1
|
Niu Z, Xiao S, Zhou G, Sun K, Lin H, Fang G, Si Y. Unlocking the roles of wheat root exudates in regulating laccase-catalyzed estrogen humification. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135637. [PMID: 39208633 DOI: 10.1016/j.jhazmat.2024.135637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
While laccase humification has an efficient capacity to convert estrogenic pollutants, the roles of wheat (Triticum aestivum L.) root exudates (W-REs) in the enzymatic humification remain poorly understood. Herein, we presented the research into the effects of W-REs on 17β-estradiol (E2) and bisphenol A (BPA) conversion in vitro laccase humification. W-REs inhibited E2 removal but promoted BPA conversion in the enzymatic humification, and the first-order kinetic constants for E2 and BPA were 0.27-0.69 and 0.28-0.55 h-1, respectively. Specialized small phenols and amino acids in W-REs were susceptible to laccase humification, resulting in increased copolymerization of estrogen and W-REs. In greenhouse hydroponics, the accumulated amounts of E2 (BPA) in the roots and shoots were estimated to be 0.87 (2.15) and 0.43 (0.51) nmol·plant-1 at day 3, respectively. By forming low- and eventually non-toxic copolymeric precipitates between estrogen and W-REs, laccase humification lowered the phytotoxicity and bioavailability of estrogen in the rhizosphere solution, consequently relieving its uptake, accumulation, and distribution in the wheat cells. This work sheds light on the roles of W-REs in regulating laccase-catalyzed estrogen humification, and gives an insight into the path of addressing organic contamination in the rhizosphere and ensuring food safety.
Collapse
Affiliation(s)
- Ziyan Niu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shenghua Xiao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Guoning Zhou
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Zhang W, Jiang Y, Wen Q, Zhao Y, Wu B, Huang W. Inhibit or promote? Trade-off effect of dissolved organic matter on the laccase-mediator system. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134595. [PMID: 38761769 DOI: 10.1016/j.jhazmat.2024.134595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
A biocatalytic system comprising fungal laccase and mediators can generate phenol radicals and efficiently eliminate various triarylmethane dyes. This study systematically explores the kinetic impact of dissolved organic matter (DOM), represented by humic substance (HS consisting of 90% fulvic acid, from lignite), on the decolorization of seven typical triarylmethane dyes by Trametes versicolor laccase and twenty natural mediators. Among these, 4-hydroxybenzyl alcohol (4-HA) and methyl violet (MV) undergo in-depth investigation regarding degradation products, pathways, and reaction mechanisms. In instances where HS hampers laccase-alone decolorization, such as malachite green, Coomassie brilliant blue, bromophenol blue, and acid magenta, this inhibition may persist despite mediator introduction. Conversely, in cases where HS facilitates decolorization, such as crystalline violet and ethyl violet, most laccase-mediator systems (LMSs) can still benefit. For MV decolorization by laccase and 4-HA, HS's kinetic effect is controlled by concentration and reaction time. A 5 mg/L HS increased the decolorization rate from 50% to 67% within the first hour, whereas 10 mg/L HS only achieved 45%. After 16 h of reaction, HS's impact on decolorization rate diminishes. Furthermore, the addition of HS enhances precipitation production, probably due to its involvement in polymerization with MV and mediator. Computational simulations and spectral monitoring reveal that low HS concentrations accelerate laccase-mediated demethylation by disrupting the chromophores bound to MV, thus promoting the decolorization of MV. Conversely, inhibition by high HS concentrations stems from the competitive binding of the enzyme pocket to the mediator, and the reduction of phenol free radicals in the system. Molecular docking and kinetic simulations revealed that laccase forms complexes with both the mediator and MV. Interestingly, the decolorization of MV occurred through a non-radical mechanism in the presence of HS. This work provided a reference for screening of high catalytic performance mediators to remove triarylmethane dyes in the actual water environment.
Collapse
Affiliation(s)
- Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Yunlin Jiang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, People's Republic of China
| | - Qingqi Wen
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Yue Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215002, People's Republic of China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215002, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, People's Republic of China.
| | - Wenguang Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, People's Republic of China.
