1
|
Xu Z, Zhang H, Zhu M, Ji Y, Xue P, Xie J, Li Y, Zhang N. Human behavior-based COVID-19 transmission in two dining spaces. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135820. [PMID: 39298960 DOI: 10.1016/j.jhazmat.2024.135820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Since December 2019, the COVID-19 pandemic has rapidly disseminated globally, posing significant threats to the world. The dining spaces are high-risk indoor environments for the transmission of SARS-CoV-2, posing challenges for intervention and control. This study, based on surveillance videos from two COVID-19 outbreak cases in restaurants, obtained real data on human behaviors of close contact and surface touch. A respiratory infectious disease transmission model was developed, incorporating four transmission routes: short-range airborne, long-range airborne, fomite and large droplet. The results indicate that diners and staff spent 21.9 %-28.7 % and 17.5 %-27.8 % of their time on speaking, respectively, while spending 85.9 %-90.7 % and 83.4 %-87.6 % of their time on surface touching. The primary transmission routes were short-range (contributing 5.8 %-70.9 %) and long-range airborne (contributing 28.4 %-93.0 %), with fomite and large droplet routes contributing less than 12.0 %. Staff-only mask wearing reduced infection risk by 12.8 %-31.8 %. It is recommended that mandatory mask wearing for staff is necessary, while diners should wear masks as much as possible, and that the equivalent ventilation rate of clean fresh air is suggested to 30.0 m3/ (h·person). This study provides a scientific support to make non-pharmaceutical interventions in dinning spaces.
Collapse
Affiliation(s)
- Zhikang Xu
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Haochen Zhang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Min Zhu
- 6th Medical Center of General Hospital of PLA, Beijing, China
| | - Ying Ji
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Peng Xue
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Jingchao Xie
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Nan Zhang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China.
| |
Collapse
|
2
|
Zhao F, Zhang N, Wu Y, Dou Z, Cao B, Luo Y, Lu Y, Du L, Xiao S. What influences the close contact between health care workers and patients? An observational study in a hospital dental outpatient department. Am J Infect Control 2024; 52:1296-1301. [PMID: 38964659 DOI: 10.1016/j.ajic.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Dental outpatient departments, characterized by close proximity and unmasked patients, present a considerable risk of respiratory infections for health care workers (HCWs). However, the lack of comprehensive data on close contact (<1.5m) between HCWs and patients poses a significant obstacle to the development of targeted control strategies. METHODS An observation study was conducted at a hospital in Shenzhen, China, utilizing depth cameras with machine learning to capture close-contact behaviors of patients with HCWs. Additionally, questionnaires were administered to collect patient demographics. RESULTS The study included 200 patients, 10 dental practitioners, and 10 nurses. Patients had significantly higher close-contact rates with dental practitioners (97.5%) compared with nurses (72.8%, P < .001). The reason for the visit significantly influenced patient-practitioner (P = .018) and patient-nurse (P = .007) close-contact time, with the highest values observed in prosthodontics and orthodontics patients. Furthermore, patient age also significantly impacted the close-contact rate with nurses (P = .024), with the highest rate observed in patients below 14 years old at 85% [interquartile range: 70-93]. CONCLUSIONS Dental outpatient departments exhibit high HCW-patient close-contact rates, influenced by visit purpose and patient age. Enhanced infection control measures are warranted, particularly for prosthodontics and orthodontics patients or those below 14 years old.
