1
|
Zhang L, Zhao R, Li H, Bao J, Song L, Shan W, Zhu C. Enhanced NO x reduction on CePO 4 catalysts: Cu-loading, phosphotungstic acid, and insights from In-situ DRIFTs and DFT. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135023. [PMID: 38986406 DOI: 10.1016/j.jhazmat.2024.135023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024]
Abstract
This study investigates the effects of varying Cu/Ce doping ratios on the NH3-SCR denitrification efficiency using Cu-HPW/CePO4 catalysts, where CePO4 serves as the support and copper-doped phosphotungstic acid (HPW) acts as the active phase. The NH3-SCR reaction mechanism was studied by In-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (In-situ DRIFTs) and Density Functional Theory (DFT). In-situ DRIFTs were employed to delve into the intricacies of adsorption and transformation dynamics at the surface sites of catalysts. This approach furnished a robust theoretical foundation aimed at augmenting the efficacy of low-temperature denitrification catalysts. DFT calculations were used to systematically investigate the reaction pathways, intermediates, transition states, and energy barriers over the HPW structure model to complete the NH3-SCR reaction. Empirical evidence suggests that modifying the catalysts with copper substantially enhances their denitrification efficacy and extends their operational temperature spectrum. A notable initial increase in denitrification efficiency was observed with increasing levels of copper modification, followed by a decline. Within the HPW-O15H site, the NH3-SCR reaction advances through both the E-R and L-H mechanisms, encompassing processes such as NH3 adsorption, intermediate formation and transformation, and product release.
Collapse
Affiliation(s)
- Lantian Zhang
- School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014000, China
| | - Ran Zhao
- College of Environment and Energy, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014000, China; Baotou rare earth research and development center, China.
| | - Hongxia Li
- School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014000, China.
| | - Jinxiao Bao
- School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014000, China
| | - Lijun Song
- Baotou rare earth research and development center, China
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chaoyang Zhu
- School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014000, China
| |
Collapse
|
2
|
Xiong Z, Zhu Y, Liu J, Du Y, Zhou F, Jin J, Yang Q, Lu W. The influence of H 2O or/and O 2 introduction during the low-temperature gas-phase sulfation of organic COS + CS 2 on the conversion and deposition of sulfur-containing species in the sulfated CeO 2-OS catalyst for NH 3-SCR. NANOSCALE 2024; 16:1223-1237. [PMID: 38115815 DOI: 10.1039/d3nr04686a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein, the typical components of blast furnace gas, including H2O and O2, were introduced to improve the NH3-SCR activity of the sulfated CeO2-OS catalyst during the gas-phase sulfation of organic COS + CS2 at 50 °C. The characterization results demonstrate that the introduction of O2 or H2O during gas-phase sulfation enhances the conversion of organic COS + CS2 on a cubic fluorite CeO2 surface and reduces the formation of sulfur and sulfates in the catalyst, but decreases the BET surface area and pore volume of the sulfated CeO2-OS catalyst. However, the introduction of O2 or H2O during the gas-phase sulfation increases the molar ratios of Ce3+/(Ce3+ + Ce4+) and Oβ/(Oα + Oβ + Oγ) on the sulfated CeO2-OS catalyst surface, thus promoting the formation of surface oxygen vacancies and chemisorbed oxygen, and these properties of the catalyst are further enhanced by the co-existence of O2 and H2O. Furthermore, the reduction of sulfates formed under the action of O2 or H2O decreases the weak acid sites of the sulfated CeO2-OS catalyst, but the few and highly dispersive sulfates present stronger reducibility, and the proportion of medium-strong acid sites of the catalyst increases. These factors help to improve the NH3-SCR activity of the sulfated CeO2-OS catalyst. Thus, there exists a synergistic effect of H2O and O2 introduction during gas-phase sulfation on the physical-chemical properties and catalytic performance of the sulfated CeO2-OS catalyst by organic COS + CS2 at 50 °C.
Collapse
Affiliation(s)
- Zhibo Xiong
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China.
| | - Yafei Zhu
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China.
| | - Jiaxing Liu
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China.
| | - Yanping Du
- School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| | - Fei Zhou
- Jiangsu Guoxin Jingjiang Power Co. Ltd., Jingjiang 214500, Jiangsu, China
| | - Jing Jin
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China.
| | - Qiguo Yang
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China.
| | - Wei Lu
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China.
| |
Collapse
|
3
|
Zhang P, Chen A, Lan T, Qu W, Hu X, Zhang K, Zhang D. Revealing the Dynamic Behavior of Active Sites on Acid-Functionalized CeO 2 Catalysts for NO x Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37314863 DOI: 10.1021/acs.langmuir.3c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Unraveling the dynamics of the active sites upon CeO2-based catalysts in selective catalytic reduction of nitrogen oxides by ammonia (NH3-SCR) is challenging. In this work, we prepared tungsten-acidified and sulfated CeO2 catalysts and used operando spectroscopy to reveal the dynamics of acid sites and redox sites on catalysts during NH3-SCR reaction. We found that both Lewis and Brønsted acid sites are needed to participate in the catalytic reaction. Notably, Brønsted acid sites are the main active sites after a tungsten-acidified or sulfated treatment, and the change of Brønsted acid sites significantly affects the NOx removal. Moreover, acid functionalization promotes the cerium species cycle between Ce4+ and Ce3+ for the NOx reduction. This work is critical to deeply understanding the natural properties of active sites, and it also provides new insights into the mechanism for NH3-SCR over CeO2-based catalysts.
Collapse
Affiliation(s)
- Pan Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Aling Chen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Tianwei Lan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Wenqiang Qu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Xiaonan Hu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Kai Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
4
|
Jafari S, Shaghaghi Z. CeO 2/CuO/NiO hybrid nanostructures loaded on N-doped reduced graphene oxide nanosheets as an efficient electrocatalyst for water oxidation and non-enzymatic glucose detection. Dalton Trans 2023. [PMID: 37191162 DOI: 10.1039/d3dt00527e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this work, the three-component heterostructure of CeO2/CuO/NiO was synthesized by a co-precipitation procedure and heating at a temperature of 750 °C. Then, CeO2/CuO/NiO nanoparticles were successfully supported on N-doped reduced graphene oxide (N-rGO) by a hydrothermal method. The obtained nanomaterials were used as effective electrocatalysts for the oxygen evolution reaction and glucose sensing in an alkaline medium. The results indicated that when CeO2/CuO/NiO is anchored on N-rGO nanosheets, active catalytic sites increase. On the other hand, N-doped rGO enhances electrical conductivity and electron transfer for water or glucose oxidation. CeO2/CuO/NiO@N-rGO has a large electrochemically active surface area and more active catalytic positions, and thus exhibits high activity for the OER with a low overpotential of 290 mV, a suitable Tafel slope of 110 mV dec-1, and superior stability and durability for at least 10 hours. CeO2/CuO/NiO@N-rGO can also detect glucose with a high sensitivity of 912.7 μA mM-1 cm-2, a low detection limit of 0.053 μM, a wide linear range between 0.001 and 24 mM, and a short response time of about 2.9 s. Moreover, the high selectivity and stability of this electrode for glucose sensing show its potential for clinical applications.
Collapse
Affiliation(s)
- Sahar Jafari
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, 5375171379, Tabriz, Iran.
| | - Zohreh Shaghaghi
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, 5375171379, Tabriz, Iran.
| |
Collapse
|