1
|
Zheng WR, Li YZ, Xu J, Liu KX, Liu FH, Xing WY, Liu JX, Wu L, Li XY, Huang DH, Gong TT, Wu QJ. Urinary concentrations of phthalate metabolites and the survival of high-grade serous ovarian cancer with advanced stage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:125895. [PMID: 39984016 DOI: 10.1016/j.envpol.2025.125895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
Phthalates have been reported to increase the risk of various hormone-dependent cancers. However, there is still a lack of evidence regarding the association between phthalates and overall survival (OS) in advanced high-grade serous ovarian cancer (HGSOC). This study investigated the relationship between urinary phthalate metabolites and OS in patients with HGSOC using a nested case-control study within the Ovarian Cancer Follow-Up Study. We matched 159 deceased patients with HGSOC to 159 survivors by age at diagnosis, body mass index, and sampling date. Spot urine samples were analyzed for ten phthalate metabolites and five classes of phthalate molar sums via mass spectrometry. Conditional logistic regression models were employed to calculate odds ratios (ORs) and 95% confidence intervals (CIs), comparing the highest tertile with the lowest. We found that the highest tertiles of mono-2-ethyl-5-oxohexyl phthalates and monoethyl phthalates were associated with poorer OS, with ORs (95%CIs) being 4.24 (1.46, 12.32) and 3.28 (1.16, 9.22), respectively. Additionally, the highest tertiles of the sum of di(2-ethylhexyl) phthalate metabolites, the sum of high-molar-weight phthalate metabolites, and the sum of 10 phthalate metabolites, were associated with worse OS, with ORs (95%CIs) were 18.4 (4.14, 81.87), 9.28 (2.87, 30.08), and 5.94 (2.00, 17.64), respectively. Our study suggests that exposure to high levels of phthalates may be associated with poorer OS in patients with advanced HGSOC, particularly exposure to di(2-ethylhexyl) phthalate. Since it is widely used in personal care products, avoiding the use of these products may improve the OS of patients with HGSOC.
Collapse
Affiliation(s)
- Wen-Rui Zheng
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jin Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ke-Xin Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei-Yi Xing
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Xin Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
2
|
Liu Y, Xiao M, Huang K, Cui J, Liu H, Yu Y, Ma S, Liu X, Lin M. Phthalate metabolites in breast milk from mothers in Southern China: Occurrence, temporal trends, daily intake, and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132895. [PMID: 37976856 DOI: 10.1016/j.jhazmat.2023.132895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/08/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
The extensive production and use of phthalates means that these compounds are now ubiquitous in the environment and various biota, which raises concerns about potential harmful health effects. In this study, phthalate metabolites (mPAEs) were measured in breast milk (n = 100) collected from mothers of southern China between 2014 - 2022. Of the nine target mPAEs, five were detected in all of the samples, including mono-methyl phthalate (MMP), mono-ethyl phthalate (MEP), mono-isobutyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), and mono-(2-ethylhexyl) phthalate (MEHP). The total levels of mPAEs in breast milk ranged from 4.76 to 51.6 ng/mL, with MiBP and MnBP being the predominant isomers (MiBP + MnBP > 48.3%). Increasing trends were observed in MMP (5.7%/year) and MEHP (7.1%/year) levels during the study period, while a decreasing trend were observed in MiBP (-6.6%/year); no clear temporal trends were found for the other metabolites and total mPAE levels. The results indicate that exposure to phthalates is still prevalent in southern China. Breastfeeding was found to contribute to estimated daily phthalate intakes of 0.383-6.95 μg/kg-bw/day, suggesting insignificant health risks to infants based on dietary exposure. However, the increasing exposure to MMP and MEHP calls for more research into the possible sources and potential risks.
Collapse
Affiliation(s)
- Yangyang Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Minhua Xiao
- Department of Clinical Nutrition, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, PR China
| | - Kaiqin Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Juntao Cui
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Hongli Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; School of Public Health, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xihong Liu
- Department of Clinical Nutrition, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, PR China.
