1
|
Zhou B, Wei Y, Chen L, Zhang A, Liang T, Low JH, Liu Z, He S, Guo Z, Xie J. Microplastics exposure disrupts nephrogenesis and induces renal toxicity in human iPSC-derived kidney organoids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124645. [PMID: 39095001 DOI: 10.1016/j.envpol.2024.124645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Microplastics (MPs) have emerged as a pervasive environmental pollutant of global concern. Their detection within the human placenta and fetal organs has prompted apprehension regarding the potential hazards of MPs during early organogenesis. The kidney, a vital multifunctional organ, is susceptible to damage from MPs in adulthood. However, the precise adverse effects of MP exposure on human nephrogenesis remain ambiguous due to the absence of a suitable model. Here, we explore the potential impact of MPs on early kidney development utilizing human kidney organoids in vitro. Human kidney organoids were subjected to polystyrene-MPs (PS-MPs, 1 μm) during the nephron progenitor cell (NPC) stage, a critical phase in early kidney development and patterning. We delineate the effects of PS-MPs on various stages of nephrogenesis, including NPC, renal vesicle, and comma-shaped body, through sequential examination of kidney organoids. PS-MPs were observed to adhere to the surface of cells during the NPC stage and accumulate within glomerulus-like structures within kidney organoids. Moreover, both short- and long-term exposure to PS-MPs resulted in diminished organoid size and aberrant nephron structure. PS-MP exposure heightened reactive oxygen species (ROS) production, leading to NPC apoptosis during early kidney development. Increased apoptosis, diminished cell viability, and NPC reduction likely contribute to the observed organoid size reduction under PS-MP treatment. Transcriptomic analysis at both NPC and endpoint stages revealed downregulation of Notch signaling, resulting in compromised proximal and distal tubular structures, thereby disrupting normal nephron patterning following PS-MP exposure. Our findings highlight the significant disruptive impact of PS-MPs on human kidney development, offering new insights into the mechanisms underlying PS-MP-induced nephron toxicity.
Collapse
Affiliation(s)
- Bingrui Zhou
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Yunliang Wei
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Long Chen
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Anxiu Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Ting Liang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Jian Hui Low
- Lee Kong Chian School of Medicine, Nanyang Technological University, 639739, Singapore
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Sheng He
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Zhongyuan Guo
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
2
|
Domínguez-Hernández C, Villanova-Solano C, Álvarez-Méndez SJ, Pestano M, Tejera G, Arias Á, Díaz-Peña FJ, Hernández-Borges J, Hernández-Sánchez C. Anthropogenic debris pollution in yellow-legged gull (Larus michahellis atlantis) nests in biosphere reserves of the Canary Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175209. [PMID: 39098411 DOI: 10.1016/j.scitotenv.2024.175209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Anthropogenic debris, particularly plastic pollution, has emerged as a significant environmental threat to biodiversity. Given that seabirds interact with artificial debris through ingestion, entanglement, and nest incorporation, it is particularly important to quantify the quantity, origins, and chemical composition of these debris items. In this work, it was evaluated for the first time the occurrence of anthropogenic debris in nests of yellow-legged gull (Larus michahellis atlantis) in biosphere reserves of the Canary Islands (Spain). A total of 48 abandoned nests were collected from five remote and hardly accessible sampling areas, revealing that 81.3 % contained anthropogenic waste, with plastic accounting for 34.7 % of the debris, followed by metal (33.6 %) and paper (19.6 %). On average, 32.8 ± 40.9 items were found per nest. Regarding the origin, food packagings (47.8 %), personal hygiene products (21.7 %), and textiles (15.8 %) were identified as the predominant sources. Furthermore, the polymer composition of the plastics was characterised by means of Fourier-transform infrared spectroscopy analysis, being polyester the most abundant (38.2 %), followed by polyethylene (25.6 %) and rayon (10.3 %). The incorporation of anthropogenic debris into nest construction may result from outdoor human activities carried out far from nesting areas.
Collapse
Affiliation(s)
- Cristopher Domínguez-Hernández
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, 38206 San Cristóbal de La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Cristina Villanova-Solano
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, 38206 San Cristóbal de La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Sergio J Álvarez-Méndez
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Miguel Pestano
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Gustavo Tejera
- Canary Islands' Ornithology and Natural History Group (GOHNIC), Buenavista del Norte, Tenerife, Spain
| | - Ángeles Arias
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, 38206 San Cristóbal de La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Cintia Hernández-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain.
| |
Collapse
|
3
|
Gallo L, Serafini PP, Vanstreels RET, Tamini LL, Kolesnikovas CKM, Pereira A, Neves T, Nascimento GD, Rodriguez Pirani LS, Picone AL, Romano RM, Alvarez CK, Rodriguez Heredia SA, Chavez LN, Dellacasa RF, Uhart MM. High frequency of plastic ingestion in procellariiform seabirds (albatrosses, petrels and shearwaters) in the Southwest Atlantic Ocean. MARINE POLLUTION BULLETIN 2024; 209:117094. [PMID: 39486193 DOI: 10.1016/j.marpolbul.2024.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 11/04/2024]
Abstract
Ocean pollution by plastics is a growing concern for marine wildlife conservation, and seabirds are particularly prone to ingest plastics. We report baseline information on plastic ingestion in 17 procellariiform species along the coast of Brazil and Argentina. Through a collaborative regional effort we found plastic items in 30.2 % of seabird carcasses examined (n = 192), comprised predominantly by mesoplastics (5-25 mm), user plastics, polypropylene, polystyrene and polyethylene. Considering the most representative source-site cohorts, the frequency of occurrence of plastic items varied significantly between sampling site and source of carcasses. Ingestion was highest in petrels and shearwaters. Immature birds ingested the largest number (and total mass) of plastic items followed by chicks and adults. Long-term programs applying standardized sampling protocols are needed to detect spatiotemporal patterns of plastic ingestion across species, and assess the potential effectiveness of remediation actions. Further studies are necessary to assess currently unrecognized health effects of plastic ingestion.
Collapse
Affiliation(s)
- Luciana Gallo
- Instituto de Biología de Organismos Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Chubut, Argentina; Coordinación Regional de Inocuidad y Calidad Agroalimentaria, Regional Patagonia Sur, Servicio Nacional de Sanidad y Calidad Agroalimentaria, Puerto Madryn, Chubut, Argentina.
| | - Patricia P Serafini
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Centro Nacional de Pesquisa e Conservação de Aves Silvestres, Instituto Chico Mendes de Conservação da Biodiversidade, Florianópolis, Santa Catarina, Brazil
| | - Ralph E T Vanstreels
- Instituto de Pesquisa e Reabilitação de Animais Marinhos, Cariacica, Epirito Santo, Brazil; Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, USA
| | - Leandro L Tamini
- Programa Marino, Aves Argentinas and BirdLife International, Buenos Aires, Argentina
| | | | | | | | - Gabriel D Nascimento
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Lucas S Rodriguez Pirani
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - A Lorena Picone
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Rosana M Romano
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | - Leandro N Chavez
- Programa Marino, Aves Argentinas and BirdLife International, Buenos Aires, Argentina
| | - Ruben F Dellacasa
- Programa Marino, Aves Argentinas and BirdLife International, Buenos Aires, Argentina
| | - Marcela M Uhart
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, USA
| |
Collapse
|
4
|
Xia Q, Wei Y, Hu LJ, Zeng FM, Chen YW, Xu D, Sun Y, Zhao LW, Li YF, Pang GH, Peng W, He M. Inhalation of Microplastics Induces Inflammatory Injuries in Multiple Murine Organs via the Toll-like Receptor Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18603-18618. [PMID: 39389766 DOI: 10.1021/acs.est.4c06637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Previous studies have detected microplastics (MPs) in human biological samples, such as lungs, alveolar lavage fluid, and thrombus. However, whether MPs induce health effects after inhalation are unclear. In this study, fluorescent polystyrene microplastics (PS-MPs) were found in the thymus, spleen, testes, liver, kidneys, and brain on day 1 or day 3 after one intratracheal instillation. Furthermore, mice showed inflammation in multiple organs, manifested as obvious infiltration of neutrophils and macrophages, increased Toll-like receptors (TLRs), myeloid differentiation primary response protein 88 (MyD88) and nuclear factor-κB (NF-κB), as well as proinflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1β) in the lungs, thymus, spleen, liver, and kidneys after four intratracheal instillations of PS-MPs at once every 2 weeks. Hepatic and renal function indexes were also increased. Subsequently, the inflammatory response in multiple murine organs was significantly alleviated by TLR2 and TLR4 inhibitors. Unexpectedly, we did not find any elevated secretion of monocyte chemotactic protein (MCP)-1 or TNF-α by RAW264.7 macrophages in vitro. Thus, PS-MPs induced inflammatory injuries in multiple murine organs via the TLRs/MyD88/NF-κB pathway in vivo, but not macrophages in vitro. These results may provide theoretical support for healthy protection against PS-MPs and their environmental risk assessment.
