1
|
Zango ZU, Khoo KS, Ali AF, Abidin AZ, Zango MU, Lim JW, Wadi IA, Eisa MH, Alhathlool R, Abu Alrub S, Aldaghri O, Suresh S, Ibnaouf KH. Development of inorganic and mixed matrix membranes for application in toxic dyes-contaminated industrial effluents with in-situ treatments. ENVIRONMENTAL RESEARCH 2024; 256:119235. [PMID: 38810826 DOI: 10.1016/j.envres.2024.119235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Dyes are the most ubiquitous organic pollutants in industrial effluents. They are highly toxic to both plants and animals; thus, their removal is paramount to the sustainability of ecosystem. However, they have shown resistance to photolysis and various biological, physical, and chemical wastewater remediation processes. Membrane removal technology has been vital for the filtration/separation of the dyes. In comparison to polymeric membranes, inorganic and mixed matrix (MM) membranes have shown potentials to the removal of dyes. The inorganic and MM membranes are particularly effective due to their high porosity, enhanced stability, improved permeability, higher enhanced selectivity and good stability and resistance to harsh chemical and thermal conditions. They have shown prospects in filtration/separation, adsorption, and catalytic degradation of the dyes. This review highlighted the advantages of the inorganic and MM membranes for the various removal techniques for the treatments of the dyes. Methods for the membranes production have been reviewed. Their application for the filtration/separation and adsorption have been critically analyzed. Their application as support for advanced oxidation processes such as persulfate, photo-Fenton and photocatalytic degradations have been highlighted. The mechanisms underscoring the efficiency of the processes have been cited. Lastly, comments were given on the prospects and challenges of both inorganic and MM membranes towards removal of the dyes from industrial effluents.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Ahmed Fate Ali
- Department of Environmental Management, Bayero University, 3011, Kano State, Nigeria
| | - Asmaa Zainal Abidin
- Department of Chemistry and Biology, Centre for Defense Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000, Kuala Lumpur, Malaysia
| | - Muttaqa Uba Zango
- Department of Civil Engineering, Kano University of Science and Technology, Wudil, P.M.B. 3244, Kano, Nigeria
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ismael A Wadi
- Prince Sattam Bin Abdulaziz University, Basic Science Unit, Alkharj, 16278, Alkharj, Saudi Arabia
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Raed Alhathlool
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - S Abu Alrub
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Sagadevan Suresh
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Qi Y, Li D, Zhang S, Li F, Hua T. Electrochemical filtration for drinking water purification: A review on membrane materials, mechanisms and roles. J Environ Sci (China) 2024; 141:102-128. [PMID: 38408813 DOI: 10.1016/j.jes.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 02/28/2024]
Abstract
Electrochemical filtration can not only enrich low concentrations of pollutants but also produce reactive oxygen species to interact with toxic pollutants with the assistance of a power supply, making it an effective strategy for drinking water purification. In addition, the application of electrochemical filtration facilitates the reduction of pretreatment procedures and the use of chemicals, which has outstanding potential for maximizing process simplicity and reducing operating costs, enabling the production of safe drinking water in smaller installations. In recent years, the research on electrochemical filtration has gradually increased, but there has been a lack of attention on its application in the removal of low concentrations of pollutants from low conductivity water. In this review, membrane substrates and electrocatalysts used to improve the performance of electrochemical membranes are briefly summarized. Meanwhile, the application prospects of emerging single-atom catalysts in electrochemical filtration are also presented. Thereafter, several electrochemical advanced oxidation processes coupled with membrane filtration are described, and the related working mechanisms and their advantages and shortcomings used in drinking water purification are illustrated. Finally, the roles of electrochemical filtration in drinking water purification are presented, and the main problems and future perspectives of electrochemical filtration in the removal of low concentration pollutants are discussed.
Collapse
Affiliation(s)
- Yuying Qi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Donghao Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Shixuan Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Tao Hua
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
3
|
Awad AM, de Lannoy CF. Production of Stable Electrically Conductive PVDF Membranes Based on Polydopamine-Polyethyleneimine-Assisted Deposition of Carbon Nanotubes. MEMBRANES 2024; 14:94. [PMID: 38668122 PMCID: PMC11052225 DOI: 10.3390/membranes14040094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Electrically conductive membranes (ECMs) have emerged as a multifunctional separation technology that integrates membrane filtration with electrochemical reactions. Physical stability remains a critical challenge for ECMs synthesized by coating polymer membranes with conductive materials. In this article, polydopamine (PDA) and polyethyleneimine (PEI) were used to facilitate the synthesis of significantly more stable ECMs using poly(vinylidene fluoride) (PVDF) ultrafiltration membranes and carbon nanotubes (CNTs). Four different synthesis methods were compared in terms of the final surface stability and separation properties: (1) CNTs deposited on PEI-crosslinked PDA-coated PVDF membranes, (2) PEI-crosslinked CNTs deposited on PDA-coated PVDF, (3) PDA, PEI and CNTs sequentially deposited layer-by-layer on PVDF, and (4) PEI-crosslinked PDA deposited on CNT-coated PVDF. The results revealed that method 1 generated ECMs with the greatest physical stability, highest electrical conductivity (18,518 S/m), and sufficient permeability (395.2 L/(m2·h·bar). In comparison, method 2 resulted in membranes with the highest permeability (2128.5 L/(m2·h·bar), but with low surface conductivity (502 S/m) and poor physical stability (i.e., 53-75% lower peel-off forces compared to other methods). Overall, methods 1, 3, and 4 can be used to make highly conductive membranes with a 97-99% removal of methyl orange by electrochemical degradation at -3 V.