Collapse
Affiliation(s)
- Fangli Zhao
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| | - Nan Zhang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, PR China
| | - Yadi Wu
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| | - Zhiyang Dou
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Bing Cao
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, PR China
| | - Yingjie Luo
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| | - Yan Lu
- Hospital-Acquired Infection Control Department, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, PR China
| | - Li Du
- Hospital-Acquired Infection Control Department, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, PR China
| | - Shenglan Xiao
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
3
|
Feng Y, Feng Y, Fan Y, Ge J. Effects of table based air curtains on respiratory aerosol exposure risk mitigation at face-to-face meeting setups. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135373. [PMID: 39111174 DOI: 10.1016/j.jhazmat.2024.135373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
Face-to-face meetings on a conference table are a frequent form of communication. The short-range exposure risk of aerosol disease transmission is high in the scenario of susceptible facing the infectious person over the table. We propose a mitigation methodology using the air curtain to reduce direct exposure to virus-laden aerosols. A numerical model was validated with experimental data to simulate the dispersion of aerosols. A dynamic mesh was adopted to consider the head movement of a 3D thermal manikin model. Results show that nodding head increase the potential risk by 74 % compared to motionless. Subsequently, for a single air curtain, placing it in the middle of the table is more effective in preventing risks than on the sides. For double air curtains, increasing the distance between them has a greater risk reduction effect than a shorter distance. Increasing the air velocity or width is more effective than increasing the number of air curtains. A moderate velocity (1 m s-1) works well to reduce the risk of nasal breathing. A higher velocity (2 m s-1) is needed for the coughing scenario. For similar indoor environments, the air curtains on the table can offer active precautions without changing the current ventilation system.
Collapse
Affiliation(s)
- Yinshuai Feng
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China; International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China
| | - Yu Feng
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Yifan Fan
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China; International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China.
| | - Jian Ge
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China; International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China
| |
Collapse
|
4
|
Sedighi I, Raeisi R, Amiri J, Shalchi Z, Karami M, Azizi Jalilian F, Teimoori A, Ansari N, Bathaei J, Hashemi M. Asymptomatic Children as a Missing Link in Preventing COVID-19 Transmission. J Res Health Sci 2024; 24:e00614. [PMID: 39072550 PMCID: PMC11264454 DOI: 10.34172/jrhs.2024.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Investigating the prevalence of the coronavirus disease 2019 (COVID-19) infection in asymptomatic children who have been in close contact with symptomatic individuals is instrumental for refining public health approaches, protecting vulnerable populations, and mitigating the broader impact of the pandemic. Accordingly, this study aimed to evaluate the incidence of COVID-19 infection in asymptomatic children who had been in close contact with parents exhibiting COVID-19 symptoms. Study Design: A cross-sectional study. METHODS The present cross-sectional study was conducted on 175 asymptomatic children who had been in close contact with COVID-19 confirmed cases in Hamadan County from March 2021 to August 2021. Reverse transcription polymerase chain reaction (RT-PCR) testing was performed on all asymptomatic children who had been in close contact with an individual with COVID-19. Furthermore, multiple logistic regressions were conducted to determine the predictors of COVID-19 transmission from family members to children. RESULTS Out of the 175 children in close contact with index cases, 53 (30.29%) tested positive for COVID-19 through PCR. Regarding factors related to the index case, male cases (Adjusted odds ratio [AOR]=2.29; 95% confidence interval [CI]: 1.03-5.09, P=0.041), rural dwellers (AOR=3.22; 95% CI: 1.02-10.16, P=0.046), illiterate cases (AOR=8.45; 95% CI: 1.76-40.65, P=0.008), and cases presenting with nasal congestion symptoms (AOR=9.12; 95% CI: 2.22-37.40, P=0.002) were more prone to transmitting the virus to children who had close contact with them. CONCLUSION The findings of the present study suggested that asymptomatic COVID-19 infection in household contacts is significant in children who were in close contact with a COVID-19-positive patient. Therefore, it is crucial to continue to monitor this group closely.
