1
|
Zhao S, Gao N, Zhang Q, Xiao W, Chen D, Huang M, Ye X. Cultivar-specific rhizosphere microbial community responses to cadmium-NaHCO 3 stress in relation to cadmium accumulation in rice. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137531. [PMID: 39923373 DOI: 10.1016/j.jhazmat.2025.137531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/05/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Understanding the response of rhizosphere microbial communities to cadmium (Cd)-alkali stress from a cultivar-specific perspective is important for regulating Cd accumulation in rice. Pot experiments were conducted using low-Cd-accumulating Y15 and high-Cd-accumulating Y40, by addition of 0.0 %, 0.3 %, and 0.6 % NaHCO3 (A0, A1, and A2, respectively) to Cd-contaminated (0.62 mg/kg) soil. The plant Cd and soil DTPA-Cd decreased significantly with increasing NaHCO3 dose for Y15, but not for Y40. Cd-NaHCO3 stress reduced the richness and evenness of rhizosphere microbial communities, especially in A1 of Y15 and A2 of Y40. The Y15 rhizosphere shifted from the equal abundance of Proteobacteria and Firmicutes under A0 to the predominance of Proteobacteria and enriched with growth-promoting Alphaproteobacteria (Roseomonas, Brevundimonas), Cd-fixating Firmicute (Bacillus), and nitrogen-cycling Bdellovibrionota (Peredibacter) under A1 and A2. The Y40 rhizosphere contained comparable Proteobacteria and Firmicutes under A0 and A1; under A2, it was dominated by Proteobacteria and enriched with Cd-activating Bacteroidota (Barnesiella, Taibaiella), lignin-degrading Chloroflexi (Anaerolinea), and Cd-fixating or growth-promoting Gammaproteobacteria (Lysobacter, Pseudomonadales, Acinetobacter). The Y40 and Y15 rhizosphere exhibited laziness in multiple FAPROTAX functions, and were activated in 11 and 18 KGEE pathways including amino acid metabolism in A2 and A1, respectively. The results provide new insights into Cd-alkali tolerance in rice.
Collapse
Affiliation(s)
- Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Na Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Miaojie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Zhang L, Xu L, Zhang Z, Li J, Ren L, Liu Z, Zhang Y, Chen Y. Influence Mechanism of Vermicompost with Different Maturity on Atrazine Catabolism and Bacterial Community. TOXICS 2025; 13:30. [PMID: 39853028 PMCID: PMC11769362 DOI: 10.3390/toxics13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025]
Abstract
Atrazine causes serious contamination of agricultural soils and groundwater. This study investigated the influence mechanism of sterilized soil (CKs), unsterilized soil (CKn), sterilized soil amended with 45 (SsV1), 60 (SsV2), 75 (SsV3) days of vermicompost (the maturity days of vermicompost), and unsterilized soil amended with 45 (SnV1), 60 (SnV2), 75 (SnV3) days of vermicompost on atrazine catabolism. The atrazine degradation experiment lasted for 40 days. The results showed that the atrazine degradation rates for CKs, CKn, SsV1, SsV2, SsV3, SnV1, SnV2, and SnV3 were 24%, 56.9%, 62.8%, 66.1%, 65.9%, 87.5%, 92.9%, and 92.3%, respectively. Indigenous microorganisms capable of degrading atrazine were present in unsterilized soil, and the addition of vermicompost enhanced atrazine degradation. The humic acid content of SnV2 was the highest, at 4.11 g/kg, which was 71.97% higher than that of CKn. The addition of the vermicompost enhanced the production of hydroxyatrazine, deethylatrazine, and deisopropylatrazine. Vermicompost increased the abundance of atrazine-degrading bacteria (Mycobacterium, Devosia, etc.), and introduced new atrazine-degrading bacteria (Mesorhizobium, Demequina). The above results showed that the best degradation of atrazine was achieved with 60 days of vermicompost addition. This study provides a new, efficient, economical, and environmentally friendly strategy for the remediation of atrazine-contaminated soil.