Collapse
Affiliation(s)
- Abdelrahman M. Awad
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada;
| | - Charles-François de Lannoy
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada;
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| |
Collapse
|
4
|
Zhang X, Razanajatovo MR, Du X, Wang S, Feng L, Wan S, Chen N, Zhang Q. Well-designed protein amyloid nanofibrils composites as versatile and sustainable materials for aquatic environment remediation: A review. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:264-277. [PMID: 38435357 PMCID: PMC10902511 DOI: 10.1016/j.eehl.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 03/05/2024]
Abstract
Amyloid nanofibrils (ANFs) are supramolecular polymers originally classified as pathological markers in various human degenerative diseases. However, in recent years, ANFs have garnered greater interest and are regarded as nature-based sustainable biomaterials in environmental science, material engineering, and nanotechnology. On a laboratory scale, ANFs can be produced from food proteins via protein unfolding, misfolding, and hydrolysis. Furthermore, ANFs have specific structural characteristics such as a high aspect ratio, good rigidity, chemical stability, and a controllable sequence. These properties make them a promising functional material in water decontamination research. As a result, the fabrication and application of ANFs and their composites in water purification have recently gained considerable attention. Despite the large amount of literature in this field, there is a lack of systematic review to assess the gap in using ANFs and their composites to remove contaminants from water. This review discusses significant advancements in design techniques as well as the physicochemical properties of ANFs-based composites. We also emphasize the current progress in using ANFs-based composites to remove inorganic, organic, and biological contaminants. The interaction mechanisms between ANFs-based composites and contaminants are also highlighted. Finally, we illustrate the challenges and opportunities associated with the future preparation and application of ANFs-based composites. We anticipate that this review will shed new light on the future design and use of ANFs-based composites.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mamitiana Roger Razanajatovo
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xuedong Du
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shuo Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Li Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shunli Wan
- College of Life & Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Ningyi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingrui Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
5
|
Kim J, Tijing L, Shon HK, Hong S. Electrically conductive membrane distillation via an alternating current operation for zero liquid discharge. WATER RESEARCH 2023; 244:120510. [PMID: 37634460 DOI: 10.1016/j.watres.2023.120510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Membrane distillation (MD) shows promise for achieving high salinity treatment and zero liquid discharge (ZLD) compared to conventional water treatment processes due to its unique characteristics, including low energy consumption and high resulting water quality. However, performance degradation due to fouling and scaling under high recovery conditions remains a challenge, particularly considering the need to control both cations and anions for maximum scaling mitigation. Accordingly, in this study, alternating current (AC) operation for electrically conductive membrane distillation (ECMD) is newly proposed, based on its potential for controlling both cations and anions, in contrast to conventional direct current (DC) operation. Systematic experiments and theoretical analysis show that water recovery in ECMD can be increased by 27% through AC operation. The proposed modification and effective AC operation of ECMD increase the practicality of using MD in desalination for a high recovery rate, perhaps even for ZLD.
Collapse
Affiliation(s)
- Junghyun Kim
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia; Department of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Leonard Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia.
| | - Seungkwan Hong
- Department of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Mo Y, Li Y, Wang L, Zhang L, Li J. Electroactive membrane with the electroactive layer beneath the separation layer to eliminate the interference of humic acid in the oxidation of antibiotics. WATER RESEARCH 2023; 239:120064. [PMID: 37201374 DOI: 10.1016/j.watres.2023.120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Removing harmful antibiotics is essential to reclaiming water from municipal secondary effluent. Electroactive membranes are effective in the removal of antibiotics but challenged by the abundant coexisting macromolecular organic pollutants in municipal secondary effluent. To eliminate the interference of macromolecular organic pollutants in the removal of antibiotics, we propose a novel electroactive membrane with a top polyacrylonitrile (PAN) ultrafiltration layer and a bottom electroactive layer composed of carbon nanotubes (CNTs) and polyaniline (PANi). When filtering the mixture of tetracycline (TC, a typical antibiotic) and humic acid (HA, a typical macromolecular organic pollutant), the PAN-CNT/PANi membrane performed sequential removal. It retained HA at the PAN layer (by ∼96%) and allowed TC to reach the electroactive layer where it was electrochemically oxidized (e.g., by ∼92% at 1.5 V). The TC removal of the PAN-CNT/PANi membrane was marginally affected by HA, unlike that of the control membrane with the electroactive layer on the top that showed decreased TC removal after the addition of HA (e.g., decreased by 13.2% at 1 V). The decreased TC removal of the control membrane was attributed to the attachment (but not competitive oxidation) of HA on the electroactive layer that impaired the electrochemical reactivity. The HA removal prior to TC degradation realized by the PAN-CNT/PANi membrane avoided the attachment of HA and guaranteed TC removal on the electroactive layer. Long-term filtration for 9 h revealed the stability of the PAN-CNT/PANi membrane, and its advantageous structural design was conformed in the context of real secondary effluents.
