1
|
Jia H, Zhu Z, Zhan J, Luo Y, Yin Z, Wang Z, Yan X, Shao H, Song Z. NtARF11 positively regulates cadmium tolerance in tobacco by inhibiting expression of the nitrate transporter NtNRT1.1. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134719. [PMID: 38797073 DOI: 10.1016/j.jhazmat.2024.134719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Heavy metal cadmium (Cd) is widespread in contaminated soil and an important factor limiting plant growth. NO3- (nitrate) affects Cd uptake and thus changes Cd tolerance in plants; however, the underlying molecular regulatory mechanisms have not yet been elucidated. Here, we analyzed a novel gene, NtARF11 (auxin response factor), which regulates Cd tolerance in tobacco via the NO3- uptake pathway, through experiments with NtARF11-knockout and NtARF11-overexpression transgenic tobacco lines. NtARF11 was highly expressed under Cd stress in tobacco plants. Under Cd stress, overexpression of NtARF11 enhanced Cd tolerance in tobacco compared to that in wild-type tobacco, as shown by the low Cd concentration, high chlorophyll concentration, and low accumulation of reactive oxygen species in NtARF11-overexpressing tobacco. Moreover, low NO3- concentrations were observed in NtARF11-overexpressing tobacco plants. Further analyses revealed direct binding of NtARF11 to the promoter of the nitrate transporter NtNRT1.1, thereby negatively regulating its expression in tobacco. Notably, NtNRT1.1 knockout reduced NO3- uptake, which resulted in low Cd concentrations in tobacco. Altogether, these results demonstrate that the NtARF11-NtNRT1.1 module functions as a positive regulator of Cd tolerance by reducing the Cd uptake in tobacco, providing new insights for improving Cd tolerance of plants through genetic engineering.
Collapse
Affiliation(s)
- Hongfang Jia
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zitong Zhu
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiawei Zhan
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yong Luo
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhuoran Yin
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhaojun Wang
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoxiao Yan
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Huifang Shao
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhaopeng Song
- State Key Laboratory of Tobacco Cultivation, College of tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
2
|
Feng Q, Zhao L, Jiang S, Qiu Y, Zhai T, Yu S, Yang W, Zhang S. The C2H2 family protein ZAT17 engages in the cadmium stress response by interacting with PRL1 in Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133528. [PMID: 38237437 DOI: 10.1016/j.jhazmat.2024.133528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Cadmium (Cd) is a heavy metal and a toxic substance. Soil Cd pollution has emerged as a significant environmental issue that jeopardizes both the safety of agricultural products and human health. PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) has been identified as a crucial factor in Cd stress and a series of defence mechanisms. However, the mechanism through which PRL1 mediates its downstream signalling has remained poorly understood. Here, we discovered a prl1-2 suppressor (sup8) for prl1-2 that complemented the defective development phenotype of prl1-2 under Cd stress. Gene cloning revealed a mutation in the C2H2 transcription factor ZAT17 as the basis for the sup8 phenotype. Genetic and biochemical studies indicated that ZAT17 acts as a negative regulator of Cd tolerance. Transcriptome analysis revealed that ZAT17 influences the alternative splicing (AS) process of multiple Cd-responsive genes by interacting with members of the MAC splicing complex, including PRL1 and CDC5. In conclusion, the identification of the novel gene ZAT17 enriches the understanding of the Cd stress response pathway and provides a valuable candidate locus for breeding Cd-resistant plant varieties.
Collapse
Affiliation(s)
- Qiuling Feng
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Luming Zhao
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shaolong Jiang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yanxin Qiu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Tingting Zhai
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shaowei Yu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Yang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Shuxin Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
3
|
Jeong J, Selvamani V, Maruthamuthu MK, Arulsamy K, Hong SH. Application of the surface engineered recombinant Escherichia coli to the industrial battery waste solution for lithium recovery. J Ind Microbiol Biotechnol 2024; 51:kuae012. [PMID: 38573823 PMCID: PMC11037431 DOI: 10.1093/jimb/kuae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Escherichia coli were engineered to selectively adsorb and recover lithium from the environment by employing a bacterial cell surface display strategy. Lithium binding peptide (LBP1) was integrated into the Escherichia coli membrane protein OmpC. The effect of environmental conditions on the adsorption of lithium by a recombinant strain was evaluated, and lithium particles on the cellular surface were analyzed by FE-SEM and XRD. To elevate the lithium adsorption, dimeric, trimeric, and tetrameric repeats of the LBP1 peptide were constructed and displayed on the surface of E. coli. The constructed recombinant E. coli displaying the LBP1 trimer was applied to real industrial lithium battery wastewater to recover lithium.