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Dueñas-Moreno J, Mora A, Kumar M, Meng XZ, Mahlknecht J. Worldwide risk assessment of phthalates and bisphenol A in humans: The need for updating guidelines. ENVIRONMENT INTERNATIONAL 2023; 181:108294. [PMID: 37935082 DOI: 10.1016/j.envint.2023.108294] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
Phthalates and bisphenol A (BPA) are compounds widely used as raw materials in the production of plastics, making them ubiquitous in our daily lives. This results in widespread human exposure and human health hazards. Although efforts have been conducted to evaluate the risk of these compounds in diverse regions around the world, data scattering may mask important trends that could be useful for updating current guidelines and regulations. This study offers a comprehensive global assessment of human exposure levels to these chemicals, considering dietary and nondietary ingestion, and evaluates the associated risk. Overall, the exposure daily intake (EDI) values of phthalates and BPA reported worldwide ranged from 1.11 × 10-7 to 3 700 µg kg bw-1 d-1 and from 3.00 × 10-5 to 6.56 µg kg bw-1 d-1, respectively. Nevertheless, the dose-additive effect of phthalates has been shown to increase the EDI up to 5 100 µg kg bw-1 d-1, representing a high risk in terms of noncarcinogenic (HQ) and carcinogenic (CR) effects. The worldwide HQ values of phthalates and BPA ranged from 2.25 × 10-7 to 3.66 and from 2.74 × 10-7 to 9.72 × 10-2, respectively. Meanwhile, a significant number of studies exhibit high CR values for benzyl butyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP). Moreover, DEHP has shown the highest maximum mean CR values for humans in numerous studies, up to 179-fold higher than BBP. Despite mounting evidence of the harmful effects of these chemicals at low-dose exposure on animals and humans, most regulations have not been updated. Thus, this article emphasizes the need for updating guidelines and public policies considering compelling evidence for the adverse effects of low-dose exposure, and it cautions against the use of alternative plasticizers as substitutes for phthalates and BPA because of the significant gaps in their safety.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64700 Nuevo León, Mexico
| | - Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64700 Nuevo León, Mexico.
| |
Collapse
|
4
|
Shi Y, Zhao L, Zhu H, Cheng Z, Luo H, Sun H. Co-occurrence of phthalate and non-phthalate plasticizers in dust and hand wipes: A comparison of levels across various sources. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132271. [PMID: 37582303 DOI: 10.1016/j.jhazmat.2023.132271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
E-waste dismantlers' occupational exposure to plasticizers, particularly non-phthalate (NPAE) plasticizers, is poorly understood. This study monitored 11 phthalates (PAEs) and 16 NPAEs in dust and hand wipe samples from Central China e-waste workplace and ordinary homes. Concentrations of plasticizers in dust from e-waste dismantling workshops (median: 217 μg/g) were significantly lower than that from ordinary homes (462 μg/g; p < 0.01), however, the trend was similar but not significant in hand wipes from these two scenarios (50.2 vs. 72.3 μg/m2; p = 0.139). PAEs were still the dominant plasticizers, which is, on average, 5.46 and 3.58-fold higher than NPAEs. In all samples, di-(2ethylhexyl) phthalate (65.4%) and tri-octyl trimellitate (44.9%) were the most common PAE and NPAE plasticizers. Increasing dust concentrations of di-iso-nonyl ester 1,2-cyclohexane dicarboxylic acid, citrates and sebacates were significantly associated with their levels in worker's hand wipe, by contrast, this trend was not found in general population. Dust ingestion was the main channel, followed by hand-to-mouth contact, all participants' daily plasticizer intakes (median: 154 ng/kg bw/day) are within safety limits. Our work highlights knowledge gaps about co-exposure to PAEs and NPAEs by multiple pathways in occupational e-waste workers, which could provide baseline data in the future.