Collapse
Affiliation(s)
- Qing Xia
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Yuan Wei
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Long-Ji Hu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Fan-Mei Zeng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Yu-Wei Chen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Dan Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Yuan Sun
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Lu-Wei Zhao
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Yi-Fei Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Guan-Hua Pang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Wen Peng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Miao He
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Shenyang 110122, P. R. China
- Ministry of Education, China, Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Shenyang 110122, P. R. China
| |
Collapse
|
5
|
Kushwaha M, Shankar S, Goel D, Singh S, Rahul J, Rachna K, Singh J. Microplastics pollution in the marine environment: A review of sources, impacts and mitigation. MARINE POLLUTION BULLETIN 2024; 209:117109. [PMID: 39413476 DOI: 10.1016/j.marpolbul.2024.117109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
Over the past few years, microplastics (MPs) pollution in the marine environment has emerged as a significant environmental concern. Poor management practices lead to millions of tons of plastic waste entering oceans annually, primarily from land-based sources like mismanaged waste, urban runoff, and industrial activities. MPs pollution in marine environments poses a significant threat to ecosystems and human health, as it adsorbs pollutants, heavy metals, and leaches additives such as plasticizers and flame retardants, thus contributing to chemical pollution. The review article provides a comprehensive overview of MPs pollution, its sources, and impacts on marine environments, including human health, detection techniques, and strategies for mitigating microplastic contamination in marine environments. The paper provides current information on microplastic pollution in marine environments, offering insights for researchers, policymakers, and the public, as well as promoting sustainable practices to protect the environment.
Collapse
Affiliation(s)
- Manzari Kushwaha
- Department of Applied Chemistry, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India
| | - Shiv Shankar
- Department of Environmental Science, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India.
| | - Divya Goel
- Department of Environmental Science, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India
| | - Shailja Singh
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow - 226025, India
| | - Jitin Rahul
- Sharda School of Basic Sciences & Research, Department of Environmental Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India
| | - Km Rachna
- Sharda School of Basic Sciences & Research, Department of Environmental Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India
| | - Jaspal Singh
- Department of Environmental Science, Bareilly College, Bareilly- 243001, Uttar Pradesh, India
| |
Collapse
|
6
|
Matos DM, Ramos JA, Brandão ALC, Baptista F, Rodrigues I, Fernandes JO, Batista de Carvalho LAE, Marques MPM, Cunha SC, Antunes S, Paiva VH. Influence of paternal factors on plastic ingestion and brominated chemical exposure in East Tropical Atlantic Procellariid chicks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173815. [PMID: 38857804 DOI: 10.1016/j.scitotenv.2024.173815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The presence of plastic debris and organo-brominated compounds in the marine environment poses a concern to wildlife. Plastic can absorb and release chemical compounds, making their ingestion potentially harmful, while chemical compounds have become omnipresent, with a tendency to bioaccumulate in the food web. Seabirds are often used as indicators of marine plastic pollution, yet studies on the exposure of tropical communities to plastic contamination are still scarce. In this study we monitored the amounts of plastics in faeces and organo-brominated compounds ingested/assimilated in feathers by adults and chicks of Cape Verde shearwaters and Bulwer's petrels from Cabo Verde. Anthropogenic pollutants, polybrominated diphenyl ethers (PBDEs), and naturally generated methoxylated-PBDEs (MeO-PBDEs) were among the probed compounds. The frequency of plastic debris ingestion was similar in both species' adults and chicks, although, the characteristics of the ingested plastic differed. Frequency and number of microplastics increased throughout the nestling season for chicks from both species. All species and age groups showed the presence of PBDEs and MeO-PBDEs. Among PBDEs, Bulwer's petrels exhibited higher concentrations than Cape Verde shearwaters, and chicks had higher concentration profiles than adults. Specifically, Bulwer's petrel chicks showed higher concentrations than Cape Verde shearwater chicks. On the contrary, Cape Verde shearwater adults exhibited higher occurrence and concentrations of MeO-PBDEs when compared to Cape Verde shearwater chicks. We found no effect of plastic loadings or loadings of organohalogen contaminants on body condition or size, although harmful effects may be hidden or reveal themselves in a medium- to long-term. Feather samples from both adults and chicks were shown to be useful for comparing intraspecific contamination levels and appear suitable for the long-term assessment of organohalogen contaminants in seabirds. Species-specific foraging and feeding strategies are likely the drivers of the observed variation in organochlorine contamination burdens among seabird species.
Collapse
Affiliation(s)
- Diana M Matos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - J A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - A L C Brandão
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Francisca Baptista
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Isabel Rodrigues
- Biosfera Cabo Verde, Sul do Cemitério, Rua 5 - Caixa Postal 233, São Vicente, Cabo Verde
| | - J O Fernandes
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - L A E Batista de Carvalho
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - M P M Marques
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal; University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - S C Cunha
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Stefan Antunes
- Biosfera Cabo Verde, Sul do Cemitério, Rua 5 - Caixa Postal 233, São Vicente, Cabo Verde
| | - V H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
7
|
Wayman C, Fernández-Piñas F, Fernández-Valeriano R, García-Baquero GA, López-Márquez I, González-González F, Rosal R, González-Pleiter M. The potential use of birds as bioindicators of suspended atmospheric microplastics and artificial fibers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116744. [PMID: 39018735 DOI: 10.1016/j.ecoenv.2024.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Microplastics (MPs) and artificial fibers (AFs) have been detected suspended tens of meters above ground level in the atmosphere, yet empirical data on them remain scarce. This study aimed to investigate the presence of MPs and AFs in the digestive and respiratory systems of two abundant bird species, the Common House Martin (Delichon urbicum) and the Common Swift (Apus apus), within the Community of Madrid, Spain. Given that these birds spend the majority of their lives airborne, engaging in activities such as mating and sleeping during flight, the research sought to assess the potential of using these bird species as bioindicators for suspended atmospheric MPs and AFs. Samples were obtained from necropsies of birds (N = 24) collected primarily between spring and summer from 2021 to 2023. Only individuals that died within the initial 24-hour period and had not been fed were selected for examination to avoid contamination. MPs and AFS were identified by micro-FTIR, characterized and quantified. Results revealed that 75 % of the sampled birds exhibited at least one MPs in their respiratory and/or digestive system. All identified MPs were fibers, with polyester (PES) being the most predominant (48 %), followed by acrylic fibers (ACR; 28 %), and polyethylene (PE; 18 %). The average concentrations in the respiratory system were 1.12 ± 0.45 MPs/specimen and 2.78 ± 1.04 AFs/specimen for Common Swift and 0.75 ± 0.30 MPs/specimen and 0.75 ± 0.36 AFs/specimen for House Martin. In the digestive system, these were 1.92 ± 0.72 MPs/specimen and 3.42 ± 0.69 AFs/specimen for Common Swift, and 1.34 ± 0.50 MPs/specimen and 1.39 ± 0.47 AFs/specimen for House Martin. Birds collected areas with high population density located in the direction of the prevailing winds showed a concentration of MPs significantly higher in the digestive system. Taken together, these findings confirmed the potential use of these birds as bioindicators for monitoring of suspended atmospheric MPs and AFs.
