C, Lu D, Jiang L. Mechanism of extracellular electron transport and reactive oxygen mediated Sb(III) oxidation by Klebsiella aerogenes HC10. J Environ Sci (China) 2025; 147:11-21. [PMID: 39003033 DOI: 10.1016/j.jes.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 07/15/2024]
Abstract
Microbial oxidation and the mechanism of Sb(III) are key governing elements in biogeochemical cycling. A novel Sb oxidizing bacterium, Klebsiella aerogenes HC10, was attracted early and revealed that extracellular metabolites were the main fractions driving Sb oxidation. However, linkages between the extracellular metabolite driven Sb oxidation process and mechanism remain elusive. Here, model phenolic and quinone compounds, i.e., anthraquinone-2,6-disulfonate (AQDS) and hydroquinone (HYD), representing extracellular oxidants secreted by K. aerogenes HC10, were chosen to further study the Sb(III) oxidation mechanism. N2 purging and free radical quenching showed that oxygen-induced oxidation accounted for 36.78% of Sb(III) in the metabolite reaction system, while hydroxyl free radicals (·OH) accounted for 15.52%. ·OH and H2O2 are the main driving factors for Sb oxidation. Radical quenching, methanol purification and electron paramagnetic resonance (EPR) analysis revealed that ·OH, superoxide radical (O2•-) and semiquinone (SQ-•) were reactive intermediates of the phenolic induced oxidation process. Phenolic-induced ROS are one of the main oxidants in metabolites. Cyclic voltammetry (CV) showed that electron transfer of quinone also mediated Sb(III) oxidation. Part of Sb(V) was scavenged by the formation of the secondary Sb(V)-bearing mineral mopungite [NaSb(OH)6] in the incubation system. Our study demonstrates the microbial role of oxidation detoxification and mineralization of Sb and provides scientific references for the biochemical remediation of Sb-contaminated soil.
Collapse
Affiliation(s)
- Qun Rong
- College of Resources, Environment and Materials Guangxi University, Nanning 530004, China; School of Environment and Life Science, Nanning Normal University, Nanning 530001, China
| | - Chaolan Zhang
- College of Resources, Environment and Materials Guangxi University, Nanning 530004, China.
| | - Caiyuan Ling
- College of Resources, Environment and Materials Guangxi University, Nanning 530004, China
| | - Dingtian Lu
- College of Resources, Environment and Materials Guangxi University, Nanning 530004, China
| | - Linjiang Jiang
- College of Resources, Environment and Materials Guangxi University, Nanning 530004, China
| |
Collapse
|
2
|
Li J, Liu M, Tong L, Zhou Y, Kong L. Decomposition of waterside plants greatly affects the transformation and mobility of sedimentary antimony in water-sediment systems after emergency treatment: A microcosm study. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135598. [PMID: 39178781 DOI: 10.1016/j.jhazmat.2024.135598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Polyferric sulfate (PFS) coagulation has proven to be effective in addressing antimony (Sb) water pollution accidents; however, the impact of waterside plant decomposition on its effectiveness has not been adequately elucidated. This study investigated the effects of Alternanthera philoxeroides (AP) and Digitaria sanguinalis (DS) decomposition on Sb cycling after PFS treatment. Without plant decomposition, the Fe(OH)3 hydrolysate-associated Sb remained stable, and the sediment continued to exhibit Sb sink properties. Plant residue decomposition facilitated sedimentary Sb release, and DS decomposition had a greater impact than AP decomposition. The strong decomposition phases triggered abiotic/biotic reduction processes, leading to Fe(OH)3 dissolution and subsequent Sb(V) release. Concurrently, sulfate reduction and dissolved organic matter (DOM) release regulated Sb mobility. In addition, Sb(V) reduction occurred, and Sb(III) was elevated in the overlying water. The Sb(III) levels gradually decreased during the later aerobic stages, however, did not completely disappear within a short timeframe. Furthermore, the role of the sediment as an Sb sink was significantly hindered, maintaining relatively high levels of dissolved Sb. Sedimentary Sb speciation analysis revealed that plant decomposition induced a shift in Fe-oxyhydroxide-bound Sb to more bioavailable and stable fractions. Our results indicate that plant residue decomposition easily deteriorates PFS efficiency and increases the risk of secondary Sb pollution in water-sediment systems.
Collapse
Affiliation(s)
- Jining Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, China; School of Environment, Nanjing Normal University, Nanjing, Jiangsu Province, 5210023, China
| | - Mengdi Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, China; School of Environment, Nanjing Normal University, Nanjing, Jiangsu Province, 5210023, China
| | - Lizhi Tong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, Guangdong 510655, China
| | - Yiwen Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Linghao Kong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
3
|
Yang R, Viswanatham T, Huang S, Li Y, Yu Y, Zhang J, Chen J, Herzberg M, Feng R, Rosen BP, Rensing C. A Sb(III)-specific efflux transporter from Ensifer adhaerens E-60. Microbiol Res 2024; 286:127830. [PMID: 39004025 DOI: 10.1016/j.micres.2024.127830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
Antimony is pervasive environmental toxic substance, and numerous genes encoding mechanisms to resist, transform and extrude the toxic metalloid antimony have been discovered in various microorganisms. Here we identified a major facilitator superfamily (MFS) transporter, AntB, on the chromosome of the arsenite-oxidizing bacterium Ensifer adhaerens E-60 that confers resistance to Sb(III) and Sb(V). The antB gene is adjacent to gene encoding a LysR family transcriptional regulator termed LysRars, which is an As(III)/Sb(III)-responsive transcriptional repressor that is predicted to control expression of antB. Similar antB and lysRars genes are found in related arsenic-resistant bacteria, especially strains of Ensifer adhaerens, and the lysRars gene adjacent to antB encodes a member of a divergent subgroup of putative LysR-type regulators. Closely related AntB and LysRars orthologs contain three conserved cysteine residues, which are Cys17, Cys99, and Cys350 in AntB and Cys81, Cys289 and Cys294 in LysRars, respectively. Expression of antB is induced by As(III), Sb(III), Sb(V) and Rox(III) (4-hydroxy-3-nitrophenyl arsenite). Heterologous expression of antB in E. coli AW3110 (Δars) conferred resistance to Sb(III) and Sb(V) and reduced the intracellular concentration of Sb(III). The discovery of the Sb(III) efflux transporter AntB enriches our knowledge of the role of the efflux transporter in the antimony biogeochemical cycle.