Collapse
Affiliation(s)
- Yinghui Mo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Yu Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Lu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
7
|
Li X, Lu S, Zhang G. Three-dimensional structured electrode for electrocatalytic organic wastewater purification: Design, mechanism and role. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130524. [PMID: 36502722 DOI: 10.1016/j.jhazmat.2022.130524] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Considering the growing need in decentralized water treatment, the application of electrocatalytic processes (EP) to achieve organic wastewater purification will be dominant in the near future due to high efficiency, small reactor assembly as well as the flexibility of operation and management. The catalytic performance of electrode materials determines the development of this technology. Among them, the unique three-dimensional (3D) structure electrode shows better performance than two-dimensional (2D) electrode in increasing mass transfer, enhancing adsorption and exposing more active sites. Hence, this review starts with the introduction of definition, classification, advantages and disadvantages of 3D electrode materials. Then a critical discussion on the design and construction of 3D electrode materials for organic wastewater purification application is provided. Next, the removal mechanism of organic pollutants on the surface of 3D electrode, the role of 3D structure, the design of reactor with 3D electrode, the conversion and toxicity of degradation products, electrode energy efficiency, stability and cost, are comprehensively reviewed. At last, current challenges and future perspectives for the development of 3D electrode materials are addressed. We deem that this review will provide a valuable insight into the design and application of 3D electrodes in environmental water purification.
Collapse
Affiliation(s)
- Xuechuan Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China
| | - Sen Lu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China.
| |
Collapse
|
8
|
Pan Z, Xin H, Xu R, Wang P, Fan X, Song Y, Song C, Wang T. Carbon electrochemical membrane functionalized with flower cluster-like FeOOH catalyst for organic pollutants decontamination. J Colloid Interface Sci 2023; 640:588-599. [PMID: 36878076 DOI: 10.1016/j.jcis.2023.02.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Decorating active catalysts on the reactive electrochemical membrane (REM) is an effective way to further improve its decontamination performance. In this work, a novel carbon electrochemical membrane (FCM-30) was prepared through coating FeOOH nano catalyst on a low-cost coal-based carbon membrane (CM) through facile and green electrochemical deposition. Structural characterizations demonstrated that the FeOOH catalyst was successfully coated on CM, and it grew into a flower cluster-like morphology with abundant active sites when the deposition time was 30 min. The nano FeOOH flower clusters can obviously boost the hydrophilicity and electrochemical performance of FCM-30, which enhance its permeability and bisphenol A (BPA) removal efficiency during the electrochemical treatment. Effects of applied voltages, flow rates, electrolyte concentrations and water matrixes on BPA removal efficiency were investigated systematically. Under the operation condition of 2.0 V applied voltage and 2.0 mL·min-1 flow rate, FCM-30 can achieve the high removal efficiency of 93.24% and 82.71% for BPA and chemical oxygen demand (COD) (71.01% and 54.89% for CM), respectively, with only a low energy consumption (EC) of 0.41 kWh·kgCOD-1, which can be ascribed to the enhancement on OH yield and direct oxidation ability by the FeOOH catalyst. Moreover, this treatment system also exhibits good reusability and can be adopted on different water background as well as different pollutants.
Collapse
Affiliation(s)
- Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China
| | - Hong Xin
- College of Environmental Science and Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China
| | - Ruisong Xu
- School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian 116024, China.
| | - Pengcheng Wang
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China.
| | - Tonghua Wang
- College of Environmental Science and Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China; School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian 116024, China.
| |
Collapse
|
9
|
Devi MK, Yaashikaa PR, Kumar PS, Manikandan S, Oviyapriya M, Varshika V, Rangasamy G. Recent advances in carbon-based nanomaterials for the treatment of toxic inorganic pollutants in wastewater. NEW J CHEM 2023. [DOI: 10.1039/d3nj00282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Wastewater contains inorganic pollutants, generated by industrial and domestic sources, such as heavy metals, antibiotics, and chemical pesticides, and these pollutants cause many environmental problems.
Collapse
|