Collapse
Affiliation(s)
- Chloe Wayman
- Department of Chemical Engineering, Universidad de Alcalá, Madrid, Alcalá de Henares E-28871, Spain
| | - Francisca Fernández-Piñas
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid E-28049, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, Madrid 28049, Spain
| | - Rocío Fernández-Valeriano
- Wildlife Hospital, Group of Rehabilitation of the Autochthonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, Madrid 28220, Spain
| | - Gonzalo Anibarro García-Baquero
- Wildlife Hospital, Group of Rehabilitation of the Autochthonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, Madrid 28220, Spain
| | - Irene López-Márquez
- Wildlife Hospital, Group of Rehabilitation of the Autochthonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, Madrid 28220, Spain
| | - Fernando González-González
- Wildlife Hospital, Group of Rehabilitation of the Autochthonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, Madrid 28220, Spain; Departmental Section of Pharmacology and Toxicology, Faculty of Veterinary Science, University Complutense of Madrid, Madrid 28020, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, Madrid, Alcalá de Henares E-28871, Spain
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid E-28049, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, Madrid 28049, Spain.
| |
Collapse
|
8
|
Siwach S, Bharti M, Yadav S, Dolkar P, Modeel S, Yadav P, Negi T, Negi RK. Unveiling the ecotoxicological impact of microplastics on organisms - the persistent organic pollutant (POP): A comprehensive review. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104397. [PMID: 39059355 DOI: 10.1016/j.jconhyd.2024.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Microplastics have been ubiquitous in our environment for decades, and numerous studies have revealed their extensive dispersion, reaching far beyond the surface of the land, soil, aquatic ecosystems. They have infiltrated the food-chain, the food web, even the air we breathe, as well as the water we drink. Microplastics have been detected in the food we consume, acting as vectors for hazardous chemicals that adhere to their hydrophobic surfaces. This can result in the transfer of these chemicals to the aquatic life, posing a threat to their well-being. The release of microplastics into different environmental settings can give rise to various eco-toxicological implications. The substantial body of literature has led scientists to the consensus that microplastic pollution is a global problem with the potential to impact virtually any type of ecosystem. This paper aims to discuss crucial information regarding the occurrence, accumulation, and ecological effects of microplastics on organisms. It also highlights the new and emerging disease named "Plasticosis" that is directly linked to microplastics and its toxicological effects like permanent scarring and long-term inflammation in the digestive system of the seabirds. By comprehending the behaviour of these microplastic pollutants in diverse habitats and evaluating their ecological consequences, it becomes possible to facilitate a better understanding of this toxicological issue.
Collapse
Affiliation(s)
- Sneha Siwach
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Meghali Bharti
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Padma Dolkar
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sonakshi Modeel
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India.
| |
Collapse
|
9
|
Lavers JL, Bond AL. Beyond the surface: Seabirds and plastics as indicators in a large, remote marine protected area. MARINE POLLUTION BULLETIN 2024; 205:116574. [PMID: 38857556 DOI: 10.1016/j.marpolbul.2024.116574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Marine protected areas (MPAs) are an important conservation tool for species and habitats; however, they are not a panacea solution. For example, MPAs provide little protection from plastic pollution which travels vast distances on ocean currents. Here we document exposure of juvenile Christmas Shearwaters (Puffinus nativitatis) to plastics on uninhabited Ducie Atoll in the remote South Pacific. Despite being surrounded by the very large Pitcairn Islands MPA, most birds (68.7 %; n = 16) contained 3.8 ± 4.1 pieces of ingested plastic. Unexpectedly, the number, mass and frequency of occurrence of plastic in two age classes (young downy chicks and fledglings) was similar. While the reason for this is unknown, it may suggest birds do not acquire new plastic items, or are able to rid themselves of plastics, beyond a certain age. We discuss the potential health consequences of plastic ingestion in Christmas Shearwaters and call for further research of this poorly studied species.
Collapse
Affiliation(s)
- Jennifer L Lavers
- Bird Group, Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, United Kingdom; Esperance Tjaltjraak Native Title Aboriginal Corporation, 11a Shelden Road, Esperance, Western Australia 6450, Australia.
| | - Alexander L Bond
- Bird Group, Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, United Kingdom
| |
Collapse
|
10
|
Grace J, Duran E, Ann Ottinger M, Maness T. Sublethal effects of early-life exposure to common and emerging contaminants in birds. Curr Res Toxicol 2024; 7:100190. [PMID: 39220619 PMCID: PMC11365322 DOI: 10.1016/j.crtox.2024.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The plight of wild birds is becoming critical due to exposure to environmental contaminants. Although laboratory studies have provided insights into the developmental effects of chemical exposures, less is known about the adverse effects of environmental chemicals in developing wild birds. Early life stages are critical windows during which long-term organization of physiological, behavioral, and neurological systems can occur. Thus, contaminant exposure at early life stages can directly influence survival and reproductive success, with consequences for population stability and resilience in wild species. This review synthesizes existing knowledge regarding both short- and long-term effects of early-life exposure to widespread contaminants in birds. We focus especially on wild birds and on contaminants of concern within the Gulf of Mexico as an example of a habitat under anthropogenic stress from exposure to a complex mixture of chemicals and changing land uses that exacerbate existing vulnerabilities of wildlife in this region. Chemical contaminants for discussion in this review are based on avian mortality records from the Wildlife Health Information Sharing Partnership (WHISPers) database and on additional review of the literature regarding avian contaminants of concern for the northern Gulf of Mexico, and include oil and associated polycyclic aromatic hydrocarbons, dioxin and dioxin-like compounds, flame retardants, pesticides, heavy metals, and plastics. We provide an overview of effects in bird species at both the pre-hatching and post-hatching early life stages, discuss differences in sensitivities by route of exposure, life stage, and life history, and provide recommendations for future research. We find that additional research is needed on altricial species, post-hatching early-life exposure, long-term effects, and on ecologically relevant contaminant concentrations and routes of exposure. Given the increasing frequency and intensity of anthropogenic stressors encountered by wild animals, understanding both lethal and sublethal impacts of contaminants on the health of individuals and populations will be critical to inform restoration, management, and mitigation efforts.
Collapse
Affiliation(s)
- Jacquelyn Grace
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77840-2258, USA
- Ecology and Evolutionary Biology Interdisciplinary Doctoral Program, Texas A&M University, College Station, TX 77840-2258, USA
| | - Elena Duran
- Ecology and Evolutionary Biology Interdisciplinary Doctoral Program, Texas A&M University, College Station, TX 77840-2258, USA
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Terri Maness
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
11
|
Schutten K, Morrill A, Chandrashekar A, Stevens B, Parmley EJ, Cunningham JT, Robertson GJ, Mallory ML, Jardine C, Provencher JF. Plastic ingestion, accumulated heavy metals, and health metrics of four Larus gull species feeding at a coastal landfill in eastern Canada. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135107. [PMID: 39013322 DOI: 10.1016/j.jhazmat.2024.135107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
The objectives of this research were to assess ingested plastics and accumulated heavy metals in four urban gull species. Additionally, the relationships between ingested plastics and selected demographic and health metrics were assessed. Between 2020-2021 during the non-breeding seasons, 105 gulls (46 American herring gulls (HERG, Larus argentatus smithsonianus), 39 great black-backed gulls (GBBG, Larus marinus), 16 Iceland gulls (Larus glaucoides), 4 glaucous gulls (Larus hyperboreus)) were killed at a landfill in coastal Newfoundland and Labrador, Canada, as part of separate, permitted kill-to-scare operations related to aircraft safety. Birds were necropsied, the upper gastrointestinal tract contents were processed using standard techniques, and livers were analyzed for accumulated As, Cd, Hg, and Pb. The relationships between ingested plastics, demographics, and health metrics were assessed in HERG and GBBG. Across all four species, 85 % of birds had ingested at least one piece of anthropogenic debris, with 79 % ingesting at least one piece of plastic. We detected interspecific differences in plastic ingestion and hepatic trace metals, with increased ingested plastics detected in GBBG compared with HERG. For GBBG, levels of ingested plastic were relatively greater for birds with higher scaled mass index, while HERG with more ingested plastic had higher liver lead concentrations.
