1
|
Senwitz C, Butscher D, Holtmann L, Vogel M, Steudtner R, Drobot B, Stumpf T, Barkleit A, Heller A. Effect of Ba(II), Eu(III), and U(VI) on rat NRK-52E and human HEK-293 kidney cells in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171374. [PMID: 38432374 DOI: 10.1016/j.scitotenv.2024.171374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Heavy metals pose a potential health risk to humans when they enter the organism. Renal excretion is one of the elimination pathways and, therefore, investigations with kidney cells are of particular interest. In the present study, the effects of Ba(II), Eu(III), and U(VI) on rat and human renal cells were investigated in vitro. A combination of microscopic, biochemical, analytical, and spectroscopic methods was used to assess cell viability, cell death mechanisms, and intracellular metal uptake of exposed cells as well as metal speciation in cell culture medium and inside cells. For Eu(III) and U(VI), cytotoxicity and intracellular uptake are positively correlated and depend on concentration and exposure time. An enhanced apoptosis occurs upon Eu(III) exposure whereas U(VI) exposure leads to enhanced apoptosis and (secondary) necrosis. In contrast to that, Ba(II) exhibits no cytotoxic effect at all and its intracellular uptake is time-independently very low. In general, both cell lines give similar results with rat cells being more sensitive than human cells. The dominant binding motifs of Eu(III) in cell culture medium as well as cell suspensions are (organo-) phosphate groups. Additionally, a protein complex is formed in medium at low Eu(III) concentration. In contrast, U(VI) forms a carbonate complex in cell culture medium as well as each one phosphate and carbonate complex in cell suspensions. Using chemical microscopy, Eu(III) was localized in granular, vesicular compartments near the nucleus and the intracellular Eu(III) species equals the one in cell suspensions. Overall, this study contributes to a better understanding of the interactions of Ba(II), Eu(III), and U(VI) on a cellular and molecular level. Since Ba(II) and Eu(III) serve as inactive analogs of the radioactive Ra(II) and Am(III)/Cm(III), the results of this study are also of importance for the health risk assessment of these radionuclides.
Collapse
Affiliation(s)
- Christian Senwitz
- Technische Universität Dresden, Faculty of Chemistry, Institute of Analytical Chemistry, Professorship of Radiochemistry/Radioecology, 01062 Dresden, Germany; Technische Universität Dresden, SG 4.6 Radiation Protection, Central Radionuclide Laboratory, 01062 Dresden, Germany
| | - Daniel Butscher
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany
| | - Linus Holtmann
- Leibniz Universität Hannover, Institute of Radioecology and Radiation Protection, 30419 Hannover, Germany
| | - Manja Vogel
- VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e.V, 01328 Dresden, Germany
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Technische Universität Dresden, Faculty of Chemistry, Institute of Analytical Chemistry, Professorship of Radiochemistry/Radioecology, 01062 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany
| | - Astrid Barkleit
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany
| | - Anne Heller
- Technische Universität Dresden, Faculty of Chemistry, Institute of Analytical Chemistry, Professorship of Radiochemistry/Radioecology, 01062 Dresden, Germany; Technische Universität Dresden, SG 4.6 Radiation Protection, Central Radionuclide Laboratory, 01062 Dresden, Germany.