Collapse
Affiliation(s)
- Luwen Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (L.Z.); (J.L.); (L.R.); (Z.L.)
| | - Lixin Xu
- College of Life Sciences, Jilin University, Changchun 130012, China;
| | - Zunhao Zhang
- The Electron Microscopy Center, Jilin University, Changchun 130000, China;
| | - Jiaolin Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (L.Z.); (J.L.); (L.R.); (Z.L.)
| | - Limeng Ren
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (L.Z.); (J.L.); (L.R.); (Z.L.)
| | - Zhichen Liu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (L.Z.); (J.L.); (L.R.); (Z.L.)
| | - Yan Zhang
- Costal Research and Extension Center, Mississippi State University, Pascagoula, MS 39567, USA;
| | - Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (L.Z.); (J.L.); (L.R.); (Z.L.)
| |
Collapse
|
3
|
Chen H, Ye Q, Wang X, Sheng J, Yu X, Zhao S, Zou X, Zhang W, Xue G. Applying sludge hydrolysate as a carbon source for biological denitrification after composition optimization via red soil filtration. WATER RESEARCH 2024; 249:120909. [PMID: 38006788 DOI: 10.1016/j.watres.2023.120909] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Sludge hydrolysate, the byproduct generated during sludge hydrothermal treatment (HT), is a potential carbon source for biological denitrification. However, the refractory organic matters and the nutrient substances are unfavorable to the nitrogen removal. In this study, effects of HT conditions on the hydrolysate properties, and the hydrolysate compositions optimization via red soil (RS) filtration were investigated. At HT temperature of 160-220 °C and reaction time of 1-4 h, the highest dissolution rate of organics from sludge to hydrolysate achieved 70.1 %, while the acetic acid dominated volatile fatty acids (VFAs) was no more than 5.0 % of the total organic matter content. The NH4+-N and dissolved organic nitrogen (DON) were the main nitrogen species in hydrolysate. When the hydrolysate was filtered by RS, the high molecular weight organic matters, DON, NH4+ and PO43- were effectively retained by RS, while VFAs and polysaccharide favorable for denitrification were kept in the filtrate. When providing same COD as the carbon source, the filtrate group (Fi-Group) introduced lower concentrations of TN and humic substances but higher content of VFAs. This resulted in TN removal rate (57.0 %) and denitrification efficiency (93.6 %) in Fi-Group higher than those in hydrolysate group (Hy-Group), 39.4 % and 83.7 %, respectively. It is noticeable that both Hy- and Fi- Groups up-regulated most of denitrification functional genes, and increased the richness and diversity of denitrifying bacteria. Also, more denitrifying bacteria genera appeared, and their relative abundance increased significantly from 3.31 % in Control to 21.15 % in Hy- Group and 31.31 % in Fi-Group. This indicates that the filtrate is a more suitable carbon source for denitrification than hydrolysate. Moreover, the pH rose from 4.6 ± 0.14 to 6.5 ± 0.05, and the organic carbon, TN, TP and cation exchange capacity (CEC) of RS increased as well after being filtered, implying that the trapped compounds may have the potential to improve soil quality. This study provides a new insight for hydrolysate application according to its composition characteristics, and helps make the most use of wasted sludge.
Collapse
Affiliation(s)
- Hong Chen
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China; Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110044, PR China; School of Life Science, Jinggangshan University, 28 Xueyuan Road, Ji'an, 343009, PR China
| | - Qinhui Ye
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Xiulan Wang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Jun Sheng
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Xin Yu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Shiyi Zhao
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Xiaoming Zou
- School of Life Science, Jinggangshan University, 28 Xueyuan Road, Ji'an, 343009, PR China.