Collapse
Affiliation(s)
- Jaehoon Jeong
- Department of Chemical Engineering, University of Ulsan, Namgu, Ulsan 44610, Republic of Korea
| | - Vidhya Selvamani
- Department of Chemical Engineering, University of Ulsan, Namgu, Ulsan 44610, Republic of Korea
| | | | - Kulandaisamy Arulsamy
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soon Ho Hong
- Department of Chemical Engineering, University of Ulsan, Namgu, Ulsan 44610, Republic of Korea
| |
Collapse
|
4
|
Zhao Z, Liu L, Sun Y, Xie L, Liu S, Li M, Yu Q. Combined microbe-plant remediation of cadmium in saline-alkali soil assisted by fungal mycelium-derived biochar. ENVIRONMENTAL RESEARCH 2024; 240:117424. [PMID: 37866531 DOI: 10.1016/j.envres.2023.117424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Cadmium contamination in saline-alkali soil is becoming a great concern. Combined microbe-plant remediation is an economic way to treat this contamination, but is compromised by its low cadmium-removing capacity. In this study, the novel fungus-derived biochar was prepared to enhance the salt-tolerant bacterium-plant remediation of cadmium-contaminated saline-alkali soil. This biochar was prepared by pre-incubation of living Trichoderma atroviride hyphae with imidazole and further heating at 500 °C for 1 h. The obtained fungus-derived nitrogen-doped biochar (FBioCN) exhibited the high affinity to bacterial cells, leading to efficient colonization of exogenous salt-tolerant bacteria (e.g., Rhizobacter sp. and Sphingomonas sp.) on Amaranthus hypochondriacus roots. During culturing of the plants in the cadmium-contaminated saline-alkali soil, FBioCN drastically remodeled the rhizosphere microbiome, leading to enhance colonization of the exogeneous salt-tolerant bacteria, and increase bacterial diversity. The combination of FBioCN and the exogeneous bacteria further improved the activity of rhizosphere functional enzymes, protected the plants from the multiple stress, and promoted cadmium transport from the soil to the plants. Consequently, FBioCN together with the salt-tolerant bacteria drastically improved cadmium removal from the saline-alkali soil, with the percent of cadmium removal at the rhizosphere region increasing from 35.1% to 95.1%. This study sheds a light on the application of fungus-derived biochar in combined microbe-plant remediation in saline-alkali soil.
Collapse
Affiliation(s)
- Zirun Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ying Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Liling Xie
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shuo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mingchun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qilin Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Zhao Z, Sun Y, Wang H, Yu Q. Regulation of cadmium-induced biofilm formation by artificial polysaccharide-binding proteins for enhanced phytoremediation. CHEMOSPHERE 2023; 342:140156. [PMID: 37714481 DOI: 10.1016/j.chemosphere.2023.140156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Phytoremediation is an economic way to attenuate soil heavy metal pollution, but is frequently limited by its low pollutant-removing efficiency. Recently, we revealed the close relation between polysaccharide-based biofilm formation and cadmium removal. In this study, for improving the phytoremediation efficiency, an artificial polysaccharide-binding protein was designed by synthetic biology techniques to regulate biofilm formation. The artificial protein Syn contained two polysaccharide-binding domains from the Ruminococcus flavefaciens CttA and the Clostridium cellulolyticum CipC, preferentially binding polysaccharides exposed on both cadmium-treated bacteria and plant roots. Under cadmium stress, Syn remarkably promoted bacterial polysaccharide production from 99 mg/L to 237 mg/L, leading to 1.23-fold higher biofilm biomass. During treatment of the remediation plants with exogenous cadmium-capturing bacteria, Syn improved root biofilm formation, with the root surface polysaccharide contents increasing by 79%, and the Log10 CFU/g root increasing from 7.01 to 7.80. Meanwhile, Syn remodeled the rhizosphere microbiome, especially increasing the abundance of the bacterial groups involved in biofilm formation and stress tolerance, e.g., Pseudomonas, Enterobacter, etc. Consequently, Syn promoted plant cadmium adsorption, with the cadmium-removing efficiency increasing from 17.2% to 33.8%. This study sheds light on synthetic biology-based regulation of biofilm formation for enhanced phytoremediation.