Collapse
Affiliation(s)
- Ruixiang Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Thiruselvam Viswanatham
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International Universitygrid.65456.34, Miami, FL, USA
| | - Shuangqin Huang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuanping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yanshuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jinlin Zhang
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International Universitygrid.65456.34, Miami, FL, USA
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06120, Germany
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International Universitygrid.65456.34, Miami, FL, USA
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
4
|
He P, Yang Q, Gu C, Liu M, Li P, Luo T, Chen J, Chen J, Zhu J, Gan M. Synergistic promotion of antimony transformation in the interaction of Acidithiobacillus ferrooxidans and pyrite by driving the formation of reactive oxygen species and secondary minerals. CHEMOSPHERE 2024; 363:142955. [PMID: 39069100 DOI: 10.1016/j.chemosphere.2024.142955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
As one of the important microorganisms in the mining area, the role of iron-sulfur oxidizing microorganisms in antimony (element symbolized as Sb) migration and transformation in mining environments has been largely neglected for a long time. Therefore, the processes of the typical iron-sulfur oxidizing bacterium Acidithiobacillus ferrooxidans (A. ferrooxidans) and pyrite interaction coupled with the migration and transformation of Sb were investigated in this paper. The bio-oxidation process of pyrite by A. ferrooxidans not only accelerates the oxidation rate of Sb(III) to Sb(V) (62.93% of 10 mg L-1 within 4 h), but also promotes the adsorption and precipitation of Sb (32.89 % of 10 mg L-1 within 96 h), and changes in the dosage of minerals, Sb concentration, and pH value affect the conversion of Sb. The characterization results show that the interaction between A. ferrooxidans and pyrite produces a variety of reactive species, such as H2O2 and •OH, resulting in the oxidation of Sb(III). In addition, A. ferrooxidans mediates the formation of stereotyped iron-sulfur secondary minerals that can act as a major driver of Sb (especially Sb(V)) adsorption or co-precipitation. This study contributes to the further understanding of the diversified biogeochemical processes of iron-sulfur oxidizing bacteria-iron-sulfur minerals-toxic metals in mining environments and provides ideas for the development of in-situ treatment technologies for Sb.
Collapse
Affiliation(s)
- Peng He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Quanliu Yang
- Guizhou Academy of Tobacco Sciences, Guiyang, 550011, China
| | - Chunyao Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Mengfei Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Penghui Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Ting Luo
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Jiancheng Chen
- Urban Geological Survey and Monitoring Institute of Hunan, Geological Bureau of Hunan Province, Changsha, 410014, China
| | - Junwen Chen
- Urban Geological Survey and Monitoring Institute of Hunan, Geological Bureau of Hunan Province, Changsha, 410014, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
5
|
You L, Sheng J, Jiang G, Chen H, Yuan Y, Gong S, Yan M, Hu J, Xiang G, Duan R, Chen Y, Liu X. Molecular characterization and expression patterns of MTP genes under heavy metal stress in mustard (Brassica juncea L.). Sci Rep 2024; 14:17857. [PMID: 39090207 PMCID: PMC11294466 DOI: 10.1038/s41598-024-68877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Members of the Metal Tolerance Protein (MTP) family are critical in mediating the transport and tolerance of divalent metal cations. Despite their significance, the understanding of MTP genes in mustard (Brassica juncea) remains limited, especially regarding their response to heavy metal (HM) stress. In our study, we identified MTP gene sets in Brassica rapa (17 genes), Brassica nigra (18 genes), and B. juncea (33 genes) using the HMMER (Cation_efflux; PF01545) and BLAST analysis. For the 33 BjMTPs, a comprehensive bioinformatics analysis covering the physicochemical properties, phylogenetic relationships, conserved motifs, protein structures, collinearity, spatiotemporal RNA-seq expression, GO enrichment, and expression profiling under six HM stresses (Mn2+, Fe2+, Zn2+, Cd2+, Sb3+, and Pb2+) were carried out. According to the findings of physicochemical characteristics, phylogenetic tree, and collinearity, the allopolyploid B. juncea's MTP genes were inherited from its progenitors, B. rapa and B. nigra, with minimal gene loss during polyploidization. Members of the BjMTP family exhibited conserved motifs, promoter elements, and expression patterns across subgroups, consistent with the seven evolutionary branches (G1, G4-G9, and G12) of the MTPs. Further, spatiotemporal expression profiling under HM stresses successfully identified specific genes and crucial cis-regulatory elements associated with the response of BjMTPs to HM stresses. These findings may contribute to the genetic improvement of B. juncea for enhanced HM tolerance, facilitating the remediation of HM-contaminated areas.
Collapse
Affiliation(s)
- Liang You
- College of Agriculture and Biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Jialin Sheng
- College of Agriculture and Biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Guoxiang Jiang
- College of Agriculture and Biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Hao Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yuhui Yuan
- College of Agriculture and Biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Sha Gong
- College of Agriculture and Biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Junhe Hu
- College of Agriculture and Biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Guohong Xiang
- College of Agriculture and Biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Yong Chen
- College of Agriculture and Biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
| | - Xianjun Liu
- College of Agriculture and Biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
| |
Collapse
|
6
|
Wang Y, He M, Lin C, Ouyang W, Liu X. Novel Insights into Sb(III) Oxidation and Immobilization during Ferrous Iron Oxygenation: The Overlooked Roles of Singlet Oxygen and Fe (oxyhydr)oxides Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11470-11481. [PMID: 38864425 DOI: 10.1021/acs.est.4c02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Reactive oxygen species (ROS) produced from the oxygenation of reactive Fe(II) species significantly affect the transformation of metalloids such as Sb at anoxic-oxic redox interfaces. However, the main ROS involved in Sb(III) oxidation and Fe (oxyhydr)oxides formation during co-oxidation of Sb(III) and Fe(II) are still poorly understood. Herein, this study comprehensively investigated the Sb(III) oxidation and immobilization process and mechanism during Fe(II) oxygenation. The results indicated that Sb(III) was oxidized to Sb(V) by the ROS produced in the aqueous and solid phases and then immobilized by formed Fe (oxyhydr)oxides via adsorption and coprecipitation. In addition, chemical analysis and extended X-ray absorption fine structure (EXAFS) characterization demonstrated that Sb(V) could be incorporated into the lattice structure of Fe (oxyhydr)oxides via isomorphous substitution, which greatly inhibited the formation of lepidocrocite (γ-FeOOH) and decreased its crystallinity. Notably, goethite (α-FeOOH) formation was favored at pH 6 due to the greater amount of incorporated Sb(V). Moreover, singlet oxygen (1O2) was identified as the dominant ROS responsible for Sb(III) oxidation, followed by surface-adsorbed ·OHads, ·OH, and Fe(IV). Our findings highlight the overlooked roles of 1O2 and Fe (oxyhydr)oxide formation in Sb(III) oxidation and immobilization during Fe(II) oxygenation and shed light on understanding the geochemical cycling of Sb coupled with Fe in redox-fluctuating environments.
