1
|
Wang H, He W, Liao J, Wang S, Dai X, Yu M, Xie Y, Chen Y. Catalytic Biomaterials-Activated In Situ Chemical Reactions: Strategic Modulation and Enhanced Disease Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411967. [PMID: 39498674 DOI: 10.1002/adma.202411967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/19/2024] [Indexed: 11/07/2024]
Abstract
Chemical reactions underpin biological processes, and imbalances in critical biochemical pathways within organisms can lead to the onset of severe diseases. Within this context, the emerging field of "Nanocatalytic Medicine" leverages nanomaterials as catalysts to modulate fundamental chemical reactions specific to the microenvironments of diseases. This approach is designed to facilitate the targeted synthesis and localized accumulation of therapeutic agents, thus enhancing treatment efficacy and precision while simultaneously reducing systemic side effects. The effectiveness of these nanocatalytic strategies critically hinges on a profound understanding of chemical kinetics and the intricate interplay of reactions within particular pathological microenvironments to ensure targeted and effective catalytic actions. This review methodically explores in situ catalytic reactions and their associated biomaterials, emphasizing regulatory strategies that control therapeutic responses. Furthermore, the discussion encapsulates the crucial elements-reactants, catalysts, and reaction conditions/environments-necessary for optimizing the thermodynamics and kinetics of these reactions, while rigorously addressing both the biochemical and biophysical dimensions of the disease microenvironments to enhance therapeutic outcomes. It seeks to clarify the mechanisms underpinning catalytic biomaterials and evaluate their potential to revolutionize treatment strategies across various pathological conditions.
Collapse
Affiliation(s)
- Huijing Wang
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wenjin He
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing Liao
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Shuangshuang Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
2
|
Zhou X, Feng S, Xu Q, Li Y, Lan J, Wang Z, Ding Y, Wang S, Zhao Q. Current advances in nanozyme-based nanodynamic therapies for cancer. Acta Biomater 2025; 191:1-28. [PMID: 39571955 DOI: 10.1016/j.actbio.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Nanozymes are nano-catalysis materials with enzyme-like activities, which can repair the defects of natural enzyme such as harsh catalytic conditions, and harness their strengths to treat tumor. The emerging nanodynamic therapies improved drug selectivity and decreased drug tolerance, while causing efficient cell apoptosis through the generated reactive oxygen species (ROS). Nanodynamic therapies based on nanozymes can improve the complicated tumor microenvironment (TME) to reduce the defect rate of nanodynamic therapies, and provide more options for tumor treatment. This review summarized the characteristics and applications of nanozymes with different activities and the factors influencing the activity of nanozymes. We also focused on the application of nanozymes in nanodynamic therapies, including photodynamic therapy (PDT), chemodynamic therapy (CDT), and sonodynamic therapy (SDT). Moreover, we discussed the strategies for optimizing nanodynamic therapies based on nanozymes for tumor treatment in detail, and provided a systematic review of tactics for synergies with other tumor therapies. Ultimately, we analyzed the shortcomings of nanodynamic therapies based on nanozymes and the relevant research prospect, which would provide sufficient evidence and lay a foundation for further research. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literatures. (1) Recent advances in nanozyme-based nanodynamic therapies are comprehensively and systematically reviewed, and strategies to address the limitations and challenges of current therapies based on nanozymes are discussed firstly. (2) The mechanism of nanozymes in nanodynamic therapies is described for the first time. The synergistic therapies, prospects, and challenges of nanozyme-based nanodynamic therapies are innovatively discussed. 2. The scientific impact and interest to our readership. This review focuses on the recent progress of nanozyme-based nanodynamic therapies. This review indicates the way forward for the combined treatment of nanozymes and nanodynamic therapies, and lays a foundation for facilitating theoretical development in clinic.
Collapse
Affiliation(s)
- Xubin Zhou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shuaipeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qingqing Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yian Li
- School of Libra Arts of Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jiaru Lan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Ziyi Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yiduo Ding
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
3
|
Xu J, Ding Z, Wang M, Wu G, Xie J. Enhanced Stable and Efficient of Dual-Ligand Zirconium-Based Metal-Organic Frameworks for Synergistic Photodynamic Inactivation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406171. [PMID: 39258347 DOI: 10.1002/smll.202406171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Indexed: 09/12/2024]
Abstract
Porphyrins, known for generating toxic singlet oxygen (1O2) to combat bacteria, face challenges such as hydrophilicity and limited lifespan and 1O2 yield. Conversely, triterpenoid compounds like ammonium glycyrrhizinate (AG) offer antioxidative and antibacterial properties but lack efficacy and stability. Combining them in Metal-Organic Frameworks (MOFs) yields dual-ligand zirconium (Zr)-basedMOFs (M-TG), capitalizing on porphyrins' membrane-disrupting ability and AG's inhibition of bacterial membrane synthesis for a synergistic antibacterial effect. M-TG resolves activity loss, enhances reactive oxygen species (ROS) yield, and extends stability, achieving a remarkable 99.999% sterilization rate. This innovative approach maximizes ligand properties through synergistic effects, promising significant advancements in antibacterial material design.