Collapse
Affiliation(s)
- Zirun Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| | - Ying Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Hairong Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
6
|
Shi C, Zhao Z, Zhu N, Yu Q. Magnetic nanoparticle-assisted colonization of synthetic bacteria on plant roots for improved phytoremediation of heavy metals. CHEMOSPHERE 2023; 329:138631. [PMID: 37030349 DOI: 10.1016/j.chemosphere.2023.138631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Phytoremediation is a facile strategy to remove environmental heavy metals by using metal-accumulating plants from the rhizosphere environment. However, its efficiency is frequently compromised by the weak activity of rhizosphere microbiomes. This study developed a magnetic nanoparticle-assisted root colonization technique of synthetic functional bacteria to regulate rhizosphere microbiome composition for enhanced phytoremediation of heavy metals. The iron oxide magnetic nanoparticles with the size of 15-20 nm were synthesized and grafted by chitosan, a natural bacterium-binding polymer. The synthetic Escherichia coli SynEc2, which highly exposed an artificial heavy metal-capturing protein, was then introduced with the magnetic nanoparticles to bind the Eichhornia crassipes plants. Confocal microscopy, scanning electron microscopy, and microbiome analysis revealed that the grafted magnetic nanoparticles strongly promoted colonization of the synthetic bacteria on the plant roots, leading to remarkable change of rhizosphere microbiome composition, with the increase in the abundance of Enterobacteriaceae, Moraxellaceae, and Sphingomonadaceae. Histological staining and biochemical analysis further showed that the combination of SynEc2 and the magnetic nanoparticles protected the plants from heavy metal-induced tissue damage, and increased plant weights from 29 g to 40 g. Consequently, the plants with the assistance of synthetic bacteria and the magnetic nanoparticles in combination exhibited much higher heavy metal-removing capacity than the plants treated by the synthetic bacteria or the magnetic nanoparticles alone, leading to the decrease in the heavy metal levels from 3 mg/L to 0.128 mg/L for cadmium, and to 0.032 mg/L for lead. This study provided a novel strategy to remodel rhizosphere microbiome of metal-accumulating plants by integrating synthetic microbes and nanomaterials for improving the efficiency of phytoremediation.
Collapse
Affiliation(s)
- Cong Shi
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Zirun Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Nali Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
7
|
Oba BT, Zheng X, Aborisade MA, Kumar A, Battamo AY, Liu J, Laghari AA, Sun P, Yang Y, Zhao L. Application of KHSO 5 for remediation of soils polluted by organochlorides: A comprehensive study on the treatment's efficacy, environmental implications, and phytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162023. [PMID: 36739032 DOI: 10.1016/j.scitotenv.2023.162023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Soil pollution caused by complex organochloride mixtures has been increasing in many parts of the world in recent years; as a result, countless numbers of people are exposed to dangerous pollutions; hence, the treatment of organochlorides-polluted soils is gaining considerable attention. In this study, the potential of unactivated peroxymonosulfate (KHSO5) in remediating soil co-contaminated with trichlorophenol, para-dichlorobenzene, and para-chloro-meta-cresol was investigated. In addition, the treatment's collateral effect on critical soil properties was explored. The result revealed that treating 10 g of soil with 20 mL of 5 mM KHSO5 for 60 min could oxidize 70.49% of the total pollutants. The pH of the soil was decreased following the treatment. The significant decrease, (p < 0.05), in the soil organic matter following the remediation has affected cation exchange capacity, and available nitrogen. It was also observed that the treatment reduced the β-glucosidase, urease, invertase, and cellulase activities significantly, (p < 0.05). The treatment, on the other hand, brought negligible effects on available phosphorus, available potassium, and particle size distribution. The phytotoxicity tests, which included seed germination and root elongation and soil respiration tests revealed that the treatment did not leach toxins into the treated soil. The treatment method was found to be relatively ecofriendly and cost effective.
Collapse
Affiliation(s)
- Belay Tafa Oba
- Department of Chemistry, Arba Minch University, Arba Minch 21, Ethiopia
| | - Xuehao Zheng
- Sichuan Provincial Engineering Laboratory of Monitoring and Control for Soil Erosion in Dry Valleys, China West Normal University, Nanchong 637009, China
| | | | - Akash Kumar
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | | | - Jiashu Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Azhar Ali Laghari
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
8
|
Preparation of Magnetic MIL-68(Ga) Metal-Organic Framework and Heavy Metal Ion Removal Application. Molecules 2022; 27:molecules27113443. [PMID: 35684379 PMCID: PMC9182009 DOI: 10.3390/molecules27113443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
A magnetic metal-organic framework nanocomposite (magnetic MIL-68(Ga)) was synthesized through a "one pot" reaction and used for heavy metal ion removal. The morphology and elemental properties of the nanocomposite were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), X-ray powder diffraction (XRD), as well as zeta potential. Moreover, the factors affecting the adsorption capacity of the nanocomposite, including time, pH, metal ion type and concentration, were studied. It was found that the adsorption capacity of magnetic MIL-68(Ga) for Pb2+ and Cu2+ was 220 and 130 mg/g, respectively. Notably, the magnetic adsorbents could be separated easily using an external magnetic field, regenerated by ethylenediaminetetraacetic acid disodium salt (EDTA-Na2) and reused three times, in favor of practical application. This study provides a reference for the rapid separation and purification of heavy metal ions from wastewater.
Collapse
|