Collapse
Affiliation(s)
- Yiqing Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
7
|
Kong T, Sun X, Gu Z, Yang N, Huang Y, Lan L, Gao P, Liu H, Wang Y, Jiang F, Li B, Sun W. Differential Mechanisms of Microbial As(III) and Sb(III) Oxidation and Their Contribution to Tailings Reclamation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11447-11458. [PMID: 38899977 DOI: 10.1021/acs.est.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mine tailings are extremely oligotrophic environments frequently contaminated with elevated As and Sb, making As(III) and Sb(III) oxidation potentially important energy sources for the tailing microbiome. Although they have been proposed to share similar metabolic pathways, a systemic comparison of the As(III) and Sb(III) oxidation mechanisms and energy utilization efficiencies requires further elucidation. In this study, we employed a combination of physicochemical, molecular, and bioinformatic analyses to compare the kinetic and genetic mechanisms of As(III) and Sb(III) oxidation as well as their respective energy efficiencies for fueling the key nutrient acquisition metabolisms. Thiobacillus and Rhizobium spp. were identified as functional populations for both As(III) and Sb(III) oxidation in mine tailings by DNA-stable isotope probing. However, these microorganisms mediated As(III) and Sb(III) oxidation via different metabolic pathways, resulting in preferential oxidation of Sb(III) over As(III). Notably, both As(III) and Sb(III) oxidation can facilitate nitrogen fixation and phosphate solubilization in mine tailings, with Sb(III) oxidation being more efficient in powering these processes. Thus, this study provided novel insights into the microbial As(III) and Sb(III) oxidation mechanisms and their respective nutrient acquisition efficiencies, which may be critical for the reclamation of mine tailings.
Collapse
Affiliation(s)
- Tianle Kong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhibin Gu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Nie Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuqing Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ling Lan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yize Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Feng Jiang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510640, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
8
|
Chen L, Zhong Z, Wu R, Lin Q, Gong Z, Yuan D. On-site monitoring of dissolved Sb species in natural waters by an automatic system using flow injection coupled with hydride generation atomic fluorescence spectrometer. Talanta 2024; 274:126037. [PMID: 38604046 DOI: 10.1016/j.talanta.2024.126037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Antimony (Sb) is a toxic and potentially carcinogenic element in the environment. The toxicity of Sb(III) is ten times that of Sb(V). Therefore, on-site monitoring technique for dissolved Sb species is crucial for the study of Sb environmental processes. In this study, an automated, portable, and cost-effective system was developed for field simultaneous analysis of Sb(III) and Sb(III + V) in natural waters. The system comprised a portable atomic fluorescence spectrometer equipped with a built-in electrochemical H2 generator to reduce the consumption of acid/borohydride solution and make the atomizer more stable for on-site analysis. Flow injection technique was also used to achieve on-line pretreatment of water samples, including filtration, acidification, pre-reduction, and hydride generation procedures. Under the optimal conditions, the limits of detection (3σ, n = 11) of the developed method were 0.015 μg/L and the linear ranges were 0.05-5.0 μg/L for both Sb(III) and Sb(III + V). The relative standard deviations (n = 11) of the spiked samples of Sb(V) were 3.2% (0.05 μg/L), 3.3% (0.2 μg/L), and 1.7% (0.5 μg/L), respectively. The spiked recoveries of lake water, treated wastewater, and seawater ranged from 97.0% to 108.5%. The novel system of flow injection coupled with hydride generation atomic fluorescence spectrometer (FI-HG-AFS) was applied to carry out an 18-h fixed-point monitoring at a secondary settling tank of a wastewater treatment facility in Xiamen University, and a 6-h real-time underway analysis in the surface seawater of Dongshan Bay, China, proving that the system was capable of long-term monitoring in the field.
Collapse
Affiliation(s)
- Luodan Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Ziyun Zhong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China
| | - Rongkun Wu
- Tairui Science and Technology Co., Ltd., Quanzhou, 362000, PR China
| | - Qinglin Lin
- Tairui Science and Technology Co., Ltd., Quanzhou, 362000, PR China
| | - Zhenbin Gong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, PR China.
| | - Dongxing Yuan
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
9
|
Prieto-Fernández F, Lambert S, Kujala K. Assessment of microbial communities from cold mine environments and subsequent enrichment, isolation and characterization of putative antimony- or copper-metabolizing microorganisms. Front Microbiol 2024; 15:1386120. [PMID: 38855773 PMCID: PMC11160943 DOI: 10.3389/fmicb.2024.1386120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
Mining activities, even in arctic regions, create waste materials releasing metals and metalloids, which have an impact on the microorganisms inhabiting their surroundings. Some species can persist in these areas through tolerance to meta(loid)s via, e.g., metabolic transformations. Due to the interaction between microorganisms and meta(loid)s, interest in the investigation of microbial communities and their possible applications (like bioremediation or biomining) has increased. The main goal of the present study was to identify, isolate, and characterize microorganisms, from subarctic mine sites, tolerant to the metalloid antimony (Sb) and the metal copper (Cu). During both summer and winter, samples were collected from Finnish mine sites (site A and B, tailings, and site C, a water-treatment peatland) and environmental parameters were assessed. Microorganisms tolerant to Sb and Cu were successfully enriched under low temperatures (4°C), creating conditions that promoted the growth of aerobic and fermenting metal(loid) tolerating or anaerobic metal(loid) respiring organism. Microbial communities from the environment and Sb/Cu-enriched microorganisms were studied via 16S rRNA amplicon sequencing. Site C had the highest number of taxa and for all sites, an expected loss of biodiversity occurred when enriching the samples, with genera like Prauserella, Pseudomonas or Clostridium increasing their relative abundances and others like Corynebacterium or Kocuria reducing in relative abundance. From enrichments, 65 putative Sb- and Cu-metabolizing microorganisms were isolated, showing growth at 0.1 mM to 10 mM concentrations and 0°C to 40°C temperatures. 16S rRNA gene sequencing of the isolates indicated that most of the putative anaerobically Sb-respiring tolerators were related to the genus Clostridium. This study represents the first isolation, to our knowledge, of putative Sb-metabolizing cold-tolerant microorganisms and contributes to the understanding of metal (loid)-tolerant microbial communities in Arctic mine sites.