| |
Collapse
|
2
|
Klotzsche M, Vogel M, Sachs S, Raff J, Stumpf T, Drobot B, Steudtner R. How tobacco ( Nicotiana tabacum) BY-2 cells cope with Eu(III) - a microspectroscopic study. Analyst 2023; 148:4668-4676. [PMID: 37646162 DOI: 10.1039/d3an00741c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The extensive use of lanthanides in science, industry and high-technology products is accompanied by an anthropogenic input of rare earth elements into the environment. Knowledge of a metal's environmental fate is essential for reasonable risk assessment and remediation approaches. In the present study, Eu(III) was representatively used as a luminescent probe to study the chemical environment and to elucidate the molecular interactions of lanthanides with a suspension cell culture of Nicotiana tabacum BY-2. Biochemical methods were combined with luminescence spectroscopy, two-dimensional microspectroscopic mappings, and data deconvolution methods to resolve the bioassociation behavior and spatial distribution of Eu(III) in plant cells. BY-2 cells were found to gradually take up the metal after exposure to 100 μM Eu(III) without significant loss of viability. Time-resolved luminescence measurements were used to specify the occurrence of Eu(III) species as a function of time, revealing the transformation of an initial Eu(III) species into another after 24 h exposure. Chemical microscopy and subsequent iterative factor analysis reveal the presence of four distinct Eu(III) species located at different cellular compartments, e.g., the cell nucleus, nucleolus and cell walls, which could be assigned to intracellular binding motifs. In addition, a special type of bioaccumulation occurs through the formation of a Eu(III)-containing oxalate biomineral, which is already formed within the first 24 hours after metal exposure. Oxalate crystals were also obtained in analogous experiments with Gd and Sm. These results indicate that tobacco BY-2 cells induce the precipitation of metal oxalate biominerals for detoxification of lanthanides, although they also bind to other cellular ligands at the same time.
Collapse
Affiliation(s)
- Max Klotzsche
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Insitute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Manja Vogel
- VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e.V., Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Insitute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Johannes Raff
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Insitute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Insitute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Insitute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Insitute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
3
|
Amer HEA, AbdElgawad H, Madany MMY, Khalil AMA, Saleh AM. Soil Contamination with Europium Induces Reduced Oxidative Damage in Hordeum vulgare Grown in a CO 2-Enriched Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:3159. [PMID: 37687405 PMCID: PMC10490371 DOI: 10.3390/plants12173159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
The extensive and uncontrolled utilization of rare earth elements, like europium (Eu), could lead to their accumulation in soils and biota. Herein, we investigated the impact of Eu on the growth, photosynthesis, and redox homeostasis in barley and how that could be affected by the future CO2 climate (eCO2). The plants were exposed to 1.09 mmol Eu3+/kg soil under either ambient CO2 (420 ppm, aCO2) or eCO2 (620 ppm). The soil application of Eu induced its accumulation in the plant shoots and caused significant reductions in biomass- and photosynthesis-related parameters, i.e., chlorophyll content, photochemical efficiency of PSII, Rubisco activity, and photosynthesis rate. Further, Eu induced oxidative stress as indicated by higher levels of H2O2 and lipid peroxidation products, and lower ASC/DHA and GSH/GSSG ratios. Interestingly, the co-application of eCO2 significantly reduced the accumulation of Eu in plant tissues. Elevated CO2 reduced the Eu-induced oxidative damage by supporting the antioxidant defense mechanisms, i.e., ROS-scavenging molecules (carotenoids, flavonoids, and polyphenols), enzymes (CAT and peroxidases), and ASC-GSH recycling enzymes (MDHAR and GR). Further, eCO2 improved the metal detoxification capacity by upregulating GST activity. Overall, these results provide the first comprehensive report for Eu-induced oxidative phytotoxicity and how this could be mitigated by eCO2.