Collapse
Affiliation(s)
- Jin Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
- National Experimental Teaching Demonstration Centre for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China
| | - Mingying Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Gan Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Experimental Teaching Demonstration Centre for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
4
|
Garg P, Sharma H, Sehgal R, Kaur U, Garg V, Kaur B, Chaudhary GR, Kaur G. Antibacterial Photodynamic Therapy of the Metallosurfactant-Fluorescein Conjugate under Visible Light Illumination. ACS APPLIED BIO MATERIALS 2024; 7:5279-5289. [PMID: 39046905 DOI: 10.1021/acsabm.4c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Antibacterial photodynamic therapy (APDT) has received increased attention as a treatment for multidrug-resistant bacterial infections caused by antibiotic abuse. However, photosensitizers used in APDT have disadvantages such as water insolubility, self-aggregation, and photobleaching. To address these limitations, metal complexes have been explored. However, the use of such complexes tends to confine their antibacterial effectiveness specific bacterial strains. In this study, we report iron (Fe)- and copper (Cu)-based metallosurfactants as unique moieties for antibacterial photodynamic therapy (PDT) under the illumination of visible light. Briefly, our formulated Fe and Cu metallosurfactants, when combined with a fluorescein photosensitizer, exhibit nearly 100% antibacterial efficacy. This high efficiency is primarily attributed to the enhanced generation of singlet oxygen using FL in the presence of metallosurfactants when targeting bacteria such as Escherichia coli and Staphylococcus aureus under laser light. In vitro experiments further confirmed the superior antimicrobial activity of these metallosurfactants against a diverse range of microbial cultures, encompassing Gram-negative and Gram-positive bacteria as well as fungi. This performance outpaces conventional surfactants like cetyltrimethylammonium chloride and cetylpyridinium chloride. The compelling results from MTT assays and flow cytometry endorsed the substantial enhancement in antimicrobial properties achieved through Fe and Cu doping, all without the need for additional secondary agents. Notably, this synergistic antibacterial approach using metallosurfactants in PDT holds significant promise for the elimination of various bacteria in vivo, with the added advantage of mitigating the emergence of multidrug resistance.
Collapse
Affiliation(s)
- Preeti Garg
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Harshita Sharma
- Department of Medical Parasitology, PGIMER, Chandigarh 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, PGIMER, Chandigarh 160012, India
| | - Upninder Kaur
- Department of Medical Parasitology, PGIMER, Chandigarh 160012, India
| | - Varinder Garg
- Department of Medical Parasitology, PGIMER, Chandigarh 160012, India
| | - Baljinder Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
5
|
Wang JJ, He T, Chen L, Xu G, Dong S, Zhao Y, Zheng H, Liu Y, Zeng Q. Antibacterial efficiency of the curcumin-mediated photodynamic inactivation coupled with L-arginine against Vibrio parahaemolyticus and its application on shrimp. Int J Food Microbiol 2024; 411:110539. [PMID: 38141354 DOI: 10.1016/j.ijfoodmicro.2023.110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
The aim of this study was to investigate the antibacterial potency of a novel photodynamic inactivation (PDI) system with an enhanced bactericidal ability against Vibrio parahaemolyticus in vitro and in vivo. The synergistically bactericidal action of curcumin (Cur) and L-arginine (L-Arg) was firstly investigated, and then a novel curcumin-mediated PDI coupled with L-Arg was developed. Meanwhile, its potent inactivation mechanism against V. parahaemolyticus and preservation effects on shrimp were explored. Results showed that L-Arg disrupted the cell membrane by binding to membrane phospholipids and disrupting iron homeostasis, which helped curcumin to damage DNA and interrupt protein synthesis. Once irradiated by blue LED, the curcumin-mediated PDI produced the reactive oxygen species (ROS) which reacted with L-Arg to generate NO, and the NO was converted to reactive nitrogen species (RNS) with a strong bactericidal ability by consuming ROS. On this basis, the curcumin-mediated PDI coupled with L-Arg potently killed >8.0 Log CFU/mL with 8 μM curcumin, 0.5 mg/mL L-Arg and 1.2 J/cm2 irradiation. Meanwhile, this PDI also effectively inhibited the colour and pH changes, lipids oxidation and protein degradation of shrimp. Therefore, this study proposes a new potent PDI system to control microbial contamination in the food industry.