Collapse
|
10
|
Zou W, Zhang Y, Zhang X, Zhang G, Li X, Jin C, Cao Z. Interactions of monolayer molybdenum disulfide sheets with metalloid antimony in aquatic environment: Adsorption, transformation, and joint toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171937. [PMID: 38527534 DOI: 10.1016/j.scitotenv.2024.171937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The tremendous application potentiality of transitional metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2) nanosheets, will unavoidably lead to increasing release into the environment, which could influence the fate and toxicity of co-existed contaminants. The present study discovered that 59.8 % of trivalent antimony [Sb(III)] was transformed by MoS2 to pentavalent Sb [Sb(V)] in aqueous solutions under light illumination, which was due to hole oxidation on the nanosheet surfaces. A synergistic toxicity between MoS2 and Sb(III, V) to algae (Chlorella vulgaris) was observed, as demonstrated by the lower median-effect concentrations of MoS2 + Sb(III)/Sb(V) (13.1 and 20.9 mg/L, respectively) than Sb(III)/Sb(V) (38.8 and 92.5 mg/L, respectively) alone. Particularly, MoS2 at noncytotoxic doses notably increased the bioaccumulation of Sb(III, V) in algae, causing aggravated oxidative damage, photosynthetic inhibition, and structural alterations. Metabolomics indicated that oxidative stress and membrane permeabilization were primarily associated with down-regulated amino acids involved in glutathione biosynthesis and unsaturated fatty acids. MoS2 co-exposure remarkably decreased the levels of thiol antidotes (glutathione and phytochelatins) and aggravated the inhibition on energy metabolism and ATP synthesis, compromising the Sb(III, V) detoxification and efflux. Additionally, extracellular P was captured by the nanosheets, also contributing to the uptake of Sb(V). Our findings emphasized the nonignorability of TMDs even at environmental levels in affecting the ecological hazard of metalloids, providing insight into comprehensive safety assessment of TMDs.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| | - Yu Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| | - Guoqing Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
11
|
Chen X, Yu T, Xiao L, Zeng XC. Can Sb(III)-oxidizing prokaryote also oxidize As(III) under aerobic and anaerobic conditions, and vice versa? JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134135. [PMID: 38574656 DOI: 10.1016/j.jhazmat.2024.134135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Sb(III) and As(III) share similar chemical features and coexist in the environment. However, their oxidase enzymes have completely different sequences and structures. This raises an intriguing question: Could Sb(III)-oxidizing prokaryotes (SOPs) also oxidize As(III), and vice versa? Regarding this issue, previous investigations have yielded unclear, incorrect and even conflicting data. This work aims to address this matter. First, we prepared an enriched population of SOPs that comprises 55 different AnoA genes, lacking AioAB and ArxAB genes. We found that these SOPs can oxidize both Sb(III) and As(III) with comparable capabilities. To further confirm this finding, we isolated three cultivable SOP strains that have AnoA gene, but lack AioAB and ArxAB genes. We observed that they also oxidize both Sb(III) and As(III) under both anaerobic and aerobic conditions. Secondly, we obtained an enriched population of As(III)-oxidizing prokaryotes (AOPs) from As-contaminated soils, which comprises 69 different AioA genes, lacking AnoA gene. We observed that the AOP population has significant As(III)-oxidizing activities, but lack detectable Sb(III)-oxidizing activities under both aerobic and anaerobic conditions. Therefore, we convincingly show that SOPs can oxidize As(III), but AOPs cannot oxidize Sb(III). These findings clarify the previous ambiguities, confusion, errors or contradictions regarding how SOPs and AOPs oxidize each other's substrate.
Collapse
Affiliation(s)
- Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Tingting Yu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Linhai Xiao
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China.
| |
Collapse
|
12
|
Li C, Ran Y, Wu P, Liu P, Yang B, Gu X, Zhao P, Liu S, Song L, Liu Y, Liu Y, Ning Z, Sun J, Liu C. Antimony and arsenic migration in a heterogeneous subsurface at an abandoned antimony smelter under rainfall. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134156. [PMID: 38565015 DOI: 10.1016/j.jhazmat.2024.134156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
While antimony (Sb) and arsenic (As) co-contamination in subsurface soil systems due to the legacy of Sb smelting wastes has been documented, the role of inherent heterogeneity on pollutant migration is largely overlooked. Herein this study investigated Sb and As migration in a slag impacted, vertically stratified subsurface at an abandoned Sb smelter. A 2-dimensional flume was assembled as a lab-scale analogue of the site and subject to rainfall and stop-rain events. Reactive transport modeling was then performed by matching the experimental observations to verify the key factors and processes controlling pollutant migration. Results showed that rainfall caused Sb and As release from the shallow slag layer and promoted their downward movement. Nevertheless, the less permeable deeper layers limited physical flow and transport, which led to Sb and As accumulation at the interface. The re-adsorption of Sb and As onto iron oxides in the deeper, more acidic layers further retarded their migration. Because of the large difference between Sb and As concentrations, Sb re-adsorption was much less effective, which led to higher mobility. Our findings overall highlight the necessity of understanding the degree and impacts of physicochemical heterogeneity for risk exposure assessment and remediation of abandoned Sb smelting sites.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yiyuan Ran
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, China
| | - Boyi Yang
- School of Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Xueyuan Gu
- School of Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Ping Zhao
- Geological Brigade 105, Guizhou Bureau of Geology and Mineral Exploration and Development, Guiyang 550018, China
| | - Shirong Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Lei Song
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yizhang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
13
|
Zbieralski K, Staszewski J, Konczak J, Lazarewicz N, Nowicka-Kazmierczak M, Wawrzycka D, Maciaszczyk-Dziubinska E. Multilevel Regulation of Membrane Proteins in Response to Metal and Metalloid Stress: A Lesson from Yeast. Int J Mol Sci 2024; 25:4450. [PMID: 38674035 PMCID: PMC11050377 DOI: 10.3390/ijms25084450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland; (K.Z.); (J.S.); (J.K.); (N.L.); (M.N.-K.); (D.W.)
