1
|
Xie ZX, Wu Y, Zhou J, Lu JY, Huang WT. Multifunctional Antimonene-Silver Nanocomposites for Ultra-Multi-Mode and Multi-Analyte Sensing, Parallel and Batch Logic Computing, Long-Text Information Protection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401510. [PMID: 38745545 DOI: 10.1002/smll.202401510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Indexed: 05/16/2024]
Abstract
To simulate life's emergent functions, mining the multiple sensing capabilities of nanosystems, and digitizing networks of transduction signals and molecular interactions, is an ongoing endeavor. Here, multifunctional antimonene-silver nanocomposites (AM-Ag NCs) are synthesized facilely and fused for molecular sensing and digitization applications (including ultra-multi-mode and multi-analyte sensing, parallel and batch logic computing, long-text information protection). By mixing surfactant, AM, Ag+ and Sodium borohydride (NaBH4) at room temperature for 5 min, the resulting NCs are comprised of Ag nanoparticles scattered within AM nanosheets and protected by the surfactant. Interestingly, AM-Ag NCs exhibit ultra-multi-mode sensing ability for multiplex metal ions (Hg2+, Fe3+, or Al3+), which significantly improved selectivity (≈2 times) and sensitivity (≈400 times) when analyzing the combined channels. Moreover, multiple sensing capabilities of AM-Ag NCs enable diverse batch and parallel molecular logic computations (including advanced cascaded logic circuits). Ultra-multi-mode selective patterns of AM-Ag NCs to 18 kinds of metal ions can be converted into a series of binary strings by setting the thresholds, and realized high-density, long-text information protection for the first time. This study provides new ideas and paradigms for the preparation and multi-purpose application of 2D nanocomposites, but also offers new directions for the fusion of molecular sensing and informatization.
Collapse
Affiliation(s)
- Zhi Xin Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Ying Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jie Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jiao Yang Lu
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), School of Nursing, Changsha Medical University, Changsha, 410219, P. R. China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
2
|
Zheng S, Xu C, Luo Z, Zhu H, Wang H, Zhang Q, Zhu Q, Huang D. Co-utilization of sepiolite and ferromanganese ore reduces rice Cd and As concentrations via soil immobilization and root Fe-Mn plaque resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168269. [PMID: 37918748 DOI: 10.1016/j.scitotenv.2023.168269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Cadmium (Cd) and arsenic (As), common toxic elements in farmland soil, are easily absorbed by rice and accumulate in grains. Combined amendment is likely to ameliorate Cd-As-contaminated soil; however, studies on this aspect are limited. Therefore, we explored the effects of co-utilizing sepiolite and ferromanganese ore (SF) on Cd-As accumulation in rice by conducting pot experiments on Cd-As-contaminated paddy soil. The results showed that 4 g kg-1 SF (4SF) reduced Cd (55.9 %/48.5 %) and As (82.9 %/64.7 %) concentrations in grain in early and late rice. The Fe concentration in Fe-Mn plaque (IMP) (FeIMP) first decreased and then increased, and the Mn concentration in IMP (MnIMP) increased with an increase in the SF addition amount. This resulted in the 4SF treatment maximizing the Cd adsorption capacity of IMP, whereas the 2 g kg-1 SF treatment (2SF) minimized the As adsorption capacity of IMP. More importantly, when the total Cd and As were 9.7 mg kg-1 and 304.2 mg kg-1, respectively, in the soil, 4SF application reduced CaCl2-extractable Cd (80.5 %/87.9 %), and 2SF reduced available As (24.0 %/20.9 %) in early and late rice. Additionally, SF decreased the Cd and As ion contents in soil pore water. Overall, SF has good immobilization and sustained effect on Cd-As and can be used as an effective material for remediation of Cd-As-contaminated soil.
Collapse
Affiliation(s)
- Shen Zheng
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Chao Xu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Zunchang Luo
- Soil and Fertilizer Institute of Hunan Province, Changsha 410125, China
| | - Hanhua Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hui Wang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Quan Zhang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qihong Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Daoyou Huang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
3
|
Li X, Nie D, Chen X, Yang J, Li J, Yang Y, Liao Z, Mao X. Efficient and safe use of a slow-release Mn material for three sequential crops of rice in Cd-contaminated paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166952. [PMID: 37696407 DOI: 10.1016/j.scitotenv.2023.166952] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Traditional passivators reduce the effectiveness of Cd by ion exchange, chemisorption, and complexation in soil. However, traditional passivators have defects such as easy aging and poor durability, which not only reduce the treatment efficiency but also increase the risk of primary soil environmental pollution. For this reason, considering that Mn and Cd have physiological antagonism in rice, sepiolite-supported manganese ferrite (SMF) was prepared in this study to improve passivation persistence. The passivation mechanism, effect and duration of SMF were explored. The results showed that SMF has a dense and small pore structure and that the surface is rough, which provides abundant adsorption sites for Cd2+ adsorption. When the SMF adsorbs Cd2+, ions or functional groups in the material, such as MnOOH*, will exchange with Cd2+ to form Cd(OH)2 and other internal complexes. Indoor pure soil cultivation experiments showed that 0.1 % SMF can reduce the effective Cd content of soil by 41.32 %, demonstrating the efficiency of SMF. The three-crop rice experiments in pots showed that SMF could increase soil pH and continuously increase the content of available Mn in soil. Increasing the content of available Mn reduces the ability of rice to absorb Cd. In addition, the three-cropping rice experiments also indicated that the passivation effect of SMF materials on Cd-contaminated paddy fields was long-lasting and stable and that SMF is a more efficient and safe Cd passivation agent.