Collapse
Affiliation(s)
- Kerry Schutten
- University of Guelph, Department of Pathobiology, 50 Stone Rd E., Guelph, N1G 2W1 Ontario, Canada.
| | - André Morrill
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, K1A 0H3 Ontario, Canada
| | - Akshaya Chandrashekar
- University of Guelph, Department of Pathobiology, 50 Stone Rd E., Guelph, N1G 2W1 Ontario, Canada
| | - Brian Stevens
- Canadian Wildlife Health Cooperative, University of Guelph, 50 Stone Rd E., Guelph, N1G 2W1 Ontario, Canada
| | - E Jane Parmley
- University of Guelph, Department of Population Medicine, 50 Stone Rd E., N1G 2W1 Guelph, Ontario, Canada
| | - Joshua T Cunningham
- Environment and Climate Change Canada, Wildlife and Landscape Science Directorate, 6 Bruce St, Mount Pearl, Newfoundland and Labrador A1N 4T3, Canada
| | - Gregory J Robertson
- Environment and Climate Change Canada, Wildlife and Landscape Science Directorate, 6 Bruce St, Mount Pearl, Newfoundland and Labrador A1N 4T3, Canada
| | - Mark L Mallory
- Acadia University, Department of Biology, 15 University Ave, Wolfville, Nova Scotia, Canada
| | - Claire Jardine
- University of Guelph, Department of Pathobiology, 50 Stone Rd E., Guelph, N1G 2W1 Ontario, Canada
| | - Jennifer F Provencher
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, K1A 0H3 Ontario, Canada
| |
Collapse
|
12
|
Nono Almeida F, Leray C, Souc C, Scotto S, Selmi S, Hammouda A, Ramos R, Ter Halle A, McCoy KD, Vittecoq M. Among-colony variation in plastic ingestion by Yellow-legged gulls (Larus michahellis) across the western Mediterranean basin. MARINE POLLUTION BULLETIN 2024; 204:116508. [PMID: 38824707 DOI: 10.1016/j.marpolbul.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024]
Abstract
The Mediterranean region is both a hotspot for biodiversity and for the accumulation of plastic pollution. Many species are exposed to this pollution while feeding, including a wide diversity of seabirds. Our objective was to investigate spatial variation in the quantity and types of plastic ingested by Yellow-legged gulls using information obtained from regurgitated pellets collected in 11 colonies. Anthropogenic debris, and particularly plastic, was found in pellets from all colonies, but the amount varied considerably. This among-colony difference was stable over the two years of study. The presence of marine prey and the proportion of agricultural area around the colonies significantly influenced the number of ingested plastics. As landfills close and garbage management improves, the availability of anthropogenic waste should decline. Following the response of gulls to these changes will be particularly useful for monitoring plastic pollution and for understanding the response of opportunistic wildlife to environmental modifications.
Collapse
Affiliation(s)
| | - Carole Leray
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - Charly Souc
- MIVEGEC, University of Montpellier CNRS IRD, Centre IRD, Montpellier, France
| | - Sara Scotto
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - Slaheddine Selmi
- Ecology & Environment Laboratory (LR24ES17), Faculty of Sciences, Gabès University, Gabès, Tunisia
| | - Abdessalem Hammouda
- Ecology & Environment Laboratory (LR24ES17), Faculty of Sciences, Gabès University, Gabès, Tunisia
| | - Raül Ramos
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Alexandra Ter Halle
- Softmat, UMR 5623 CNRS - University of Toulouse III Paul Sabatier, Toulouse, France
| | - Karen D McCoy
- MIVEGEC, University of Montpellier CNRS IRD, Centre IRD, Montpellier, France
| | - Marion Vittecoq
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| |
Collapse
|
13
|
Cheng C, Tian W, Wu Y, Wei J, Yang L, Wei Y, Jiang J. Microplastics have additive effects on cadmium accumulation and toxicity in Rice flower carp (Procypris merus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172679. [PMID: 38677436 DOI: 10.1016/j.scitotenv.2024.172679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/30/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Procypris merus, a local fish species found in Guangxi, China is often exposed to both microplastics (MPs) and Cd. However, it remains unclear how these two pollutants affect P. merus. Therefore, we investigated the effects of MPs on Cd accumulation in P. merus. To this end, P. merus was separately exposed to Cd and MPs (500 μg/L) or their combination for 14 days. We found that MPs enhanced Cd accumulation in liver and gills of P. merus. Further, both the single-contaminant (MP and Cd) and combined treatments resulted in lesions in these two tissues, with more severe damage associated with the combined treatment. Even though the effect of MP on the antioxidant defense system of P. merus was limited, the Cd-only and combined treatments considerably affected the antioxidant parameters of P. merus, with the combined treatment showing a stronger effect. GO and KEGG analyses revealed that the differentially expressed genes (DEGs; TNF-related apoptosis-inducing ligand receptor, trail-r) in the Cd-only treatment group were enriched for immune-related GO terms and cell growth and death related pathways, indicating that Cd toxicity affected immune defense in P. merus. The MP-only treatment downregulated DEGs (acyl-CoA synthetase long chain family member 1a, acsl1a) related to lipid metabolism, possibly leading to lipid accumulation in the liver. The combined treatment also upregulated DEGs (aspartate aminotransferase 1, ast 1) associated with immune-related GO terms and amino acid metabolism pathways, suggesting that it affected immune function in P. merus, thereby negatively impacting its health. Results indicated that MPs have additive effects on Cd accumulation and toxicity in rice flower carp. Consequently, MPs ingested by P. merus can promote Cd accumulation, more adverse effects on the health may occur after combined exposure, which can eventually reach humans through the food chain and pose potential risks to human health.
Collapse
Affiliation(s)
- Chunxing Cheng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China
| | - Wenfei Tian
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541004, China
| | - Yangyang Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China
| | - Jinyou Wei
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China
| | - Liu Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China
| | - Yuwei Wei
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China
| | - Jiaoyun Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Gangxi Normal University, Guilin 541006, China; Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China.
| |
Collapse
|
14
|
Pollet IL, Acmc S, Kelly BG, Baak JE, Hanifen KE, Maddox ML, Provencher JF, Mallory ML. The relationship between plastic ingestion and trace element concentrations in Arctic seabirds. MARINE POLLUTION BULLETIN 2024; 203:116509. [PMID: 38788276 DOI: 10.1016/j.marpolbul.2024.116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Seabirds ingest contaminants linked to their prey's tissues, but also adsorbed to ingested plastic debris. To explore relationships between ingested plastics and trace elements concentrations, we analyzed 25 essential non-essential trace elements in liver tissue in relation to plastic content in the gastrointestinal tract in adults of four species of Arctic seabirds with different propensity to ingest plastic. Linear Discriminant Analysis (LDA) provided a clear separation between species based on element concentrations, but not among individuals with and without plastics. Molybdenum, copper, vanadium, and zinc were strong drivers of the LDA, separating northern fulmars (Fulmarus glacialis) from other species (60.4 % of explained between-group variance). Selenium, vanadium, zinc, and mercury were drivers separating black-legged kittiwakes (Rissa tridactyla) from the other species (19.3 % of explained between-group variance). This study suggests that ingestion of plastic particles has little influence on the burden of essential and non-essential trace elements in Arctic seabird species.
Collapse
Affiliation(s)
- Ingrid L Pollet
- Acadia University, Biology Department, Wolfville, NS, B4P 2R6, Canada.
| | - Sululiit Acmc
- Sululiit ACMC - Environment and Climate Change Canada, P.O. Box 1870, Iqaluit, Nunavut X0A 0H0, Canada
| | - Brendan G Kelly
- Sululiit ACMC - Environment and Climate Change Canada, P.O. Box 1870, Iqaluit, Nunavut X0A 0H0, Canada
| | - Julia E Baak
- Department of Natural Resource Sciences, McGill University, Sainte Anne-de-Bellevue, Quebec, Canada; Sululiit ACMC - Environment and Climate Change Canada, P.O. Box 1870, Iqaluit, Nunavut X0A 0H0, Canada
| | | | - Mark L Maddox
- Acadia University, Biology Department, Wolfville, NS, B4P 2R6, Canada
| | - Jennifer F Provencher
- National Wildlife Research Centre, Environment and Climate Change Canada, Raven Road, Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Mark L Mallory
- Acadia University, Biology Department, Wolfville, NS, B4P 2R6, Canada
| |
Collapse
|
15
|
Guo T, Geng X, Zhang Y, Hou L, Lu H, Xing M, Wang Y. New insights into the spleen injury by mitochondrial dysfunction of chicken under polystyrene microplastics stress. Poult Sci 2024; 103:103674. [PMID: 38583309 PMCID: PMC11004413 DOI: 10.1016/j.psj.2024.103674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Microplastics biological toxicity, environmental persistence and biological chemicals have been paid widespread attention. Microplastics exposed to chicken spleen injury of the specific mechanism is unclear. Thus, we randomly assigned chickens to 4 groups: C (normal diet), L-MPs (1 mg/L), M-MPs (10 mg/L), and H-MPs (100 mg/L), and assessed spleen damage after 42 d of exposure. Morphologically, the boundary between the red and white pulp of the spleen was blurred, along with the expansion of the white pulp. It was further speculated that microplastics induced mitochondrial dynamic homeostasis (Drp1 upgraded, Mfn1, Mfn2, and OPA1 reduced), and provoked the mitochondrial apoptotic pathway (Bcl-2/Bax decreased, cytc, caspase3, and caspase9 raised), resulting in redox imbalance and lipid peroxide accumulation (MDA increased, CAT, GSH, and T-AOC plummeted), and further stimulated ferroptosis (FTH1, GPX4, and SLC7A11 decreased). Here we explored the impact of polystyrene microplastics on the spleen, as well as the programmed death (apoptosis and ferroptosis) involved, and the regulative role of mitochondria in this process. This could be of significant importance in bridging the gap in laboratory research on microplastics-induced spleen injury in chicken.