| |
Collapse
|
14
|
Kambara R, Yamamura S, Amachi S. Identification of bacterial dissimilatory antimonate reductase AnrA: genes and proteins involved in antimonate respiration and resistance in Geobacter sp. strain SVR. Appl Environ Microbiol 2024; 90:e0172923. [PMID: 38411083 PMCID: PMC11206593 DOI: 10.1128/aem.01729-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/27/2024] [Indexed: 02/28/2024] Open
Abstract
Geobacter sp. strain SVR uses antimonate [Sb(V)] as a terminal electron acceptor for anaerobic respiration. Here, we visualized a possible key enzyme, periplasmic Sb(V) reductase (Anr), via active staining and non-denaturing gel electrophoresis. Liquid chromatography-tandem mass spectrometry analysis revealed that a novel dimethyl sulfoxide (DMSO) reductase family protein, WP_173201954.1, is involved in Anr. This protein was closely related with AnrA, a protein suggested to be the catalytic subunit of a respiratory Sb(V) reductase in Desulfuribacillus stibiiarsenatis. The anr genes of strain SVR (anrXSRBAD) formed an operon-like structure, and their transcription was upregulated under Sb(V)-respiring conditions. The expression of anrA gene was induced by more than 1 µM of antimonite [Sb(III)]; however, arsenite [As(III)] did not induce the expression of anrA gene. Tandem mass tag-based proteomic analysis revealed that, in addition to Anr proteins, proteins in the following categories were upregulated under Sb(V)-respiring conditions: (i) Sb(III) efflux systems such as Ant and Ars; (ii) antioxidizing proteins such as ferritin, rubredoxin, and thioredoxin; (iii) protein quality control systems such as HspA, HslO, and DnaK; and (iv) DNA repair proteins such as UspA and UvrB. These results suggest that strain SVR copes with antimony stress by modulating pleiotropic processes to resist and actively metabolize antimony. To the best of our knowledge, this is the first report to demonstrate the involvement of AnrA in Sb(V) respiration at the protein level. Furthermore, this is the first example to show high expression of the Ant system proteins in the Sb(V)-respiring bacterium.IMPORTANCEAntimony (Sb) exists mainly as antimonite [Sb(III)] or antimonate [Sb(V)] in the environment, and Sb(III) is more toxic than Sb(V). Recently, microbial involvement in Sb redox reactions has received attention. Although more than 90 Sb(III)-oxidizing bacteria have been reported, information on Sb(V)-reducing bacteria is limited. Especially, the enzyme involved in dissimilatory Sb(V) reduction, or Sb(V) respiration, is unclear, despite this pathway being very important for the circulation of Sb in nature. In this study, we demonstrated that the Sb(V) reductase (Anr) of an Sb(V)-respiring bacterium (Geobacter sp. SVR) is a novel member of the dimethyl sulfoxide (DMSO) reductase family. In addition, we found that strain SVR copes with Sb stress by modulating pleiotropic processes, including the Ant and Ars systems, and upregulating the antioxidant and quality control protein levels. Considering the abundance and diversity of putative anr genes in the environment, Anr may play a significant role in global Sb cycling in both marine and terrestrial environments.
Collapse
Affiliation(s)
- Ryoya Kambara
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Shigeki Yamamura
- Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Seigo Amachi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| |
Collapse
|
15
|
Yu T, Chen X, Zeng XC, Wang Y. Biological oxidation of As(III) and Sb(III) by a novel bacterium with Sb(III) oxidase rather than As(III) oxidase under anaerobic and aerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169893. [PMID: 38185173 DOI: 10.1016/j.scitotenv.2024.169893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Sb and As are chemically similar, but the sequences and structures of Sb(III) and As(III) oxidase are totally distinct. It is thus interesting to explore whether Sb(III) oxidase oxidizes As(III), and if so, how microbial oxidations of Sb(III) and As(III) influence one another. Previous investigations have yielded ambiguous or even erroneous conclusions. This study aimed to clarify this issue. Firstly, we prepared a consortium of Sb(III)-oxidizing prokaryotes (SOPs) by enrichment cultivation. Metagenomic analysis reveals that SOPs with the Sb(III) oxidase gene, but lacking the As(III) oxidase gene are predominant in the SOP community. Despite this, SOPs exhibit comparable Sb(III) and As(III)-oxidizing activities in both aerobic and anaerobic conditions, indicating that at the microbial community level, Sb(III) oxidase can oxidize As(III). Secondly, we isolated a representative cultivable SOP, Ralstonia sp. SbOX with Sb(III) oxidase gene but without As(III) oxidase gene. Genomic analysis of SbOX reveals that this SOP strain has a complete Sb(III) oxidase (AnoA) gene, but lacks As(III) oxidase (AioAB or ArxAB) gene. It is interesting to discover that, besides its Sb(III) oxidation activities, SbOX also exhibits significant capabilities in oxidizing As(III) under both aerobic and anaerobic conditions. Moreover, under aerobic conditions and in the presence of both Sb(III) and As(III), SbOX exhibited a preference for oxidizing Sb(III). Only after the near complete oxidation of Sb(III) did SbOX initiate rapid oxidation of As(III). In contrast, under anaerobic conditions and in the presence of both Sb(III) and As(III), Sb(III) oxidation notably inhibited the As(III) oxidation pathway in SbOX, while As(III) exhibited minimal effects on the Sb(III) oxidation. These findings suggest that SOPs can oxidize As(III) under both aerobic and anaerobic conditions, exhibiting a strong preference for Sb(III) over As(III) oxidation in the presence of both. This study unveils a novel mechanism of interaction within the Sb and As biogeochemical cycles.
Collapse
Affiliation(s)
- Tingting Yu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China.
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| |
Collapse
|
16
|
Jiang N, Yan M, Li Q, Zheng S, Hu Y, Xu X, Wang L, Liu Y, Huang M. Bioelectrocatalytic reduction by integrating pyrite assisted manganese cobalt-doped carbon nanofiber anode and bacteria for sustainable antimony catalytic removal. BIORESOURCE TECHNOLOGY 2024; 395:130378. [PMID: 38281546 DOI: 10.1016/j.biortech.2024.130378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
A novel manganese cobalt metal-organic framework based carbon nanofiber electrode (MnCo/CNF) was prepared and used as microbial fuel cell (MFC) anode. Pyrite was introduced into the anode chamber (MnCoPy_MFC). Synergistic function between pyrite and MnCo/CNF facilitated the pollutants removal and energy generation in MnCoPy_MFC. MnCoPy_MFC showed the highest chemical oxygen demand removal efficiency (82 ± 1%) and the highest coulombic efficiency (35 ± 1%). MnCoPy_MFC achieved both efficient electricity generation (maximum voltage: 658 mV; maximum power density: 3.2 W/m3) and total antimony (Sb) removal efficiency (99%). The application of MnCo/CNF significantly enhanced the biocatalytic efficiency of MnCoPy_MFC, attributed to its large surface area and abundant porous structure that provided ample attachment sites for electroactive microorganisms. This study revealed the synergistic interaction between pyrite and MnCo/CNF anode, which provided a new strategy for the application of composite anode MFC in heavy metal removal and energy recovery.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mengying Yan
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qi Li
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yuan Hu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoyang Xu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lin Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yanbiao Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
17
|
Chen X, Yu T, Zeng XC. Functional features of a novel Sb(III)- and As(III)-oxidizing bacterium: Implications for the interactions between bacterial Sb(III) and As(III) oxidation pathways. CHEMOSPHERE 2024; 352:141385. [PMID: 38316280 DOI: 10.1016/j.chemosphere.2024.141385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/07/2024]
Abstract
Antimony (Sb) and arsenic (As) share similar chemical characteristics and commonly coexist in contaminated environments. It has been reported that the biogeochemical cycles of antimony and arsenic affect each other. However, there is limited understanding regarding microbial coupling between the biogeochemical processes of antimony and arsenic. Here, we aimed to solve this issue. We successfully isolated a novel bacterium, Shinella sp. SbAsOP1, which possesses both Sb(III) and As(III) oxidase, and can effectively oxidize both Sb(III) and As(III) under aerobic and anaerobic conditions. SbAsOP1 exhibits greater aerobic oxidation activity for the oxidation of As(III) or Sb(III) compared to its anaerobic activity. SbAsOP1 also significantly catalyzes the oxidative mobilization of solid-phase Sb(III) under aerobic conditions. The activity of SbAsOP1 in oxidizing solid Sb(III) is 3 times lower than its activity in oxidizing soluble form. It is noteworthy that, in the presence of both Sb(III) and As(III) under aerobic conditions, either As(III) or Sb(III) significantly inhibits the oxidation of Sb(III) or As(III), respectively. In comparison, under anaerobic conditions and in the coexistence of Sb(III) and As(III), As(III) significantly inhibits Sb(III) oxidation, whereas Sb(III) almost completely inhibits As(III) oxidation. These findings suggest that under both aerobic and anaerobic conditions, SbAsOP1 demonstrates a partial preference for Sb(III) oxidation. Additionally, bacterial oxidations of Sb(III) and As(III) mutually inhibit each other to varying degrees. These observations gain a novel understanding of the interplay between the biogeochemical processes of antimony and arsenic.