Collapse
Affiliation(s)
- Iraj Sedighi
- Department of Pediatrics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roya Raeisi
- Department of Pediatrics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jalaleddin Amiri
- Department of Pediatrics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zohreh Shalchi
- Department of Pediatrics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Manoochehr Karami
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences,Tehran, Iran
| | - Farid Azizi Jalilian
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nastaran Ansari
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jalaledin Bathaei
- Deputy of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Hashemi
- Deputy of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Luo Q, Liu W, Liao J, Gu Z, Fan X, Luo Z, Zhang X, Hang J, Ou C. COVID-19 transmission and control in land public transport: A literature review. FUNDAMENTAL RESEARCH 2024; 4:417-429. [PMID: 38933205 PMCID: PMC11197583 DOI: 10.1016/j.fmre.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 06/28/2024] Open
Abstract
Land public transport is an important link within and between cities, and how to control the transmission of COVID-19 in land public transport is a critical issue in our daily lives. However, there are still many inconsistent opinions and views about the spread of SARS-CoV-2 in land public transport, which limits our ability to implement effective interventions. The purpose of this review is to overview the literature on transmission characteristics and routes of the epidemic in land public transport, as well as to investigate factors affecting its spread and provide feasible measures to mitigate the infection risk of passengers. We obtained 898 papers by searching the Web of Science, Pubmed, and WHO global COVID database by keywords, and finally selected 45 papers that can address the purpose of this review. Land public transport is a high outbreak area for COVID-19 due to characteristics like crowding, inadequate ventilation, long exposure time, and environmental closure. Different from surface touch transmission and drop spray transmission, aerosol inhalation transmission can occur not only in short distances but also in long distances. Insufficient ventilation is the most important factor influencing long-distance aerosol transmission. Other transmission factors (e.g., interpersonal distance, relative orientation, and ambient conditions) should be noticed as well, which have been summarized in this paper. To address various influencing factors, it is essential to suggest practical and efficient preventive measures. Among these, increased ventilation, particularly the fresh air (i.e., natural ventilation), has proven to effectively reduce indoor infection risk. Many preventive measures are also effective, such as enlarging social distance, avoiding face-to-face orientation, setting up physical partitions, disinfection, avoiding talking, and so on. As research on the epidemic has intensified, people have broken down many perceived barriers, but more comprehensive studies on monitoring systems and prevention measures in land public transport are still needed.
Collapse
Affiliation(s)
- Qiqi Luo
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
- China Meteorological Administration Xiong'an Atmospheric Boundary Layer Key Laboratory, Xiong'an 070001, China
- Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519000, China
| | - Wenbing Liu
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Jiayuan Liao
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Zhongli Gu
- Guangdong Fans-tech Agro Co., Ltd, Yunfu 527300, China
| | - Xiaodan Fan
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Zhiwen Luo
- Welsh School of Architecture, Cardiff University, Cardiff CF10 3XQ, United Kingdom
| | - Xuelin Zhang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Jian Hang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
- China Meteorological Administration Xiong'an Atmospheric Boundary Layer Key Laboratory, Xiong'an 070001, China
- Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519000, China
| | - Cuiyun Ou
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| |
Collapse
|
6
|
Zhang N, Yang X, Su B, Dou Z. Analysis of SARS-CoV-2 transmission in a university classroom based on real human close contact behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170346. [PMID: 38281642 DOI: 10.1016/j.scitotenv.2024.170346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
Due to high-population density, frequent close contact, possible poor ventilation, university classrooms are vulnerable for transmission of respiratory infectious diseases. Close contact and long-range airborne are possibly main routes for SARS-CoV-2 transmission. In this study, taking a university classroom in Beijing for example, close contact behaviors of students were collected through a depth-detection device, which could detect depth to each pixel of the image, based on semi-supervised learning. Finally, >23 h of video data were obtained. Using Computational Fluid Dynamics, the relationship between viral exposure and close contact behaviors (e.g. interpersonal distance, relative facial orientations, and relative positions) was established. A multi-route transmission model (short-range airborne, mucous deposition, and long-range airborne) of infectious diseases considering real close contact behaviors was developed. In the case of Omicron, the risk of infection in university classrooms and the efficacy of different interventions were assessed based on dose-response model. The average interpersonal distance in university classrooms is 0.9 m (95 % CI, 0.5 m-1.4 m), with the highest proportion of face-to-back contact at 87.0 %. The risk of infection of susceptible students per 45-min lesson was 1 %. The relative contributions of short-range airborne and long-range airborne transmission were 40.5 % and 59.5 %, respectively, and the mucous deposition was basically negligible. When all students are wearing N95 respirators, the infection risk could be reduced by 96 %, the relative contribution of long-range airborne transmission increases to 95.6 %. When the fresh air per capita in the classroom is 24 m3/h/person, the virus exposure could be decreased by 81.1 % compared to the real situation with 1.02 m3/h/person. In a classroom with an occupancy rate of 50 %, after optimized arrangement of student distribution, the infection risk could be decreased by 62 %.