Collapse
Affiliation(s)
- Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Haining Luo
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Tian X, Huang K, Liu Y, Jiang K, Liu R, Cui J, Wang F, Yu Y, Zhang H, Lin M, Ma S. Distribution of phthalate metabolites, benzophenone-type ultraviolet filters, parabens, triclosan and triclocarban in paired human hair, nail and urine samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122083. [PMID: 37343917 DOI: 10.1016/j.envpol.2023.122083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
In this study, the distribution of nineteen ingredients of personal care product (PCPs), including seven metabolites of phthalates (mPAEs), five benzophenone-type ultraviolet filters (BPs), and seven antimicrobial agents (AAs), were investigated in paired human hair, nail and urine samples. The median concentrations of ΣmPAEs, ΣBPs and ΣAAs were 135, 2.76 and 179 ng/g in hair, 37.3, 2.95 and 297 ng/g in nails, and 345, 4.03 and 50.1 ng/mL in urine, respectively. Mono-methyl phthalate (49%), 2,4-dihydroxybenzophenone (45%) and triclosan (71%) were the most abundant mPAE, BP and AA in hair samples, respectively, and had similar abundance in nail samples. In contrast, mono-n-butyl phthalate (45%), 4-hydroxy benzophenone (29%) and methyl paraben (54%) were the predominant mPAE, BP and AA in urine samples, respectively. Significant differences in the concentrations of some target compounds were observed between male and female but inconsistent across different matrices. Moreover, most compounds with significant correlations had quite different correlation coefficients in each matrix. No significant correlations were found between hair, nail and urine samples for most of the target analytes. These results suggest these analytes have matrix-specific distribution, and it is necessary to use multiple matrices to comprehensively assess the risk of ingredients of PCPs to human health.
Collapse
Affiliation(s)
- Xiaoyong Tian
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Kaiqin Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yangyang Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Kaixin Jiang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ranran Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Juntao Cui
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Fei Wang
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Huanhuan Zhang
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, PR China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
6
|
Wang M, Lu J, Zhou L, Su Y, Yao H, Li M, Yin X. Residual status and source analysis of phthalate esters in Ulungur Lake, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5991-6007. [PMID: 37199903 DOI: 10.1007/s10653-023-01586-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Ulungur Lake is the largest lake in northern Xinjiang and undertakes important aquatic tasks. It is the No. 1 fishing ground in northern Xinjiang, and the problem of persistent organic pollution in the water has received much attention. However, there are few studies on phthalate esters (PAEs) in the water of Ulungur Lake. Understanding the pollution levels, distribution characteristics and sources of PAEs is of great significance for the protection and prevention of water. Fifteen sampling sites are established in Ulungur Lake to collect water samples during flood and dry periods, then seventeen PAEs are extracted from the water samples and purified by liquid-liquid extraction-solid-phase purification. Gas chromatography-mass spectrometry is used to detect the pollution levels and distribution characteristics of the 17 PAEs and analyse their sources. Results show that the concentrations of PAEs in the dry and flood periods are 0.451-9.97 µg/L and 0.0490-6.38 µg/L, respectively. The concentration of ∑PAEs with time is characterised by the dry period > the flood period. The change in flow is the main reason for the diverse concentration distributions of PAEs in different periods. The concentration of ΣPAEs in the dry period is much lower on the side near the lake entrance of the Ulungur River and Irtysh River. In the dry period, PAEs mainly come from chemical production and the use of cosmetics and personal care products; in the flood period, they mainly come from chemical production. River input and atmospheric sedimentation are the main sources of PAEs in the lake.