Collapse
Affiliation(s)
- Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Xiren Geng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China.
| |
Collapse
|
16
|
Serafini PP, Righetti BPH, Vanstreels RET, Bugoni L, Piazza CE, Lima D, Mattos JJ, Kolesnikovas CKM, Pereira A, Maraschin M, Piccinin I, Guilford T, Gallo L, Uhart MM, Lourenço RA, Bainy ACD, Lüchmann KH. Biochemical and molecular biomarkers and their association with anthropogenic chemicals in wintering Manx shearwaters (Puffinus puffinus). MARINE POLLUTION BULLETIN 2024; 203:116398. [PMID: 38723548 DOI: 10.1016/j.marpolbul.2024.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 06/06/2024]
Abstract
Anthropogenic pollution poses a threat to marine conservation by causing chronic toxic effects. Seabirds have contact throughout their lives with pollutants like plastic, metals, polychlorinated biphenyls (PCBs), and organochlorine pesticides such as hexachlorocyclohexanes (HCHs). We assessed 155 Manx shearwaters (Puffinus puffinus) stranded along the Brazilian coast, analyzing associations between organic pollutants, plastic ingestion, biomarkers (transcript levels of aryl hydrocarbon receptor, cytochrome P450-1A-5 [CYP1A5], UDP-glucuronosyl-transferase [UGT1], estrogen receptor alpha-1 [ESR1], and heat shock protein-70 genes) and enzymes activity (ethoxy-resorufin O-deethylase and glutathione S-transferase [GST]). Plastic debris was found in 29 % of the birds. The transcription of UGT1 and CYP1A5 was significantly associated with hexachlorobenzene (HCB) and PCBs levels. ESR1 was associated with HCB and Mirex, and GST was associated with Drins and Mirex. While organic pollutants affected shearwaters more than plastic ingestion, reducing plastic availability remains relevant as xenobiotics are also potentially adsorbed onto plastics.
Collapse
Affiliation(s)
- Patricia P Serafini
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Centro Nacional de Pesquisa e Conservação de Aves Silvestres, Instituto Chico Mendes de Conservação da Biodiversidade - ICMBio, Florianópolis, SC, Brazil
| | - Bárbara P H Righetti
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Ralph E T Vanstreels
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, USA
| | - Leandro Bugoni
- Laboratório de Aves Aquáticas e Tartarugas Marinhas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Clei E Piazza
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Daína Lima
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Jacó J Mattos
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | | | | | - Marcelo Maraschin
- Plant Morphogenesis and Biochemistry Laboratory, UFSC, Florianópolis, SC, Brazil
| | - Isadora Piccinin
- Plant Morphogenesis and Biochemistry Laboratory, UFSC, Florianópolis, SC, Brazil
| | - Tim Guilford
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Luciana Gallo
- Instituto de Biología de Organismos Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Chubut, Argentina; Coordinación Regional de Inocuidad y Calidad Agroalimentaria, Regional Patagonia Sur, Servicio Nacional de Sanidad y Calidad Agroalimentaria, Puerto Madryn, Chubut, Argentina
| | - Marcela M Uhart
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, USA
| | - Rafael A Lourenço
- Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Afonso C D Bainy
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Karim H Lüchmann
- Departamento de Educação Científica e Tecnológica, Universidade do Estado de Santa Catarina - UDESC, Florianópolis, SC, Brazil.
| |
Collapse
|
17
|
Collard F, Benjaminsen SC, Herzke D, Husabø E, Sagerup K, Tulatz F, Gabrielsen GW. Life starts with plastic: High occurrence of plastic pieces in fledglings of northern fulmars. MARINE POLLUTION BULLETIN 2024; 202:116365. [PMID: 38608430 DOI: 10.1016/j.marpolbul.2024.116365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Plastic pollution threatens many organisms around the world. In particular, the northern fulmar, Fulmarus glacialis, is known to ingest high quantities of plastics. Since data are sparse in the Eurasian Arctic, we investigated plastic burdens in the stomachs of fulmar fledglings from Kongsfjorden, Svalbard. Fifteen birds were collected and only particles larger than 1 mm were extracted, characterised and analysed with Fourier Transform InfraRed spectroscopy. All birds ingested plastic. In total, 683 plastic particles were found, with an average of 46 ± 40 SD items per bird. The most common shape, colour and polymer were hard fragment, white, and polyethylene, respectively. Microplastics (< 5 mm) were slightly more represented than mesoplastics (> 5 mm). This study confirms high numbers of ingested plastics in fulmar fledglings from Svalbard and suggests that fulmar fledglings may be suitable for temporal monitoring of plastic pollution, avoiding potential biases caused by age composition or breeding state.
Collapse
Affiliation(s)
- France Collard
- Norwegian Polar Institute, Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway; Norwegian Institute for Water Research, Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway.
| | - Stine C Benjaminsen
- Norwegian Polar Institute, Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway
| | - Dorte Herzke
- The Climate and Environmental Research Institute (NILU), Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway; Department of Arctic and Marine Biology, The Arctic University of Norway (UiT), Hansine Hansens veg 18, Tromsø N-9037, Norway
| | - Eirin Husabø
- Norwegian Polar Institute, Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway; GRID-Arendal, Teaterplassen 3, 4836 Arendal, Norway
| | - Kjetil Sagerup
- Akvaplan-niva AS, Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway
| | - Felix Tulatz
- Norwegian Polar Institute, Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway
| | - Geir W Gabrielsen
- Norwegian Polar Institute, Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway
| |
Collapse
|
18
|
Nguyen TT, Edalati K. Brookite TiO 2 as an active photocatalyst for photoconversion of plastic wastes to acetic acid and simultaneous hydrogen production: Comparison with anatase and rutile. CHEMOSPHERE 2024; 355:141785. [PMID: 38537708 DOI: 10.1016/j.chemosphere.2024.141785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/22/2024] [Accepted: 03/22/2024] [Indexed: 04/18/2024]
Abstract
Photoreforming is a clean photocatalytic technology for simultaneous plastic waste degradation and hydrogen fuel production, but there are still limited active and stable catalysts for this process. This work introduces the brookite polymorph of TiO2 as an active photocatalyst for photoreforming with an activity higher than anatase and rutile polymorphs for both hydrogen production and plastic degradation. Commercial brookite successfully converts polyethylene terephthalate (PET) plastic to acetic acid under light. The high activity of brookite is attributed to good charge separation, slow decay and moderate electron trap energy, which lead to a higher generation of hydrogen and hydroxyl radicals and accordingly enhanced photo-oxidation of PET plastic. These results introduce brookite as a stable and active catalyst for the photoconversion of water contaminated with microplastics to value-added organic compounds and hydrogen.
Collapse
Affiliation(s)
- Thanh Tam Nguyen
- WPI, International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan; Mitsui Chemicals, Inc. - Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka, 819-0395, Japan
| | - Kaveh Edalati
- WPI, International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan; Mitsui Chemicals, Inc. - Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
19
|
Garrard SL, Clark JR, Martin N, Nelms SE, Botterell ZLR, Cole M, Coppock RL, Galloway TS, Green DS, Jones M, Lindeque PK, Tillin HM, Beaumont NJ. Identifying potential high-risk zones for land-derived plastic litter to marine megafauna and key habitats within the North Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171282. [PMID: 38412875 DOI: 10.1016/j.scitotenv.2024.171282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
The pervasive use of plastic in modern society has led to plastic litter becoming ubiquitous within the ocean. Land-based sources of plastic litter are thought to account for the majority of plastic pollution in the marine environment, with plastic bags, bottles, wrappers, food containers and cutlery among the most common items found. In the marine environment, plastic is a transboundary pollutant, with the potential to cause damage far beyond the political borders from where it originated, making the management of this global pollutant particularly complex. In this study, the risks of land-derived plastic litter (LDPL) to major groups of marine megafauna - seabirds, cetaceans, pinnipeds, elasmobranchs, turtles, sirenians, tuna and billfish - and a selection of productive and biodiverse biogenic habitats - coral reefs, mangroves, seagrass, saltmarsh and kelp beds - were analysed using a Spatial Risk Assessment approach. The approach combines metrics for vulnerability (mechanism of harm for megafauna group or habitat), hazard (plastic abundance) and exposure (distribution of group or habitat). Several potential high-risk zones (HRZs) across the North Atlantic were highlighted, including the Azores, the UK, the French and US Atlantic coasts, and the US Gulf of Mexico. Whilst much of the modelled LDPL driving risk in the UK originated from domestic sources, in other HRZs, such as the Azores archipelago and the US Gulf of Mexico, plastic originated almost exclusively from external (non-domestic) sources. LDPL from Caribbean islands - some of the largest generators of marine plastic pollution in the dataset of river plastic emissions used in the study - was noted as a significant input to HRZs across both sides of the Atlantic. These findings highlight the potential of Spatial Risk Assessment analyses to determine the location of HRZs and understand where plastic debris monitoring and management should be prioritised, enabling more efficient deployment of interventions and mitigation measures.