Collapse
Affiliation(s)
- Jing Jing Wang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products, Foshan 528225, China; Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan 528225, China.
| | - Tiantian He
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products, Foshan 528225, China; Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan 528225, China
| | - Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Guizhi Xu
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products, Foshan 528225, China; Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan 528225, China
| | - Shuliang Dong
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products, Foshan 528225, China; Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan 528225, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huaming Zheng
- Province Key Lab of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430073, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products, Foshan 528225, China; Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan 528225, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China.
| |
Collapse
|
6
|
Qiao X, Liang J, Qiu L, Feng W, Cheng G, Chen Y, Ding H. Ultrasound-activated nanosonosensitizer for oxygen/sulfate dual-radical nanotherapy. Biomaterials 2023; 301:122252. [PMID: 37542858 DOI: 10.1016/j.biomaterials.2023.122252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/04/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
An all-in-one therapy for cooperatively fighting cancer, infection and boosting wound repair is exceedingly demanded for patients with advanced superficial cancers or after surgical intervention to avoid multiple drug abuse and resultant adverse effects. Here, the ultrasound-activated nanosonosensitizer PHMP that integrated peroxymonosulfate (PMS) into the Pd-catalyzed hydrogenated mesoporous titanium dioxide (PHM) was dexterously designed for combined therapy of cancer and infected wound based on oxygen/sulfate dual-radical nanotherapy. Firstly, the PHM with single crystal structure and abundant oxygen deficiencies exhibited excellent ultrasound-excited reactive oxygen species (ROS) production for enhanced sonodynamic therapy (SDT) under the support of Pd nanozyme-mediated O2 supply. Simultaneously, the physically targeted ultrasound irradiation effectively transformed PMS loaded in the hollow cavities into distinct sulfate radical (•SO4-) with longer half-life and stronger oxidation, which remarkably enhanced the therapeutic efficacy of PHM-mediated SDT for cancer and bacteria. In addition, by embedding PHMP into the hydrogel, the enrichment of PHMP in the focal site was guaranteed, and meanwhile a moist and ventilated environment was created to speed up wound repair. The study broadens the potential of •SO4- in the therapeutic fields and contributes a simple and appealing tactic for the comprehensive treatment of cancer, infection and wound repair.
Collapse
Affiliation(s)
- Xiaohui Qiao
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Jing Liang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Luping Qiu
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Guangwen Cheng
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|
7
|
Yang L, Zhang Y, Hu X, Shiu BC, Lou CW, Lin JH, Li TT. Photodynamic Rechargeable Nanofibrous Membranes with High-Efficient Antibacterial/Antiviral Properties for Medical Protection. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Trochowski M, Kobielusz M, Pucelik B, Dąbrowski JM, Macyk W. Dihydroxyanthraquinones as stable and cost-effective TiO2 photosensitizers for environmental and biomedical applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Marković ZM, Kováčová M, Jeremić SR, Nagy Š, Milivojević DD, Kubat P, Kleinová A, Budimir MD, Mojsin MM, Stevanović MJ, Annušová A, Špitalský Z, Todorović Marković BM. Highly Efficient Antibacterial Polymer Composites Based on Hydrophobic Riboflavin Carbon Polymerized Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4070. [PMID: 36432356 PMCID: PMC9699046 DOI: 10.3390/nano12224070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/01/2023]
Abstract
Development of new types of antimicrobial coatings is of utmost importance due to increasing problems with pathogen transmission from various infectious surfaces to human beings. In this study, new types of highly potent antimicrobial polyurethane composite films encapsulated by hydrophobic riboflavin-based carbon polymer dots are presented. Detailed structural, optical, antimicrobial, and cytotoxic investigations of these composites were conducted. Low-power blue light triggered the composites to eradicate Escherichia coli in 30 min, whereas the same effect toward Staphylococcus aureus was reached after 60 min. These composites also show low toxicity against MRC-5 cells. In this way, RF-CPD composites can be used for sterilization of highly touched objects in the healthcare industry.
Collapse
Affiliation(s)
- Zoran M. Marković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Mária Kováčová
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cestá 9, 84541 Bratislava, Slovakia
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Sanja R. Jeremić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Štefan Nagy
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská Cestá 9/6319, 84513 Bratislava, Slovakia
| | - Dušan D. Milivojević
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Pavel Kubat
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Praha, Czech Republic
| | - Angela Kleinová
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cestá 9, 84541 Bratislava, Slovakia
| | - Milica D. Budimir
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija M. Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Milena J. Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Adriana Annušová
- Department of Multilayers and Nanostructures, Institute of Physics, Slovak Academy of Sciences, Dúbravská Cestá 9, 84541 Bratislava, Slovakia
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská Cesta 9, 84511 Bratislava, Slovakia
| | - Zdeno Špitalský
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cestá 9, 84541 Bratislava, Slovakia
| | - Biljana M. Todorović Marković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|