Collapse
Affiliation(s)
- Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China
| | - Tingting Yu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China.
| |
Collapse
|
18
|
He Y, Yang Y, Chi W, Hu S, Chen G, Wang Q, Cheng K, Guo C, Liu T, Xia B. Biogeochemical cycling in paddy soils controls antimony transformation: Roles of iron (oxyhydr)oxides, organic matter and sulfate. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132979. [PMID: 37976844 DOI: 10.1016/j.jhazmat.2023.132979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/01/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
In paddy fields, periodic flooding and drainage phases can significantly affect the availability of antimony (Sb), but the underlying mechanisms remain unclear. In this study, Sb-contaminated paddy soil was incubated under anaerobic (40 day) and subsequently aerobic (40-55 day) conditions. The Sb fractions was investigated and a kinetic model was established to quantitatively evaluate the main processes controlling Sb transformation. Under anaerobic conditions, the reductive dissolution of iron (Fe) (oxyhydr)oxides, the release of soil colloids, and dissolved organic carbon (DOC) could facilitate the release of Sb(V), while newly released Sb(V) were synchronously reduced to Sb(III) that could be incorporated into the solid phase (34.1%, 40 day) or precipitated as Sb2S3 (9.7%, 40 day). After soil aeration, a significant increase in dissolved and extracted Sb(V) (34.7%, 45 day) was observed due to the Sb(III) oxidization by the reactive oxygen species (ROS) generated from Fe(II) oxidization. The dissolved and extracted Sb(V) were simultaneously incorporated into the solid phase as the re-aggregation of soil colloids and DOC, and only contributed to 17.1% of the total Sb content at the end of aerobic phase (55 day). Our results elucidated the mechanisms about how biogeochemical Fe/S/C cycling jointly controlled Sb transformation in paddy systems.
Collapse
Affiliation(s)
- Yizhou He
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenting Chi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Shiwen Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kuan Cheng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chao Guo
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Bingqing Xia
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
19
|
Valenzuela-Cantú AK, Atilano-Camino MM, Cervantes FJ, Pat Espadas AM. Biochar mitigates the adverse effects of antimony on methanogenic activity: role as methane production-enhancer. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:788-798. [PMID: 38358502 PMCID: wst_2024_030 DOI: 10.2166/wst.2024.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Antimony, extensively used in energy applications, poses toxicity and contamination concerns, especially in anaerobic environments where its impact on microbial activity is poorly understood. Emerging remedies, like biochar, show promise in soil and water treatment. This study investigates biochar's influence on methanogenic activity under Sb(V) and Sb(III) stress using anaerobic sludge as inoculum and lactate as the carbon source. Sb(III) and Sb(V) were introduced at varied concentrations (5-80 mg/L), with or without biochar, monitoring changes in biogas production, pH, Sb, and lactate levels over time. Experiments with Sb(V) also involved calculating mass balance and electron distribution. Results showcased the following significant enhancements: biochar notably improved COD removal and biogas production in Sb(III) spiked conditions, up to 5-fold and 2-fold increases, respectively. Sb(III) removal reached up to 99% with biochar, while in high Sb(V) concentrations, biochar reduced the adverse effect on biogas production by 96%. Adsorption capacities favored biomass (60.96 mg Sb(III)/gVSS, and 22.4 mg Sb(V)/gVSS) over biochar (3.33 mg Sb(III)/g, and 1.61 mg Sb(V)/g) for both Sb species. This study underscores biochar's potential to mitigate metalloid impact on methanogenic activity while aiding Sb removal from liquid phase, suggesting promising implications for remediation and methane production enhancement strategies.
Collapse
Affiliation(s)
- Ana K Valenzuela-Cantú
- Departamento de Ingeniería Química y Metalurgia, Facultad Interdisciplinaria de Ingeniería, Universidad de Sonora, Hermosillo 83000, México E-mail: ;
| | - Marina M Atilano-Camino
- Instituto de Ecología, UNAM, Estación Regional del Noroeste (ERNO). Luis D. Colosio y Madrid,, Hermosillo, Sonora 83000, México
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 2001, Querétaro 76230, México
| | - Aurora M Pat Espadas
- CONACYT-UNAM Instituto de Geología, Estación Regional del Noroeste (ERNO). Luis D. Colosio y Madrid, Hermosillo, Sonora 83000, México
| |
Collapse
|
20
|
Li Y, Li H, Zhang R, Bing X. Toxicity of antimony to Daphnia magna: Influence of environmental factors, development of biotic ligand approach and biochemical response at environmental relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132738. [PMID: 37832444 DOI: 10.1016/j.jhazmat.2023.132738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Acute toxicity of antimony pentavalent to neonatal Daphnia magna and the influence of water quality parameters were investigated, and enzymatic activities of organisms at environmentally relevant levels of antimony were determined. EC50 values of antimony to neonatal D. magna were 90.3 and 63.8 mg/L at 24 and 48 h of exposure, respectively. Dissolved organic matter (FA and HA) and cation (Ca2+, Mg2+ or Na+) had significant protective effects on D. magna against antimony toxicity. With increasing pH in the range from 7.4 to 8.5, increase of EC50 were observed due to the competition of OH- on biotic ligands. Based on the biotic ligand model (BLM) concept, stability constants for the binding of Sb(OH)6- and OH- to the biotic ligand were estimated, and the Log [Formula: see text] - and LogKXOH- were 3.137 and 2.859, respectively. Moreover, antimony exposure in low concentrations significantly increased MDA levels and maybe exert oxidative stress to the organisms. Antimony can also induce toxicity in D. magna by affecting oxidative stress and neurotransmitter systems. The relatively comprehensive toxicological data can contribute to the toxicity prediction and ecological risk assessments of antimony.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Ecology and Environment, Inner Mongolia University, Huhhot 010021, China
| | - Huixian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ruiqing Zhang
- School of Ecology and Environment, Inner Mongolia University, Huhhot 010021, China.