| | - Weiwei Zhang
- Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110044, PR China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| |
Collapse
|
4
|
Lang Q, Guo X, Zou G, Wang C, Li Y, Xu J, Zhao X, Li J, Liu B, Sun Q. Hydrochar reduces oxytetracycline in soil and Chinese cabbage by altering soil properties, shifting microbial community structure and promoting microbial metabolism. CHEMOSPHERE 2023; 338:139578. [PMID: 37478999 DOI: 10.1016/j.chemosphere.2023.139578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
The efficient remediation of antibiotic-contaminated soil is critical for agroecosystem and human health. Using the cost-effective and feedstock-independent hydrochar with rich oxygen-containing functional groups as a soil remediation material has become a hot concern nowadays. However, the feasibility and effectiveness of hydrochar amendment in antibiotic-contaminated soil still remain unknown. Therefore, this study investigated the remediation effect and potential mechanisms of different hydrochars from cow manure (H-CM), corn stalk (H-CS) and Myriophyllum aquaticum (H-MA) at two levels (0.5% and 1.0%) in oxytetracycline (OTC)-contaminated soil using a pot experiment. Results showed that compared with CK, OTC content in the soils amended with H-CM and H-MA was decreased by 14.02-15.43% and 9.23-24.98%, respectively, whereas it was increased by 37.03-42.64% in the soils amended with H-CS. Additionally, all hydrochar amendments effectively reduced the OTC uptake in root and shoot of Chinese cabbage by 10.41-57.99% and 31.92-65.99%, respectively. The response of soil microbial community to hydrochar amendment heavily depended on feedstock type rather than hydrochar level. The soil microbial metabolism (e.g., carbohydrate metabolism, amino acid metabolism) was enhanced by hydrochar amendment. The redundancy analysis suggested that TCA cycle was positively related to the abundances of OTC-degrading bacteria (Proteobacteria, Arthrobacter and Sphingomonas) in all hydrochar-amended soils. The hydrochar amendment accelerated the soil OTC removal and reduced plant uptake in soil-Chinese cabbage system by altering soil properties, enhancing OTC-degrading bacteria and promoting microbial metabolism. These findings demonstrated that the cost-effective and sustainable hydrochar was a promising remediation material for antibiotic-contaminated soil.
Collapse
Affiliation(s)
- Qianqian Lang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuan Guo
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Chao Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yufei Li
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Junxiang Xu
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiang Zhao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jijin Li
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bensheng Liu
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Qinping Sun
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
5
|
Cheng Y, Wang X, Zhao L, Zhang X, Kong Q, Li H, You X, Li Y. Wheat straw pyrochar more efficiently decreased enantioselective uptake of dinotefuran by lettuce and dissemination of antibiotic resistance genes than hydrochar in an agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163088. [PMID: 36996986 DOI: 10.1016/j.scitotenv.2023.163088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023]
Abstract
Remediation of soils pollution caused by dinotefuran, a chiral pesticide, is indispensable for ensuring human food security. In comparison with pyrochar, the effect of hydrochar on enantioselective fate of dinotefuran, and antibiotic resistance genes (ARGs) profiles in the contaminated soils remain poorly understood. Therefore, wheat straw hydrochar (SHC) and pyrochar (SPC) were prepared at 220 and 500 °C, respectively, to investigate their effects and underlying mechanisms on enantioselective fate of dinotefuran enantiomers and metabolites, and soil ARG abundance in soil-plant ecosystems using a 30-day pot experiment planted with lettuce. SPC showed a greater reduction effect on the accumulation of R- and S-dinotefuran and metabolites in lettuce shoots than SHC. This was mainly resulted from the lowered soil bioavailability of R- and S-dinotefuran due to adsorption/immobilization by chars, together with the char-enhanced pesticide-degrading bacteria resulted from increased soil pH and organic matter content. Both SPC and SHC efficiently reduced ARG levels in soils, owing to lowered abundance of ARG-carrying bacteria and declined horizontal gene transfer induced by decreased dinotefuran bioavailability. The above results provide new insights for optimizing char-based sustainable technologies to mitigate pollution of dinotefuran and spread of ARGs in agroecosystems.