Collapse
Affiliation(s)
- Manli Wang
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, 832003, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, 832003, China.
| | - Li Zhou
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, 832003, China
| | - Youzhi Su
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, 832003, China
| | - Han Yao
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, 832003, China
| | - Min Li
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, 832003, China
| | - Xiaowen Yin
- The First Affiliated Hospital of Shihezi University Medical College, Shihezi, 832000, China
| |
Collapse
|
7
|
Yang Y, Liang Z, Shen J, Chen H, Qi Z. Estimation of indoor soil/dust-skin adherence factors and health risks for adults and children in two typical cities in southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121889. [PMID: 37236583 DOI: 10.1016/j.envpol.2023.121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Soil/dust (SD) skin adherence is key dermal exposure parameter used for calculating the health risk of dermal exposure to contaminants. However, few studies of this parameter have been conducted in Chinese populations. In this study, forearm SD samples were randomly collected using the wipe method from population in two typical cities in southern China as well as office staff in a fixed indoor environment. SD samples from the corresponding areas were also sampled. The wipes and SD were analyzed for tracer elements (aluminum, barium, manganese, titanium, and vanadium). The SD-skin adherence factors were 14.31 μg/cm2 for adults in Changzhou, 7.25 μg/cm2 for adults in Shantou, and 9.37 μg/cm2 for children in Shantou, respectively. Further, the recommended values for indoor SD-skin adherence factors for adults and children in Southern China were calculated to be 11.50 μg/cm2 and 9.37 μg/cm2, respectively, which were lower than the U.S. Environmental Protection Agency (USEPA) recommended values. And the SD-skin adherence factor value for the office staff was small (1.79 μg/cm2), but the data were more stable. In addition, PBDEs and PCBs in dust samples from industrial and residential area in Shantou were also determined, and health risks were assessed using the dermal exposure parameters measured in this study. None of the organic pollutants posed a health risk to adults and children via dermal contact. These studies emphasized the importance of localized dermal exposure parameters, and further studies should be conducted in the future.
Collapse
Affiliation(s)
- Yan Yang
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515041, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China.
| | - Zhiqin Liang
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Jiarui Shen
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Haojia Chen
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515041, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Zenghua Qi
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
8
|
Lin L, Zhang S, Dong L, Cao Y, Zhang W, Pan X, Li Y, Zhang C, Tao J, Jia D, Crittenden J. Photodegradation behavior and mechanism of dibutyl phthalate in water under flood discharge atomization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161822. [PMID: 36708834 DOI: 10.1016/j.scitotenv.2023.161822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Flood discharge atomization is a prevalent hydraulics phenomenon in reservoir scheduling operations, however, its effect on the migration and transformation behavior of pollutants has not been examined. In this study, the behaviors and mechanisms of the direct photodegradation of dibutyl phthalate (DBP) in atomized water and the indirect photodegradation of DBP in the presence of ferric ions and nitrate were investigated. The results showed that the photodegradation rate of DBP was accelerated under atomization conditions by sunlight irradiation. The photodegradation efficiency of DBP in the presence of ferric ions and nitrate under atomization conditions was increased by 2.20 times and 1.82 times compared with no-atomization conditions, respectively. The quencher experiments indicated that the main active species for DBP photodegradation in the presence of ferric ions were hydroxyl radicals (·OH) and superoxide radicals (·O2-) with atomization, while the main active species in the presence of nitrate were ·OH, ·O2- and electrons (e-). In addition, the differences were found in the photodegradation products and pathways of DBP between with and without atomization treatment. In the presence of ferric ions, the benzene ring of DBP was opened to produce fumaric acid, while phthalic acid bis(4-hydroxybutyl) ester was produced in the presence of nitrate under atomization conditions. The results of this study provide a scientific basis for assessing the effect of water conservancy projects on the migration and transformation behaviors of pollutants, which is of great theoretical significance and scientific value.
Collapse
Affiliation(s)
- Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China.
| | - Sheng Zhang
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China
| | - Lei Dong
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China
| | - Yueqi Cao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China
| | - Wei Zhang
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiansu 210098, PR China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Nanjing, Jiansu, 210098, PR China
| | - Jingxiang Tao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China
| | - Di Jia
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China
| | - John Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| |
Collapse
|