| |
Collapse
|
3
|
Qi X, Niu Z, Xiao S, Waigi MG, Lin H, Sun K. Novel insights into the mechanism of laccase-driven rhizosphere humification for alleviating wheat 17β-estradiol contamination. ENVIRONMENT INTERNATIONAL 2024; 185:108576. [PMID: 38490070 DOI: 10.1016/j.envint.2024.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/18/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Global-scale crop contamination with environmental estrogens has posed a huge risk to agri-food safety and human health. Laccase is regarded as an unexceptionable biocatalyst for regulating pollution and expediting humification, but the knowledge of estrogen bioremediation and C storage strengthened by laccase-driven rhizosphere humification (LDRH) remains largely unknown. Herein, a greenhouse microcosm was performed to explore the migration and fate of 17β-estradiol (E2) in water-wheat (Triticum aestivum L.) matrices by LDRH. Compared to the non-added laccase, the pseudo-first-order decay rate constants of E2 in the rhizosphere solution after 10 and 50 μM exposures by LDRH increased from 0.03 and 0.02 h-1 to 0.36 and 0.09 h-1, respectively. Furthermore, LDRH conferred higher yield, polymerizability, O-containing groups, and functional-C signals in the humified precipitates, because it accelerated the formation of highly complex precipitates by radical-controlled continuous polymerization. In particular, not only did LDRH mitigate the phytotoxicity of E2, but it also diminished the metabolic load of E2 in wheat tissues. This was attributed to the rapid attenuation of E2 in the rhizosphere solution during LDRH, which limited E2 uptake and accumulation in each subcellular fraction of the wheat roots and shoots. Although several typical intermediate products such as estrone, estriol, and E2 oligomers were detected in roots, only small-molecule species were found in shoots, evidencing that the polymeric products of E2 were unable to be translocated acropetally due to the vast hydrophobicity and biounavailability. For the first time, our study highlights a novel, eco-friendly, and sustainable candidate for increasing the low-C treatment of organics in rhizosphere microenvironments and alleviating the potential risks of estrogenic contaminants in agroenvironments.
Collapse
Affiliation(s)
- Xuemin Qi
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Ziyan Niu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shenghua Xiao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Michael Gatheru Waigi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
4
|
Kang J, Choi J, Lee D, Son Y. UV/persulfate processes for the removal of total organic carbon from coagulation-treated industrial wastewaters. CHEMOSPHERE 2024; 346:140609. [PMID: 37926165 DOI: 10.1016/j.chemosphere.2023.140609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Sulfate radical-based oxidation processes were investigated to understand the relationship between persulfate (PS) consumption and total organic carbon (TOC) removal from industrial wastewater under various PS concentrations. First, the degradation and mineralization of Bisphenol A (BPA) (initial concentration: 11 mg/L) were investigated in ultraviolet (UV)/PS systems. Complete degradation was achieved within 30 min of UV irradiation, and 41%-72% TOC removal was achieved at PS concentrations of 200 and 400 mg/L. The consumed concentration of S2O82- and generated concentration of SO42- increased gradually to similar levels. The ratio of the PS consumption to TOC removal based on the mass concentration (mg/L) was 14.5 and 23.2 at 180 min for 200 and 400 mg/L of S2O82-, respectively. Three types of coagulation-treated industrial wastewater from metal-processing, food-processing, and adhesive-producing plants were obtained, and TOC removal was analyzed using the same UV/PS systems (initial TOC concentration: 100 mg/L). The TOC removal rates ranged from 16.9% to 94.4% after 180 min of UV irradiation at PS concentrations of 1,000, 2,000, 4,000, and 8,000 mg S2O82-/L. Despite the higher TOC removal at higher PS concentrations, the PS activation efficiency decreased significantly as the PS concentration increased. Only approximately 30%-40% activation efficiency was achieved at a PS concentration of 8,000 mg/L. In this study, the ratio of PS consumption to TOC removal ranged from 20.6 to 43.9.
Collapse
Affiliation(s)
- Jumin Kang
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Jongbok Choi
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Dukyoung Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea.
| |
Collapse
|
5
|
Li S, Hong D, Sun K. Lignin precursors enhance exolaccase-started humification of bisphenol A to form functional polymers. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:219-226. [PMID: 38435360 PMCID: PMC10902508 DOI: 10.1016/j.eehl.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 03/05/2024]
Abstract
Humification plays a significant role in converting phenolic pollutants and forming heterogeneous polymers, but few studies have been performed to investigate exolaccase-started humification (ESH). Herein, the influences of lignin precursors (LPs) on exolaccase-induced bisphenol A (BPA) removal and humification were explored. In particular, the architectural features and botanical effects of the formed humification products were also tested. ESH was extremely beneficial in boosting BPA removal in the presence of LPs. Compared with LP-free (58.49%), 100% of BPA was eliminated after the reaction with ESH for 72 h. Such a process was controlled by an exolaccase-caused random assembly of radicals, which generated a large number of hydrophobic polymers through nonspecific covalent binding of C-C and/or C-O. These humified polymers were extremely stable at pH 2.0-10.0 and -20 °C to 80 °C and displayed unique functions, i.e., scavenged 2,2-diphenyl-1-picrylhydrazyl/2,2'-azino-bis3-ethylbenzothiazoline-6-sulphonic acid radicals and exerted antioxidant capacities. More importantly, the functional polymers could act as auxin analogs to increase the germination index (>100%), plant biomass, and salt tolerance of radish seedlings. Our findings disclosed that ESH could not only be optimized to mitigate the ecological risks of phenolic pollutants and sequester organic carbon in environmental bioremediation, but the resulting abundant auxin analogs also contributed to agricultural productivity.