Collapse
Affiliation(s)
- Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Liuwei Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xin Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Qingxian Kong
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hui Li
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
6
|
Zheng D, Zou J, Xu H, Wu M, Wang Y, Feng C, Zheng E, Wang T, Shi Y, Chen Y, Li B. Efficiency and mechanism of the degradation of ciprofloxacin by the oxidation of peroxymonosulfate under the catalysis of a Fe 3O 4/N co-doped sludge biochar. CHEMOSPHERE 2023; 325:138387. [PMID: 36914007 DOI: 10.1016/j.chemosphere.2023.138387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
A novel and recyclable composite material, Fe3O4/N co-doped sludge biochar (FNBC), was developed from original sludge biochar (BC) and found to have excellent stability and superior catalytic capacity during the ciprofloxacin (CIP) degradation under the action of peroxymonosulfate (PMS). In the FNBC/PMS system, an approximately complete removal of CIP was achieved within 60 min under the condition of 1.0 g/L FNBC, 3.0 mM PMS, and 20 mg/L CIP, which was about 2.08 times of that in BC/PMS system (48.01%). Besides, FNBC/PMS system could effectively remove CIP under the influence of wide pH (2.0-10.0) or inorganic ions compared with BC/PMS system. Moreover, it was found that there were radical produced under the effect of Fe element, defects, functional groups, pyridinic N and pyrrolic N and non-radical caused by graphitic N, carbon atoms next to the iron atoms and better adsorption capacity in the FNBC/PMS system. It was observed that the contribution of hydroxyl radical (•OH), sulfate radical (SO4•-) and singlet oxygen (1O2), which were the main reactive oxygen species, during the CIP degradation, were 75.80%, 11.49% and 10.26%, respectively. Furthermore, total organic carbon (TOC) variation was analyzed and the degradation pathway of CIP was speculated. The application of this material could combine the recycling of sludge with the effective degradation of refractory organic pollutant, providing an environmentally friendly and economic method.
Collapse
Affiliation(s)
- Dayang Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Jiali Zou
- Department of Natural Resources of Gansu Province, Hongxinggang Road, Lanzhou, 730099, China
| | - Hao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Min Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Cang Feng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Eryang Zheng
- Municipal Engineering Design Institute, Hunan Provincial Communications Planning, Survey & Design Institute Co., Ltd, Yueliangdao Road, Changsha, 410219, China
| | - Teng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Yuxiang Shi
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Yongjian Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Binyang Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| |
Collapse
|
7
|
Zhang Z, Xiao YS, Zhan Y, Zhang Z, Liu Y, Wei Y, Xu T, Li J. Tomato microbiome under long-term organic and conventional farming. IMETA 2022; 1:e48. [PMID: 38868718 PMCID: PMC10989780 DOI: 10.1002/imt2.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 06/14/2024]
Abstract
The compartment niche is the main reason behind the shifts in endophytic bacterial communities. Long-term organic greenhouse exerted limited influence on the variations of endophytic bacterial communities. Organic greenhouse and root had more complex co-occurrence networks than conventional greenhouse and stem, respectively. Cultivable method results found that Protecbacteria, Bacteriodes, and Actinobacteria are the dominant phyla in the endophytes.
Collapse
Affiliation(s)
- Zeyu Zhang
- College of Resources and Environmental ScienceChina Agricultural UniversityBeijingChina
| | - Yang Sean Xiao
- College of Water Resources and Civil EngineeringChina Agricultural UniversityBeijingChina
| | - Yabin Zhan
- College of Resources and Environmental ScienceChina Agricultural UniversityBeijingChina
| | - Zengqiang Zhang
- College of Resources and Environmental ScienceNorthwest A&F UniversityYanglinChina
| | - Youzhou Liu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yuquan Wei
- College of Resources and Environmental ScienceChina Agricultural UniversityBeijingChina
| | - Ting Xu
- College of Resources and Environmental ScienceChina Agricultural UniversityBeijingChina
| | - Ji Li
- College of Resources and Environmental ScienceChina Agricultural UniversityBeijingChina
| |
Collapse
|