Collapse
Affiliation(s)
- Nan Zhang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Xueze Yang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Boni Su
- China Electric Power Planning & Engineering Institute, Beijing, China
| | - Zhiyang Dou
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Zhang N, Liu L, Dou Z, Liu X, Yang X, Miao D, Guo Y, Gu S, Li Y, Qian H, Wei J. Close contact behaviors of university and school students in 10 indoor environments. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132069. [PMID: 37463561 DOI: 10.1016/j.jhazmat.2023.132069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
Close contact routes, including short-range airborne and large-droplet routes, play an important role in the transmission of SARS-CoV-2 in indoor environments. However, the exposure risk of such routes is difficult to quantify due to the lack of data on the close contact behavior of individuals. In this study, a digital wearable device, based on semi-supervised learning, was developed to automatically record human close contact behavior. We collected 337,056 s of indoor close contact of school and university students from 194.5 h of depth video recordings in 10 types of indoor environments. The correlation between aerosol exposure and close contact behaviors was then evaluated. Individuals in restaurants had the highest close contact ratio (64%), as well as the highest probability of face-to-face pattern (78%) during close contact. Accordingly, university students showed greater exposure potential in dormitories than school students in homes, however, a lower exposure was observed in classrooms and postgraduate student offices in comparison with school students in classrooms. In addition, restaurants had the highest aerosol exposure volume for both short-range inhalation and direct deposition on the facial mucosa. Thus, the classroom was established as the primary indoor environment where school students are exposed to aerosols.
Collapse
Affiliation(s)
- Nan Zhang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Li Liu
- School of Architecture, Tsinghua University, Beijing, China
| | - Zhiyang Dou
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Xiyue Liu
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Xueze Yang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Doudou Miao
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Yong Guo
- Department of Building Science, Tsinghua University, Beijing, China
| | - Silan Gu
- Thee First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Jianjian Wei
- Institute of Refrigeration and Cryogenics, Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Guo Y, Dou Z, Zhang N, Liu X, Su B, Li Y, Zhang Y. Student close contact behavior and COVID-19 transmission in China's classrooms. PNAS NEXUS 2023; 2:pgad142. [PMID: 37228510 PMCID: PMC10205473 DOI: 10.1093/pnasnexus/pgad142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
Classrooms are high-risk indoor environments, so analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in classrooms is important for determining optimal interventions. Due to the absence of human behavior data, it is challenging to accurately determine virus exposure in classrooms. A wearable device for close contact behavior detection was developed, and we recorded >250,000 data points of close contact behaviors of students from grades 1 to 12. Combined with a survey on students' behaviors, we analyzed virus transmission in classrooms. Close contact rates for students were 37 ± 11% during classes and 48 ± 13% during breaks. Students in lower grades had higher close contact rates and virus transmission potential. The long-range airborne transmission route is dominant, accounting for 90 ± 3.6% and 75 ± 7.7% with and without mask wearing, respectively. During breaks, the short-range airborne route became more important, contributing 48 ± 3.1% in grades 1 to 9 (without wearing masks). Ventilation alone cannot always meet the demands of COVID-19 control; 30 m3/h/person is suggested as the threshold outdoor air ventilation rate in a classroom. This study provides scientific support for COVID-19 prevention and control in classrooms, and our proposed human behavior detection and analysis methods offer a powerful tool to understand virus transmission characteristics and can be employed in various indoor environments.