Collapse
Affiliation(s)
- Shunyao Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei 230601, China
| | - Dan Hong
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Hussain A, Wu SC, Le TH, Huang WY, Lin C, Bui XT, Ngo HH. Enhanced biodegradation of endocrine disruptor bisphenol A by food waste composting without bioaugmentation: Analysis of bacterial communities and their relative abundances. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132345. [PMID: 37643575 DOI: 10.1016/j.jhazmat.2023.132345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Composting with food waste was assessed for its efficacy in decontaminating Bisphenol A (BPA). In a BPA-treated compost pile, the initial concentration of BPA 847 mg kg-1 fell to 6.3 mg kg-1 (99% reduction) over a 45-day composting period. The biodegradation rate was at its highest when bacterial activity peaked in the mesophilic and thermophilic phases. The average rate of total biodegradation was 18.68 mg kg-1 day-1. Standard methods were used to assess physicochemical parameters of the compost matrix and gas chromatography combined with mass spectrometry (GC/MS) was used to identify BPA intermediates. Next-generation sequencing (NGS) was used to detect BPA degraders and the diverse bacterial communities involved in BPA decomposition. These communities were found consist of 12 phyla and 21 genera during the composting process and were most diversified during the maturation phase. Three dominant phyla, Firmicutes, Pseudomonadota, and Bacteroidetes, along with Lactobacillus, Proteus, Bacillus, and Pseudomonas were found to be the most responsible for BPA degradation. Different bacterial communities were found to be involved in the food waste compost biodegradation of BPA at different stages of the composting process. In conclusion, food waste composting can effectively remove BPA, resulting in a safe product. These findings might be used to expand bioremediation technologies to apply to a wide range of pollutants.
Collapse
Affiliation(s)
- Adnan Hussain
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213 Taiwan
| | - Suei Chang Wu
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Thi-Hieu Le
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213 Taiwan
| | - Wen-Yen Huang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| |
Collapse
|
7
|
Li S, Sheng Y, Xiao S, Liu Q, Sun K. Exolaccase Propels Humification to Decontaminate Bisphenol A and Create Humic-like Biostimulants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37470251 DOI: 10.1021/acs.jafc.3c02958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Exolaccase-propelled humification (E-PH) helps eliminate phenolic pollutants and produce macromolecular precipitates. Herein, we investigated the influencing mechanism of 12 humic precursors (HPs) on exolaccase-enabled bisphenol A (BPA) decontamination and humification. Catechol, vanillic acid, caffeic acid, and gentian acid not only expedited BPA removal but also created large amounts of copolymeric precipitates. These precipitates had rich functional groups similar to natural humic substances, which presented great aromatic and acidic characteristics. The releasing amounts of BPA monomer from four precipitates were 0.08-12.87% at pH 2.0-11.0, suggesting that BPA-HP copolymers had pH stability. More excitingly, certain copolymeric precipitates could stimulate the growth and development of radish seedlings. The radish growth-promotion mechanisms of copolymers were involved in two aspects: (1) Copolymers interacted with root exudates to accelerate nutrient uptake; (2) Copolymers released auxins to provoke radish growth. These results may provide an innovative strategy for decontaminating phenolic pollutants and yielding humic-like biostimulants in E-PH.