Collapse
Affiliation(s)
- Samantha L Garrard
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, United Kingdom.
| | - James R Clark
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, United Kingdom
| | - Nicola Martin
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, United Kingdom
| | - Sarah E Nelms
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, United Kingdom
| | - Zara L R Botterell
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, United Kingdom
| | - Matthew Cole
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, United Kingdom
| | - Rachel L Coppock
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, United Kingdom
| | - Tamara S Galloway
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Dannielle S Green
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, United Kingdom
| | - Megan Jones
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, United Kingdom
| | - Pennie K Lindeque
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, United Kingdom
| | - Heidi M Tillin
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, United Kingdom
| | - Nicola J Beaumont
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, United Kingdom
| |
Collapse
|
20
|
Martín-Vélez V, Cano-Povedano J, Cañuelo-Jurado B, López-Calderón C, Céspedes V, Ros M, Sánchez MI, Shamoun-Baranes J, Müller W, Thaxter CB, Camphuysen CJ, Cózar A, Green AJ. Leakage of plastics and other debris from landfills to a highly protected lake by wintering gulls. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:13-23. [PMID: 38281470 DOI: 10.1016/j.wasman.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
GENERAL CONTEXT Gulls ingest plastic and other litter while foraging in open landfills, because organic matter is mixed with other debris. Therefore, gulls are potential biovectors of plastic pollution into natural habitats, especially when they concentrate in wetlands for roosting. NOVELTY We quantified, for the first time, the flow of plastic and other anthropogenic debris from open landfills to a natural lake via the movement of gulls. We focused on Fuente de Piedra, an inland closed-basin lake in Spain that is internationally important for biodiversity. METHODOLOGY In 2022, we sampled gull pellets regurgitated in the lake by lesser black-backed gulls Larus fuscus that feed on landfills, as well as their faeces, then characterized and quantified debris particles of ≥0.5 mm. By combining GPS and census data from 2010 to 2022, together with plastic quantification based on FTIR-ATR analysis, we estimated the average annual deposition of plastic and other debris by the wintering gull population into the lake. MAIN RESULTS 86 % of pellets contained plastics, and 94 % contained other debris such as glass and textiles. Polyethylene (54 %), polypropylene (11.5 %) and polystyrene (11.5 %) were the main plastic polymers. An estimated annual mean of 400 kg of plastics were moved by gulls into the lake. Only 1 % of plastic mass was imported in faeces. DISCUSSION Incorporating the biovectoring role of birds can provide a more holistic view of the plastic cycle and waste management. Biovectoring is predictable in sites worldwide where gulls and other waterbirds feed in landfills and roost in wetlands. We discuss bird deterrence and other ways of mitigating debris leakage into aquatic ecosystems.
Collapse
Affiliation(s)
- Víctor Martín-Vélez
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta, Barcelona 37-49 08003, Spain; Department of Conservation Biology and Global Change, Estación Biológica de Doñana CSIC, Américo Vespucio 26, Sevilla 41092, Spain.
| | - Julián Cano-Povedano
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana CSIC, Américo Vespucio 26, Sevilla 41092, Spain
| | - Belén Cañuelo-Jurado
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana CSIC, Américo Vespucio 26, Sevilla 41092, Spain
| | - Cosme López-Calderón
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana CSIC, Américo Vespucio 26, Sevilla 41092, Spain; Grupo de Investigación en Conservación. Biodiversidad y Cambio Global, Universidad de Extremadura, Badajoz, Spain
| | - Vanessa Céspedes
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana CSIC, Américo Vespucio 26, Sevilla 41092, Spain
| | - Macarena Ros
- Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6, Sevilla 41012, Spain
| | - Marta I Sánchez
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana CSIC, Américo Vespucio 26, Sevilla 41092, Spain
| | - Judy Shamoun-Baranes
- Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Wendt Müller
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp 2610, Belgium
| | - Chris B Thaxter
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU, UK
| | - Cornelis J Camphuysen
- COS Department, Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Andrés Cózar
- Department of Biology, Institute of Marine Research (INMAR), University of Cadiz and European University of the Seas (SEA-EU), Puerto Real 11510, Spain
| | - Andy J Green
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana CSIC, Américo Vespucio 26, Sevilla 41092, Spain
| |
Collapse
|
21
|
Veríssimo SN, Cunha SC, Fernandes JO, Casero M, Ramos JA, Norte AC, Paiva VH. Dynamics and effects of plastic contaminants' assimilation in gulls. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106396. [PMID: 38341982 DOI: 10.1016/j.marenvres.2024.106396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Polybrominated diphenyl ethers are persistent disrupters assimilated by organisms, yet little is known about their link to plastic ingestion and health effects. In an experiment, two groups of yellow-legged/lesser black-backed gulls (Larus michahellis/Larus fuscus) were fed plastics with BDE99 to assess leaching into brain, preen oil, liver and fat tissues and evaluate effects on health and stress parameters. Although most plastic was regurgitated, we observed a clear relation between plastic ingestion and chemical leaching. BDE99 exhibited higher levels in brain tissue of gulls from the plastic groups. Also, only values of cholinesterases measured in plasma were significantly reduced in the 'plastic' groups. Cholinesterase activity in the brain also tended to decrease, suggesting a negative effect in gulls' neurofunction. Results indicate that chemical leaching occurs, even when plastics stay in the stomach for a short period of time and showed that this can affect gulls' health.
Collapse
Affiliation(s)
- Sara N Veríssimo
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - María Casero
- Wildlife Rehabilitation and Investigation Center (RIAS) - Associação ALDEIA, Ria Formosa Natural Park, Olhão, Portugal
| | - Jaime A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Ana C Norte
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Vitor H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
22
|
Matos DM, Ramos JA, Brandão ALC, Baeta A, Rodrigues I, Dos Santos I, Coentro J, Fernandes JO, Batista de Carvalho LAE, Marques MPM, Cunha SC, Santos SH, Antunes S, Silva V, Paiva VH. Microplastics ingestion and endocrine disrupting chemicals (EDCs) by breeding seabirds in the east tropical Atlantic: Associations with trophic and foraging proxies (δ 15N and δ 13C). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168664. [PMID: 37996016 DOI: 10.1016/j.scitotenv.2023.168664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
In this study we found that endocrine disrupting chemicals (EDCs) were omnipresent in a tropical seabird community comprising diverse ecological guilds and distinct foraging and trophic preferences. Because EDCs tend to bioaccumulate within the food web and microplastics can absorb and release harmful chemical compounds, our findings draw attention to the potential threats to wildlife. Thus, the goal of this study was to investigate the role of plastic ingestion, trophic and foraging patterns (δ15N and δ13C) of five tropical seabird species breeding in sympatry, on the exposure to EDCs, namely Polybrominated diphenyl ethers (PBDEs), methoxylated polybrominated diphenyl ethers (MeO-PBDEs) and personal care products (PCPs, e.g., musk fragrances and UV-filters). Results indicated that microplastics occurrence and EDCs detection frequency varied among species. Microplastics occurrence was higher in species with dual and coastal foraging strategies. Preen oil had higher levels of MeO-PBDEs and PCPs, while serum had higher levels of PBDEs. In brown boobies, the correlation between microplastics and ∑PBDEs levels was significant, suggesting that microplastics ingestion is a key PBDEs route. Trophic position (δ15N) plays a key role in PBDEs accumulation, particularly in Bulwer's petrel, which occupies a high trophic position and had more specialized feeding ecology than the other species. MeO-PBDEs were linked to foraging habitat (δ13C), although the link to foraging locations deserves further investigation. Overall, our findings not only fill key gaps in our understanding of seabirds' exposure to microplastics and EDCs, but also provide an essential baseline for future research and monitoring efforts. These findings have broader implications for the marine wildlife conservation and pollution management in sensitive environments, such as the tropical regions off West Africa.