| | - Xiaojie Bing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Ecology and Environment, Inner Mongolia University, Huhhot 010021, China
| |
Collapse
|
21
|
Seridou P, Fyntrilakis K, Kyritsi S, Syranidou E, Kalogerakis N. Effect of endophytic bacteria on the phytoremediation potential of halophyte Tamarix smyrnensis for Sb-contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:964-974. [PMID: 38038643 DOI: 10.1080/15226514.2023.2288144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Phytoremediation, including bacteria-assisted phytoremediation, presents a promising technology for treating shooting range soils contaminated with toxic metalloids. In this study, a pot experiment was performed using the halophyte Tamarix smyrnensis and soil collected from a shooting range and artificially spiked at two different antimonite (Sb(III)) concentrations (50 mg/kg and 250 mg/kg) with the aim to explore the Sb phytoremediation of the halophyte. The effect of salt (0.3%) and Mn addition (300 ppm) on its remediation capacity was also investigated. Moreover, the root endophytic community of the halophyte was found able to remove Sb(III) and was periodically inoculated to the plants. The consortium application increased the Sb bioavailable fraction in the soil and enhanced the Sb accumulation in root and aerial parts (up to 50% and 55% respectively at high Sb(III) concentration) compared to the uninoculated plants. Moreover, the presence of Mn increased the translocation factor (21% increase for inoculated and 46% increase for uninoculated plants) while lower TF was observed at high Sb concentrations (0,2 and 0,07 was the lowest value at low and high Sb treatments respectively). The addition of salt, Mn and root endophytic bacteria aided the halophyte to cope with elevated Sb concentrations. The total chlorophyll concentration was higher in inoculated plants compared to the uninoculated ones in all treatments, implying the positive effects of endophytic inoculation. The halophyte T. smyrnensis with the aid of endophytic community presents a promising alternative for remediating shooting range soils especially in areas impacted by salinity.
Collapse
Affiliation(s)
- Petroula Seridou
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| | | | - Sofia Kyritsi
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Evdokia Syranidou
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
- Institute of Geoenergy, Foundation for Research and Technology - Hellas (FORTH), Chania, Greece
| |
Collapse
|
22
|
Wang Y, Kong L, He M, Lin C, Ouyang W, Liu X, Peng X. Mechanistic insights into Sb(III) and Fe(II) co-oxidation by oxygen and hydrogen peroxide: Dominant reactive oxygen species and roles of organic ligands. WATER RESEARCH 2023; 242:120296. [PMID: 37413752 DOI: 10.1016/j.watres.2023.120296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Sole O2 or H2O2 oxidant hardly oxidize Sb(III) on a time scale of hours to days, but Sb(III) oxidation can simultaneously occur in Fe(II) oxidation by O2 and H2O2 due to the generation of reactive oxygen species (ROS). However, Sb(III) and Fe(II) co-oxidation mechanisms regarding the dominant ROS and effects of organic ligands require further elucidation. Herein, the co-oxidation of Sb(III) and Fe(II) by O2 and H2O2 was studied in detail. The results indicated that increasing the pH significantly increased Sb(III) and Fe(II) oxidation rates during Fe(II) oxygenation, while the highest Sb(III) oxidation rate and oxidation efficiency was obtained at pH 3 with H2O2 as the oxidant. HCO3- and H2PO4-anions exerted different effects on Sb(III) oxidation in Fe(II) oxidation processes by O2 and H2O2. In addition, Fe(II) complexed with organic ligands could improve Sb(III) oxidation rates by 1 to 4 orders of magnitude mainly due to more ROS production. Moreover, quenching experiments combined with the PMSO probe demonstrated that .OH was the main ROS at acidic pH, whereas Fe(IV) played a key role in Sb(III) oxidation at near-neutral pH. In particular, the steady-state concentration of Fe(IV) ([Fe(IV)]ss) and kFe(IV)/Sb(III) were determined to be 1.66×10-9 M and 2.57×105 M-1 s-1, respectively. Overall, these findings help to better understand the geochemical cycling and fate of Sb in Fe(II)- and DOM-rich subsurface environments undergoing redox fluctuations and are conductive to developing Fenton reactions for the in-situ remediation of Sb(III)-contaminated environments.
Collapse
Affiliation(s)
- Yiqing Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Linghao Kong
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xianjia Peng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Lv Y, Zhang C, Nan C, Fan Z, Huang S. Induced transformation of antimony trioxide by Mn(II) oxidation and their co-transformed mechanism. J Environ Sci (China) 2023; 129:69-78. [PMID: 36804243 DOI: 10.1016/j.jes.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 06/18/2023]
Abstract
Antimony (Sb) is a toxic and carcinogenic element that often enters soil in the form of antimony trioxide (Sb2O3) and coexists with manganese (Mn) in weakly alkaline conditions. Mn oxides such as birnessite have been found to promote the oxidative dissolution of Sb2O3, but few researches concerned the co-transformations of Sb2O3 and Mn(II) in environment. This study investigated the mutual effect of abiotic oxidation of Mn(II) and the coupled oxidative dissolution of Sb2O3. The influencing factors, such as Mn(II) concentrations, pH and oxygen were also discussed. Furthermore, their co-transformed mechanism was also explored based on the analysis of Mn(II) oxidation products with or without Sb2O3 using XRD, SEM and XPS. The results showed that the oxidative dissolution of Sb2O3 was enhanced under higher pH and higher Mn(II) loadings. With a lower Mn(II) concentration such as 0.01 mmol/L Mn(II) at pH 9.0, the improved dissolution of Sb2O3 was attributed to the generation of dissolved intermediate Mn(III) species with strong oxidation capacity. However, under higher Mn(II) concentrations, both amorphous Mn(III) oxides and intermediate Mn(III) species were responsible for promoting the oxidative dissolution of Sb2O3. Most released Sb (∼72%) was immobilized by Mn oxides and Sb(V) was dominant in the adsorbed and dissolved total Sb. Meanwhile, the presence of Sb2O3 not only inhibited the removal of Mn(II) by reducing Mn(III) to Mn(II) but also affected the final products of Mn oxides. For example, amorphous Mn oxides were formed instead of crystalline Mn(III) oxides, such as MnOOH. Furthermore, rhodochrosite (MnCO3) was formed with the high Mn(II)/Sb2O3 ratio, but without being observed in the low Mn(II)/Sb2O3 ratio. The results of study could help provide more understanding about the fate of Sb in the environment and the redox transformation of Mn.