Collapse
Affiliation(s)
- Shunyao Li
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, Anhui, China
| | - Yuehui Sheng
- Suzhou Zhongsheng Environmental Remediation Co., Ltd., Suzhou 215104, Jiangsu, China
| | - Shenghua Xiao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qingzhu Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
8
|
Chen X, Wang J, Wu H, Zhu Z, Zhou J, Guo H. Trade-off effect of dissolved organic matter on degradation and transformation of micropollutants: A review in water decontamination. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:130996. [PMID: 36867904 DOI: 10.1016/j.jhazmat.2023.130996] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The degradation of micropollutants by various treatments is commonly affected by the ubiquitous dissolved organic matter (DOM) in the water environment. To optimize the operating conditions and decomposition efficiency, it is necessary to consider the impacts of DOM. DOM exhibits varied behaviors in diverse treatments, including permanganate oxidation, solar/ultraviolet photolysis, advanced oxidation processes, advanced reduction process, and enzyme biological treatments. Besides, the different sources (i.e., terrestrial and aquatic, etc) of DOM, and operational circumstances (i.e., concentration and pH) fluctuate different transformation efficiency of micropollutants in water. However, so far, systematic explanations and summaries of relevant research and mechanism are rare. This paper reviewed the "trade-off" performances and the corresponding mechanisms of DOM in the elimination of micropollutants, and summarized the similarities and differences for the dual roles of DOM in each of the aforementioned treatments. Inhibition mechanisms typically include radical scavenging, UV attenuation, competition effect, enzyme inactivation, reaction between DOM and micropollutants, and intermediates reduction. Facilitation mechanisms include the generation of reactive species, complexation/stabilization, cross-coupling with pollutants, and electron shuttle. Moreover, electron-drawing groups (i.e., quinones, ketones functional groups) and electron-supplying groups (i.e., phenols) in the DOM are the main contributors to its trade-off effect.
Collapse
Affiliation(s)
- Xingyu Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Han Wu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhuoyu Zhu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jianfei Zhou
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China.
| |
Collapse
|
9
|
Wang X, Meng F, Zhang B, Xia Y. Elimination of tetracyclines in seawater by laccase-mediator system. CHEMOSPHERE 2023; 333:138916. [PMID: 37172624 DOI: 10.1016/j.chemosphere.2023.138916] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Long-term exposure of antibiotics at low level leads to the accumulation of antibiotics in environmental media and organisms, inducing the formation of antibiotic resistance genes. Seawater is an important sink for many contaminants. Here, laccase from Aspergillus sp. And mediators that follow different oxidation mechanisms were combined to degrade tetracyclines (TCs) at environmentally relevant levels (ng·L-1-μg·L-1) in coastal seawater. The high salinity and alkaline of seawater changed the enzymatic structure of laccase, resulting in a reduced affinity of laccase to the substrate in seawater (Km of 0.0556 mmol L-1) than that in buffer (Km of 0.0181 mmol L-1). Although the stability and activity of the laccase decreased in seawater, laccase at a concentration of 200 U·L-1 with a laccase/syringaldehyde (SA) ratio of 1 U: 1 μmol could completely degrade TCs in seawater at initial concentrations of less than 2 μg L-1 in 2 h. Molecular docking simulation showed that the interaction between TCs and laccase mainly includes hydrogen bond interaction and hydrophobic interaction. TCs were degraded into small molecular products through a series of reactions: demethylation, deamination, deamidation, dehydration, hydroxylation, oxidation, and ring-opening. Prediction of the toxicity of intermediates showed that the majority of TCs can be degraded into low-toxic or non-toxic, small-molecule products within 1 h, indicating that the degradation process of TCs by a laccase-SA system has good ecological safety. The successful removal of TCs by the laccase-SA system demonstrates its potential for the elimination of pollutants in marine environment.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Bo Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yufan Xia
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
10
|
Liu J, Sun K, Zhu R, Wang X, Waigi MG, Li S. Biotransformation of bisphenol A in vivo and in vitro by laccase-producing Trametes hirsuta La-7: Kinetics, products, and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121155. [PMID: 36709035 DOI: 10.1016/j.envpol.2023.121155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous endocrine disruptor that poses adverse human health risks. Herein, biotransformation kinetics, products, and mechanisms of BPA undergoing a laccase-producing Trametes hirsuta La-7 metabolism were for the first time reported. Strain La-7 could completely biotransform ≤0.5 mmol·L-1 BPA within 6 d in vivo. Notably, its extracellular crude laccase solution (ECLS) and intracellular homogenized mycelium (HM) only required 6 h to convert 85.71% and 84.24% of 0.5 mmol·L-1 BPA in vitro, respectively. The removal of BPA was noticeably hampered by adding a cytochrome P-450 inhibitor (piperonyl butoxide) in HM, disclosing that cytochrome P-450 monooxygenase participated in BPA oxidation and metabolism. BPA intermediates were elaborately identified by high-resolution mass spectrometry (HRMS) combined with 13C stable isotope ratios (BPA: 13C12-BPA = 0.25: 0.25, molar concentration). Based on the accurate molecular mass, isotope labeling difference, and relative intensity ratio of product peaks, 6 versatile metabolic mechanisms of BPA, including polymerization, hydroxylation, dehydration, bond cleavage, dehydrogenation, and carboxylation in vivo and in vitro, were confirmed. Germination index values revealed that inoculating strain La-7 in a BPA-contaminated medium presented no phytotoxicity to the germinated radish (Raphanus sativus L.) seeds. In vivo, Mg2+, Fe2+, Fe3+, and Mn2+ were conducive to BPA removal, but Cd2+ and Hg2+ significantly obstructed BPA elimination. Additionally, strain La-7 also exhibited high-efficiency metabolic ability toward estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2), with more than 96.13%, 96.65%, and 100% of E1, E2, and EE2 having been converted, respectively. Our findings provide an environmentally powerful laccase-producing fungus to decontaminate endocrine disruptor-contaminated water matrices by radical polymerization and oxidative decomposition.