Collapse
Affiliation(s)
- Xuesong Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Henry Fork School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Datao Nie
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xian Chen
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Junying Yang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jihong Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yifan Yang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhongwen Liao
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyun Mao
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525099, China.
| |
Collapse
|
4
|
Ha Z, Ma M, Tan X, Lan Y, Lin Y, Zhang TC, Du D. Remediation of arsenic contaminated water and soil using mechanically (ball milling) activated and pyrite-amended electrolytic manganese slag. ENVIRONMENTAL RESEARCH 2023; 234:116607. [PMID: 37429402 DOI: 10.1016/j.envres.2023.116607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
With the development of industry, heavy metal (HM) pollution of soil has become an increasingly serious problem. Using passivators made of industrial by-products to immobilize HMs in contaminated soil is a promising in-situ remediation technology. In this study, the electrolytic manganese slag (EMS) was modified into a passivator (named M-EMS) by ball milling, and the effects of M-EMS on adsorption of As(V) in aquatic samples and on immobilization of As(V) and other HMs in soil samples were investigated under different conditions. Results demonstrated that M-EMS had a maximum As(V) adsorption capacity of 65.3 mg/g in the aquatic samples. Adding M-EMS to the soil reduced the leaching of As (from 657.2 to 319.8 μg/L) and other HMs after 30 d of incubation, reduced the bioavailability of As(V) and improved the quality and microbial activity of the soil. The mechanism for M-EMS to immobilize As in the soil are complex reactions, ion exchange reaction with As and electrostatic adsorption. This work provides new ideas of using waste residue matrix composites for sustainable remediation of Arsenic in the aquatic environment and soil.
Collapse
Affiliation(s)
- Zhihao Ha
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, South-Central Minzu University, Wuhan, 430074, China
| | - Mengyu Ma
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, South-Central Minzu University, Wuhan, 430074, China; Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Xiaohan Tan
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, South-Central Minzu University, Wuhan, 430074, China
| | - Yanxin Lan
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, South-Central Minzu University, Wuhan, 430074, China
| | - Yanmin Lin
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, South-Central Minzu University, Wuhan, 430074, China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE, 68182, USA
| | - Dongyun Du
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
5
|
Wang D, Wang R, Peng W, Wang Y, Zhang N, Duan Y, Wang S, Liu L. Adsorption of Cu(
II
) in aqueous solution by sodium dodecyl benzene sulfonate‐modified montmorillonite. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Danqi Wang
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Ruicong Wang
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Wencai Peng
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Yi Wang
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Na Zhang
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Yanan Duan
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Shiqin Wang
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Linye Liu
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| |
Collapse
|
6
|
Zhao P, Wang A, Wang P, Huang Z, Fu Z, Huang Z. Two recyclable and complementary adsorbents of coal-based and bio-based humic acids: High efficient adsorption and immobilization remediation for Pb(II) contaminated water and soil. CHEMOSPHERE 2023; 318:137963. [PMID: 36708780 DOI: 10.1016/j.chemosphere.2023.137963] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Humic acid can effectively bind heavy metals and is a promising remediation agent for heavy metals-contaminated water and soil. Many successful applications of humic acid have been reported, but rarely studied the specific process and mechanism of heavy metal removal by humic acids from water and soil, especially the simultaneous application of coal-based and bio-based humic acids. In this work, two kinds of coal-based and bio-based humic acid materials (CHA and BHA) from weathered coal and rice husk were industrially produced and studied their Pb(II) adsorption and immobilization characteristics and mechanisms in water and soil. The batch adsorption experiments obtained the Pb(II) adsorption by CHA and BHA both were spontaneous and endothermic monolayer chemisorption and controlled by three rate-limiting steps (bulk, film, and pore) in the adsorption process. CHA and BHA had highly efficient Pb(II) adsorption capacities, obtained their maximum adsorption capacity was 201 and 188 mg g-1, respectively. In addition to the two main adsorption mechanisms of ion exchange and surface complexation, electrostatic interaction, precipitation reaction, and π-π interaction were also involved. Soil culture experiments showed that CHA and BHA both exhibited a highly efficient immobilization effect on Pb(II)-contaminated soil, and CHA and BHA had a better synergistic promotion effect. Compared with the CK soil, the content of DTPA-Pb(II) decreased by 10.2-13.2% and the content of RES-Pb(II) increased by 14-22% in soils treated with different humic acids. Ion exchange, complexation, precipitation, and electrostatic attraction promote the transformation of unstable Pb(II) to stable Pb(II), which was of great significance for the immobilization of Pb(II) in soil. Overall, CHA and BHA have the potential to be used as green, efficient, and promising adsorbents to remove and immobilize Pb(II) from wastewater and soil.
Collapse
Affiliation(s)
- Peng Zhao
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - An Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Ping Wang
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256603, China
| | - Zhen Huang
- China Quality Certification Center, Beijing , 100070, China
| | - Zhanyong Fu
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256603, China
| | - Zhanbin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China.
| |
Collapse
|