Collapse
Affiliation(s)
- Yong Guo
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Zhiyang Dou
- Department of Computer Science, The University of Hong Kong, Beijing 999077, China
| | - Nan Zhang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing 100124, China
| | - Xiyue Liu
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing 100124, China
| | - Boni Su
- Clean Energy Research Institute, China Electric Power Planning and Engineering Institute, Beijing 100120, China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| |
Collapse
|
9
|
Addressing Complexity in the Pandemic Context: How Systems Thinking Can Facilitate Understanding of Design Aspects for Preventive Technologies. INFORMATICS 2023. [DOI: 10.3390/informatics10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The COVID-19 pandemic constitutes a wicked problem that is defined by rapidly evolving and dynamic conditions, where the physical world changes (e.g., pathogens mutate) and, in parallel, our understanding and knowledge rapidly progress. Various preventive measures have been developed or proposed to manage the situation, including digital preventive technologies to support contact tracing or physical distancing. The complexity of the pandemic and the rapidly evolving nature of the situation pose challenges for the design of effective preventive technologies. The aim of this conceptual paper is to apply a systems thinking model, DSRP (distinctions, systems, relations, perspectives) to explain the underlying assumptions, patterns, and connections of the pandemic domain, as well as to identify potential leverage points for design of preventive technologies. Two different design approaches, contact tracing and nudging for distance, are compared, focusing on how their design and preventive logic are related to system complexity. The analysis explains why a contact tracing technology involves more complexity, which can challenge both implementation and user understanding. A system utilizing nudges can operate using a more distinct system boundary, which can benefit understanding and implementation. However, frequent nudges might pose challenges for user experience. This further implies that these technologies have different contextual requirements and are useful at different levels in society. The main contribution of this work is to show how systems thinking can organize our understanding and guide the design of preventive technologies in the context of epidemics and pandemics.
Collapse
|
10
|
Wang JX, Wu Z, Wang H, Zhong M, Mao Y, Li Y, Wang M, Yao S. Ventilation reconstruction in bathrooms for restraining hazardous plume: Mitigate COVID-19 and beyond. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129697. [PMID: 36104926 PMCID: PMC9335364 DOI: 10.1016/j.jhazmat.2022.129697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 05/20/2023]
Abstract
Converging evidence reports that the probability of vertical transmission patterns via shared drainage systems, may be responsible for the huge contactless community outbreak in high-rise buildings. Publications indicate that a faulty bathroom exhaust fan system is ineffective in removing lifted hazardous virus-laden aerosols from the toilet bowl space. Common strategies (boosting ventilation capability and applying disinfection tablets) seem unsustainable and remain to date untested. Using combined simulation and experimental approaches, we compared three ventilation schemes in a family bathroom including the traditional ceiling fan, floor fan, and side-wall fan. We found that the traditional ceiling fan was barely functional whereby aerosol particles were not being adequately removed. Conversely, a side-wall fan could function efficiently and an enhanced ventilation capability can have increased performance whereby nearly 80.9% of the lifted aerosol particles were removed. There exists a common, and easily-overlooked mistake in the layout of the bathroom, exposing occupants to a contactless vertical pathogen aerosol transmission route. Corrections and dissemination are thus imperative for the reconstruction of these types of family bathrooms. Our findings provide evidence for the bathroom and smart ventilation system upgrade, promoting indoor public health and human hygiene.
Collapse
Affiliation(s)
- Ji-Xiang Wang
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China; Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | - Zhe Wu
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Hongmei Wang
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Mingliang Zhong
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, PR China
| | - Yufeng Mao
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, PR China
| | - Yunyun Li
- School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Mengxiao Wang
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| |
Collapse
|