Collapse
Affiliation(s)
- Jie Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Rui Zhu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xun Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Michael Gatheru Waigi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shunyao Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601, Anhui, China
| |
Collapse
|
11
|
Li S, Liu Q, Liu J, Sun K, Yang W, Si Y, Li Y, Gao Y. Inhibition mechanisms of Fe 2+/Fe 3+ and Mn 2+ on fungal laccase-enabled bisphenol a polyreaction. CHEMOSPHERE 2022; 307:135685. [PMID: 35842042 DOI: 10.1016/j.chemosphere.2022.135685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/05/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is regarded as an endocrine disruptor associated with negative health effects in animals and humans. Laccase from white-rot fungus can enable BPA oxidation and auto-polymerization to circumvent its biotoxicity, but the work concerning the effect mechanisms of divalent and trivalent metal ions (MIs) on BPA polyreaction have rarely been reported. Herein, Trametes versicolor laccase-started BPA conversion within 1 h followed pseudo-first order kinetics, and the rate constant (kprcs) and half-life were respectively 0.61 h-1 and 1.14 h. The presence of Ca2+, Mg2+, Cu2+, Pb2+, Cd2+, Zn2+ and Al3+ exhibited insignificant impact on BPA removal, whereas Fe2+, Fe3+ and Mn2+ had a strong inhibiting effect. Compared with MI-free, the kprcs values of BPA respectively lowered 34.4%, 44.3% and 98.4% in the presence of Fe2+, Fe3+ and Mn2+. Enzymatic activity and differential absorption spectrum disclosed that the inhibitory actions were accomplished by two different mechanisms. One is Fe2+ was preferentially oxidized into Fe3+ that restrained laccase activity at the initial stage of reaction, and subsequently, the formed Fe3+ complex bound with laccase T1-Cu site and thus impeded the single-electron transfer system. The other is Mn2+ was instantly oxidized by laccase to generate Mn3+-citrate complex, which completely consumed the dissolved O2 in solution and consequently terminated BPA removal. Considering environmental bioremediation, T. versicolor laccase-enabled auto-polymerization is a simple and convenient candidate to eliminate BPA in enzymatic wastewater treatment, however the effects of Fe2+/Fe3+ and Mn2+ on BPA decontamination should be cautiously assessed.
Collapse
Affiliation(s)
- Shunyao Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601, Anhui, China
| | - Qingzhu Liu
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jie Liu
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Kai Sun
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Wei Yang
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601, Anhui, China
| | - Youbin Si
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yucheng Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601, Anhui, China
| | - Yanzheng Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
12
|
Abstract
Globally, phenolic contaminants have posed a considerable threat to agro-ecosystems. Exolaccase-boosted humification may be an admirable strategy for phenolic detoxification by creating multifunctional humic-like products (H-LPs). Nonetheless, the potential applicability of the formed H-LPs in agricultural production is still overlooked. This review describes immobilized exolaccase-enabled humification in eliminating phenolic pollutants and producing artificial H-LPs. The similarities and differences between artificial H-LPs and natural humic substances (HSs) in chemical properties are compared. In particular, the agronomic effects of these reproducible artificial H-LPs are highlighted. On the basis of the above summary, the granulation process is employed to prepare granular humic-like organic fertilizers, which can be applied to field crops by mechanical side-deep fertilization. Finally, the challenges and perspectives of exolaccase-boosted humification for practical applications are also discussed. This review is a first step toward a more profound understanding of phenolic detoxification, soil improvement, and agricultural production by exolaccase-boosted humification. Exolaccase-initiated humification is conductive to phenolic detoxification Multiple humic-like products are created in exolaccase-boosted humification Similarities and differences between artificial and natural humus are disclosed Humic-like products can be used to sustain soil health and increase crop yield
Collapse
|