Collapse
Affiliation(s)
- Hanaa E. A. Amer
- Botany and Microbiology Department, Faculty of Science, University of Cairo, Giza 12613, Egypt;
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, B–2020 Antwerp, Belgium;
- Department of Botany and microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mahmoud M. Y. Madany
- Biology Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41411, Saudi Arabia;
| | - Ahmed M. A. Khalil
- Biology Department, Faculty of Science at Yanbu, Taibah University, King Khalid Rd., Al Amoedi, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Ahmed M. Saleh
- Biology Department, Faculty of Science at Yanbu, Taibah University, King Khalid Rd., Al Amoedi, Yanbu El-Bahr 46423, Saudi Arabia;
| |
Collapse
|
4
|
Hilpmann S, Rossberg A, Steudtner R, Drobot B, Hübner R, Bok F, Prieur D, Bauters S, Kvashnina KO, Stumpf T, Cherkouk A. Presence of uranium(V) during uranium(VI) reduction by Desulfosporosinus hippei DSM 8344 T. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162593. [PMID: 36889400 DOI: 10.1016/j.scitotenv.2023.162593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Microbial U(VI) reduction influences uranium mobility in contaminated subsurface environments and can affect the disposal of high-level radioactive waste by transforming the water-soluble U(VI) to less mobile U(IV). The reduction of U(VI) by the sulfate-reducing bacterium Desulfosporosinus hippei DSM 8344T, a close phylogenetic relative to naturally occurring microorganism present in clay rock and bentonite, was investigated. D. hippei DSM 8344T showed a relatively fast removal of uranium from the supernatants in artificial Opalinus Clay pore water, but no removal in 30 mM bicarbonate solution. Combined speciation calculations and luminescence spectroscopic investigations showed the dependence of U(VI) reduction on the initial U(VI) species. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed uranium-containing aggregates on the cell surface and some membrane vesicles. By combining different spectroscopic techniques, including UV/Vis spectroscopy, as well as uranium M4-edge X-ray absorption near-edge structure recorded in high-energy-resolution fluorescence-detection mode and extended X-ray absorption fine structure analysis, the partial reduction of U(VI) could be verified, whereby the formed U(IV) product has an unknown structure. Furthermore, the U M4 HERFD-XANES showed the presence of U(V) during the process. These findings offer new insights into U(VI) reduction by sulfate-reducing bacteria and contribute to a comprehensive safety concept for a repository for high-level radioactive waste.
Collapse
Affiliation(s)
- Stephan Hilpmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - André Rossberg
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; Rossendorf Beamline (BM20-ROBL), European Synchrotron Radiation Facility, Grenoble, France
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
| | - Frank Bok
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Damien Prieur
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; Rossendorf Beamline (BM20-ROBL), European Synchrotron Radiation Facility, Grenoble, France
| | - Stephen Bauters
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; Rossendorf Beamline (BM20-ROBL), European Synchrotron Radiation Facility, Grenoble, France
| | - Kristina O Kvashnina
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; Rossendorf Beamline (BM20-ROBL), European Synchrotron Radiation Facility, Grenoble, France
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
5
|
Jessat J, John WA, Moll H, Vogel M, Steudtner R, Drobot B, Hübner R, Stumpf T, Sachs S. Localization and chemical speciation of europium(III) in Brassica napus plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114741. [PMID: 36950990 DOI: 10.1016/j.ecoenv.2023.114741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/18/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
For the reliable safety assessment of repositories of highly radioactive waste, further development of the modelling of radionuclide migration and transfer in the environment is necessary, which requires a deeper process understanding at the molecular level. Eu(III) is a non-radioactive analogue for trivalent actinides, which contribute heavily to radiotoxicity in a repository. For in-depth study of the interaction of plants with trivalent f elements, we investigated the uptake, speciation, and localization of Eu(III) in Brassica napus plants at two concentrations, 30 and 200 µM, as a function of the incubation time up to 72 h. Eu(III) was used as luminescence probe for combined microscopy and chemical speciation analyses of it in Brassica napus plants. The localization of bioassociated Eu(III) in plant parts was explored by spatially resolved chemical microscopy. Three Eu(III) species were identified in the root tissue. Moreover, different luminescence spectroscopic techniques were applied for an improved Eu(III) species determination in solution. In addition, transmission electron microscopy combined with energy-dispersive X-ray spectroscopy was used to localize Eu(III) in the plant tissue, showing Eu-containing aggregates. By using this multi-method setup, a profound knowledge on the behavior of Eu(III) within plants and changes in its speciation could be obtained, showing that different Eu(III) species occur simultaneously within the root tissue and in solution.
Collapse
Affiliation(s)
- Jenny Jessat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Warren A John
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Henry Moll
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Manja Vogel
- HZDR Innovation GmbH, Bautzner Landstraße 400, 01328 Dresden, Germany; VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e.V., Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|