Collapse
Affiliation(s)
- Diana M Matos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - J A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - A L C Brandão
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Alexandra Baeta
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Isabel Rodrigues
- Biosfera Cabo Verde, Sul do Cemitério, Rua 5 - Caixa Postal 233, São Vicente, Cabo Verde
| | - I Dos Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - João Coentro
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - J O Fernandes
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - L A E Batista de Carvalho
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - M P M Marques
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal; University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - S C Cunha
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S H Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Stefan Antunes
- Biosfera Cabo Verde, Sul do Cemitério, Rua 5 - Caixa Postal 233, São Vicente, Cabo Verde
| | - Vítor Silva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - V H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
23
|
Zhang Z, Chen W, Chan H, Peng J, Zhu P, Li J, Jiang X, Zhang Z, Wang Y, Tan Z, Peng Y, Zhang S, Lin K, Yung KKL. Polystyrene microplastics induce size-dependent multi-organ damage in mice: Insights into gut microbiota and fecal metabolites. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132503. [PMID: 37717443 DOI: 10.1016/j.jhazmat.2023.132503] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Particle size is one of the most important factors in determining the biological toxicity of microplastics (MPs). In this study, we attempted to examine the systemic toxicity of polystyrene MPs of different sizes (0.5 µm MP1 and 5 µm MP2) in C57BL/6 J mice. After the mice were given oral gavage of MPs for 8 consecutive weeks, histopathology and molecular biology assays, 16 S rRNA sequencing of the gut microbiota, and untargeted metabolomics were performed. The results showed that MPs were distributed in the organs in a size-dependent manner, with smaller particles demonstrating greater biodistribution. Further analysis indicated that exposure to MPs caused multi-organ damage through distinct toxicity pathways. Specifically, exposure to 0.5 µm MP1 led to excessive accumulation and induced more serious inflammation and mechanical damage in the spleen, kidney, heart, lung, and liver. However, 5 µm MP2 led to more severe intestinal barrier dysfunction, as well as gut dysbiosis and metabolic disorder in association with neuroinflammation. These results are helpful in expanding our knowledge of the toxicity of MPs of different sizes in mammalian models.
Collapse
Affiliation(s)
- Zhu Zhang
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Wenqing Chen
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Hiutung Chan
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Junjie Peng
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Peili Zhu
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Junkui Li
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Xiaoli Jiang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Zhang Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Ying Wang
- Key Laboratory of Cellular Physiology, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zicong Tan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Yungkang Peng
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou, China.
| | - Ken Kin-Lam Yung
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
24
|
Gomez NCF, Cragg SM, Ghiglione JF, Onda DFL. Accumulation and exposure classifications of plastics in the different coastal habitats in the western Philippine archipelago. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122602. [PMID: 37741539 DOI: 10.1016/j.envpol.2023.122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Studies consistently ranked the Philippines as one of the top contributors of plastic wastes leaking into the ocean. However, most of these were based on probabilities and estimates due to lack of comprehensive ground-truth data, resulting also in the limited understanding of the contributing factors and drivers of local pollution. This makes it challenging to develop science-driven and locally-contextualized policies and interventions to mitigate the problem. Here, 56 sites from different coastal habitats in the western Philippine archipelago were surveyed for macroplastics standing stock, representing geographic regions with varying demography and economic activities. Clustering of sites revealed three potential influencing factors to plastic accumulation: population density, wind and oceanic transport, and habitat type. Notably, the amount and types of dominant plastics per geographic region varied significantly. Single-use plastics (food packaging and sachets) were the most abundant in sites adjacent to densely populated and highly urbanized areas (Manila Bay and eastern Palawan), while fishing-related materials dominated in less populated and fishing-dominated communities (western Palawan and Bolinao), suggesting the local industries significantly contributing to the mismanaged plastics in the surveyed sites. Meanwhile, isolated areas such as islands were characterized by the abundance of buoyant materials (drinking bottles and hygiene product containers), emphasizing the role of oceanic transport and strong connectivity in the oceans. Exposure assessment also identified single-use and fishing-related plastics to be of "high exposure (Type 4)" due to their high abundance and high occurrence. These increase their chances of encountering and interacting with organisms and habitats, thus, resulting into more potential harm. This study is the first comprehensive work done in western Philippines, and results will help contextualize local pollution, facilitating more effective management and policymaking.
Collapse
Affiliation(s)
- Norchel Corcia F Gomez
- Microbial Oceanography Laboratory, The Marine Science Institute, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Simon M Cragg
- Institute of Marine Sciences and Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Jean-François Ghiglione
- Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Laboratoire d'Océanographie Microbienne (LOMIC), UMR 7621, Observatoire Océanologique de Banyuls, Banyuls sur mer, France
| | - Deo Florence L Onda
- Microbial Oceanography Laboratory, The Marine Science Institute, University of the Philippines Diliman, Quezon City, 1101, Philippines; Pag-asa Island Research Station (PIRS), The Marine Science Institute, Pag-asa Island, Kalayaan Island Group, West Philippine Sea, Philippines.
| |
Collapse
|
25
|
Collard F, Strøm H, Fayet MO, Guðmundsson FÞ, Herzke D, Hotvedt Å, Løchen A, Malherbe C, Eppe G, Gabrielsen GW. Evaluation of meso- and microplastic ingestion by the northern fulmar through a non-lethal sampling method. MARINE POLLUTION BULLETIN 2023; 196:115646. [PMID: 37832498 DOI: 10.1016/j.marpolbul.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
An increasing number of organisms from the polar regions are reported contaminated by plastic. Rarely a non-killing sampling method is used. In this study we wanted to assess plastic levels using stomach flushing and evaluate the method suitability for further research and monitoring. The stomach of 22 fulmars from Bjørnøya, Svalbard, were flushed with water in the field. On return to the laboratory, the regurgitated content was digested using potassium hydroxide. The extracted plastics were visually characterised and analysed with spectroscopy. Only three birds had plastics in their stomach, totaling 36 particles, most of them microplastics (< 5 mm). The plastic burdens are much lower than previously reported in Svalbard. The stomach flushing is assumed not to allow the collection of the gizzard content. This is a major limitation as most of the plastics accumulate in the fulmar's gizzard. However, the method is still useful for studies investigating plastic ingestion dynamics, allowing to sample the same individuals over time.
Collapse
Affiliation(s)
- France Collard
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; Norwegian Institute for Water Research (NIVA), Fram Centre, 9296 Tromsø, Norway.
| | - Hallvard Strøm
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| | - Marie-Océane Fayet
- Norwegian Institute for Air Research (NILU), Fram Centre, 9296 Tromsø, Norway
| | | | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), Fram Centre, 9296 Tromsø, Norway; Department of Arctic and Marine Biology, The Arctic University of Norway (UiT), Hansine Hansens veg 18, Tromsø N-9037, Norway
| | - Ådne Hotvedt
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| | - Arja Løchen
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| | - Cédric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Allée de la Chimie 3, B6c Sart-Tilman, B-4000, Liege, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Allée de la Chimie 3, B6c Sart-Tilman, B-4000, Liege, Belgium
| | | |
Collapse
|
26
|
de Jersey AM, Lavers JL, Zosky GR, Rivers-Auty J. The understudied global experiment of pollution's impacts on wildlife and human health: The ethical imperative for interdisciplinary research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122459. [PMID: 37633432 DOI: 10.1016/j.envpol.2023.122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The global impact of pollution on human and wildlife health is a growing concern. The health impacts of pollution are significant and far-reaching yet poorly understood as no one field of research has the practices and methodologies required to encapsulate the diversity of these consequences. This paper advocates that interdisciplinary research is essential to comprehend the full extent of the impact of pollution. Medical and ecological research play a key role in investigating the health consequences of the pollution crisis, yet the wildlife experience is often neglected. This paper outlines how applying advanced techniques and expertise adapted in medical research to wildlife exposed to pollutants offers a unique perspective to understanding the full diversity of impacts to health. The challenges that impede the progress of this research include the lack of support for interdisciplinary research among funding streams, limitations in field-specific techniques, and a lack of communication between researchers from different disciplines. Of awarded funding from major national research councils across Australia, Europe, and the United States of America, only 0.5% is dedicated to pollution focused research. This is inclusive of laboratory equipment, mitigation strategies, quantification of environmental samples and health consequences research. Of that, 0.03% of funding is awarded to explaining the wildlife experience and documenting the health consequences observed despite being model organisms to environmentally and biologically relevant models for pollution exposure. This calls for a coordinated effort to overcome these hurdles and to promote interdisciplinary research in order to fully comprehend the consequences of pollution exposure and protect the health of humans, wildlife, and the environment. An interdisciplinary approach to this problem is timely given the magnitude of negative health consequences associated with exposure, the number of pollutants already present within the environment and the continual development of new compounds.