Collapse
Affiliation(s)
- You Lv
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Caixiang Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan 430074, China.
| | - Chao Nan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Zenghui Fan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shuxin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
24
|
He SX, Peng YJ, Chen JY, Liu CJ, Cao Y, Li W, Ma LQ. Antimony uptake and speciation, and associated mechanisms in two As-hyperaccumulators Pteris vittata and Pteris cretica. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131607. [PMID: 37182466 DOI: 10.1016/j.jhazmat.2023.131607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The behaviors of antimony (Sb) and arsenic (As) in plants are different, though they are chemical analogs. Here, we examined the Sb uptake and speciation in two As-hyperaccumulators P. vittata and P. cretica, which were exposed to 0.5 or 5 mg L-1 antimonate (SbV) or antimonite (SbIII) under hydroponics for 7 d. Both plants grew better under Sb exposure, especially for P. cretica. The biomass of P. cretica roots increased by 29-46% after exposing to SbV, possibly due to increased S. Further, the Sb content in P. vittata was 17-93% greater than P. cretica, with 2-3 times more SbIII than SbV in both plants and > 92% Sb being concentrated in the roots, showing limited translocation. Under SbV exposure, SbV was dominant in P. vittata roots at 86-94%, while SbIII was predominant in P. cretica roots at 36-95%. P. cretica's stronger reducing ability than P. vittata may be due to arsenate reductases HAC1 and ACR2, which were upregulated in both plants. In short, while effective in Sb accumulation, it is mostly concentrated in the roots for both plants. The differences in their accumulation and speciation may help to better understand Sb behaviors in other plants.
Collapse
Affiliation(s)
- Si-Xue He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - You-Jing Peng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jia-Yi Chen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yue Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Bai J, Lu D, Chen L, Liu W, Zheng Y, Xiang G, Meng G, Lin Z, Duan R. Ecotoxicological Differences of Antimony (III) and Antimony (V) on Earthworms Eisenia fetida (Savingy). TOXICS 2023; 11:230. [PMID: 36976994 PMCID: PMC10056663 DOI: 10.3390/toxics11030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
In this study, we assessed the acute and chronic toxic effects of Sb (III) and Sb (V) on Eisenia fetida (Savingy) (E. fetida) by applying the filter paper contact method, aged soil treatment, and avoidance test experiment. In the acute filter paper contact test, the LC50 values for Sb (III) were 2581 mg/L (24 h), 1427 mg/L (48 h), and 666 mg/L (72 h), which were lower than Sb (V). In the chronic aged soil exposure experiment, when the Sb (III)-contaminated soil was aged 10 d, 30 d, and 60 d after exposure for 7 d, the LC50 value of E. fetida was 370, 613, and >4800 mg/kg, respectively. Compared to Sb (V) spiked soils aged only for 10 d, the concentrations causing 50% mortality significantly increased by 7.17-fold after 14 days of exposure in soil aged for 60 d. The results show that Sb (III) and Sb (V) could cause death and directly affect the avoidance behavior of E. fetida; yet, the toxicity of Sb (III) was higher than that of Sb (V). Consistent with the decrease in water-soluble Sb, the toxicity of Sb to E. fetida was greatly reduced with time. Therefore, in order to avoid overestimating the ecological risk of Sb with varying oxidative states, it is important to consider the forms and bioavailability of Sb. This study accumulated and supplemented the toxicity data, and provided a more comprehensive basis for the ecological risk assessment of Sb.
Collapse
Affiliation(s)
- Jing Bai
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
- Hunan Key Laboratory of Ecological Remediation of Antimony Mine, Loudi 417000, China
| | - Dan Lu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Linyu Chen
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Weiying Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Yu Zheng
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
- Hunan Key Laboratory of Ecological Remediation of Antimony Mine, Loudi 417000, China
| | - Guohong Xiang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
- Hunan Key Laboratory of Ecological Remediation of Antimony Mine, Loudi 417000, China
| | - Guiyuan Meng
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
- Hunan Key Laboratory of Ecological Remediation of Antimony Mine, Loudi 417000, China
| | - Zhong Lin
- College of Chemistry and Environmental Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
- Hunan Key Laboratory of Ecological Remediation of Antimony Mine, Loudi 417000, China
| |
Collapse
|
26
|
Insight into the Adsorption Behaviors of Antimony onto Soils Using Multidisciplinary Characterization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074254. [PMID: 35409945 PMCID: PMC8998344 DOI: 10.3390/ijerph19074254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
Antimony (Sb) pollution in soils is an important environmental problem, and it is imperative to investigate the migration and transformation behavior of Sb in soils. The adsorption behaviors and interaction mechanisms of Sb in soils were studied using integrated characterization techniques and the batch equilibrium method. The results indicated that the adsorption kinetics and isotherms of Sb onto soils were well fitted by the first-order kinetic, Langmuir, and Freundlich models, respectively, while the maximum adsorbed amounts of Sb (III) in soil 1 and soil 2 were 1314.46 mg/kg and 1359.25 mg/kg, respectively, and those of Sb (V) in soil 1 and soil 2 were 415.65 mg/kg and 535.97 mg/kg, respectively. In addition, pH ranging from 4 to 10 had little effect on the adsorption behavior of Sb. Moreover, it was found that Sb was mainly present in the residue fractions, indicating that Sb had high geochemical stability in soils. SEM analysis indicated that the distribution positions of Sb were highly coincident with Ca, which was mainly due to the existence of calcium oxides, such as calcium carbonate and calcium hydroxide, that affected Sb adsorption, and further resulted in Sb and Ca bearing co-precipitation. XPS analysis revealed the valence state transformation of Sb (III) and Sb (V), suggesting that Fe/Mn oxides and reactive oxygen species (ROS) served as oxidant or reductant to promote the occurrence of the Sb redox reaction. Sb was mobile and leachable in soils and posed a significant threat to surface soils, organisms, and groundwater. This work provides a fundamental understanding of Sb adsorption onto soils, as well as a theoretical guide for studies on the adsorption and migration behavior of Sb in soils.
Collapse
|