Collapse
Affiliation(s)
- Alix M de Jersey
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | - Jennifer L Lavers
- Bird Group, The Natural History Museum, Akeman Street, Tring, Hertfordshire, HP23 6AP, United Kingdom; Esperance Tjaltjraak Native Title Aboriginal Corporation, 11A Shelden Road, Esperance, Western Australia, 6450, Australia.
| | - Graeme R Zosky
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | - Jack Rivers-Auty
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia
| |
Collapse
|
27
|
Zhang M, Shi J, Zhou J, Song L, Ding J, Deng HP, Weng L, Zhu Y, Xu Z. N6-methyladenosine methylation mediates non-coding RNAs modification in microplastic-induced cardiac injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115174. [PMID: 37354568 DOI: 10.1016/j.ecoenv.2023.115174] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Owing to their potential adverse health effects, global contamination by microplastics (MPs) has attracted increased scientific and societal concerns. However, in vivo studies on MP toxicity, along with its effects and underlying mechanisms, remain limited. We recently found that non-coding RNA (ncRNAs) contribute to MP-mediated vascular toxicity. Moreover, previous studies have identified N6-methyladenosine (m6A) modifications in ncRNAs as influencing factors in cardiovascular disease. However, whether and how m6A modifications in ncRNAs are affected by MP-induced cardiotoxicity remain unknown. Herein, we profiled differentially expressed ncRNAs and their related m6A modification profiles in MP-exposed myocardial tissue using RNA sequencing (RNA-seq) and methylated RNA immunoprecipitation sequencing (MeRIP-seq). First, we observed that MPs accumulated in different organs and upregulated apoptosis in the heart, liver, spleen, and kidney cells. Furthermore, total m6A and METTL3 levels increased in the myocardium after exposure to MPs. RNA-seq results revealed that 392 lncRNAs and 302 circRNAs were differentially expressed in MP-treated mouse myocardium compared to the control group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that these altered lncRNAs and circRNAs were closely associated with endocytosis, cellular senescence, and cell cycle signaling pathways, which may cause cardiotoxicity. Furthermore, MeRIP-seq data showed different distributions and abundances of m6A modifications in lncRNAs and circRNAs. Additionally, we identified differentially m6A methylated lncRNAs and circRNAs through conjoint analysis of the two high-throughput sequencing datasets and found that both m6A modifications and the expression of circ-Arfgef2 and lncG3bp2 were upregulated after exposure to MPs. This suggests that MP-induced m6A modifications in ncRNAs are involved in cardiotoxicity. Our findings contribute to a better understanding of MP-induced cardiotoxicity and new molecular targets for treating cardiac injury.
Collapse
Affiliation(s)
- Min Zhang
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336 Shanghai, China.
| | - Jun Shi
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Jun Zhou
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336 Shanghai, China
| | - Lei Song
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336 Shanghai, China
| | - Jingjing Ding
- Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hui Ping Deng
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Li Weng
- Department of Intervention, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Yiqian Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Zhongqing Xu
- Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Charlton-Howard HS, Bond AL, Rivers-Auty J, Lavers JL. 'Plasticosis': Characterising macro- and microplastic-associated fibrosis in seabird tissues. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131090. [PMID: 36867907 DOI: 10.1016/j.jhazmat.2023.131090] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
As biota are increasingly exposed to plastic pollution, there is a need to closely examine the sub-lethal 'hidden' impacts of plastic ingestion. This emerging field of study has been limited to model species in controlled laboratory settings, with little data available for wild, free-living organisms. Highly impacted by plastic ingestion, Flesh-footed Shearwaters (Ardenna carneipes) are thus an apt species to examine these impacts in an environmentally relevant manner. A Masson's Trichrome stain was used to document any evidence of plastic-induced fibrosis, using collagen as a marker for scar tissue formation in the proventriculus (stomach) of 30 Flesh-footed Shearwater fledglings from Lord Howe Island, Australia. Plastic presence was highly associated with widespread scar tissue formation and extensive changes to, and even loss of, tissue structure within the mucosa and submucosa. Additionally, despite naturally occurring indigestible items, such as pumice, also being found in the gastrointestinal tract, this did not cause similar scarring. This highlights the unique pathological properties of plastics and raises concerns for other species impacted by plastic ingestion. Further, the extent and severity of fibrosis documented in this study gives support for a novel, plastic-induced fibrotic disease, which we define as 'Plasticosis,'.
Collapse
Affiliation(s)
- Hayley S Charlton-Howard
- Institute for Marine and Antarctic Studies, 20 Castray Esplanade, Battery Point, Tasmania 7004, Australia
| | - Alexander L Bond
- Bird Group, The Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, United Kingdom
| | - Jack Rivers-Auty
- Tasmanian School of Medicine, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Jennifer L Lavers
- Bird Group, The Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, United Kingdom; Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia; Esperance Tjaltjraak Native Title Aboriginal Corporation, 11A Shelden Road, 6450 Esperance, Western Australia, Australia.
| |
Collapse
|
29
|
Tulatz F, Gabrielsen GW, Bourgeon S, Herzke D, Krapp R, Langset M, Neumann S, Lippold A, Collard F. Implications of Regurgitative Feeding on Plastic Loads in Northern Fulmars ( Fulmarus glacialis): A Study from Svalbard. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3562-3570. [PMID: 36812008 PMCID: PMC9996815 DOI: 10.1021/acs.est.2c05617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Procellariiform seabirds like northern fulmars (Fulmarus glacialis) are prone to ingest and accumulate floating plastic pieces. In the North Sea region, there is a long tradition to use beached fulmars as biomonitors for marine plastic pollution. Monitoring data revealed consistently lower plastic burdens in adult fulmars compared to younger age classes. Those findings were hypothesized to partly result from parental transfer of plastic to chicks. However, no prior study has examined this mechanism in fulmars by comparing plastic burdens in fledglings and older fulmars shortly after the chick-rearing period. Therefore, we investigated plastic ingestion in 39 fulmars from Kongsfjorden (Svalbard), including 21 fledglings and 18 older fulmars (adults/older immatures). We found that fledglings (50-60 days old) had significantly more plastic than older fulmars. While plastic was found in all fledglings, two older fulmars contained no and several older individuals barely any plastic. These findings supported that fulmar chicks from Svalbard get fed high quantities of plastic by their parents. Adverse effects of plastic on fulmars were indicated by one fragment that perforated the stomach and possibly one thread perforating the intestine. Negative correlations between plastic mass and body fat in fledglings and older fulmars were not significant.
Collapse
Affiliation(s)
- Felix Tulatz
- Department
of Arctic and Marine Biology, UiT—The
Arctic University of Norway, N-9037 Tromsø, Norway
- Fram
Centre, Norwegian Polar Institute, N-9296 Tromsø, Norway
| | | | - Sophie Bourgeon
- Department
of Arctic and Marine Biology, UiT—The
Arctic University of Norway, N-9037 Tromsø, Norway
| | - Dorte Herzke
- Department
of Arctic and Marine Biology, UiT—The
Arctic University of Norway, N-9037 Tromsø, Norway
- Fram
Centre for Climate and the Environment, Fram Centre, Norwegian Institute for Air Research, N-9296 Tromsø, Norway
| | - Rupert Krapp
- Fram
Centre, Norwegian Polar Institute, N-9296 Tromsø, Norway
| | - Magdalene Langset
- Norwegian
Institute for Nature Research, Høgskoleringen, Trondheim 97034, Norway
| | - Svenja Neumann
- Fram
Centre, Norwegian Polar Institute, N-9296 Tromsø, Norway
| | - Anna Lippold
- Fram
Centre, Norwegian Polar Institute, N-9296 Tromsø, Norway
| | - France Collard
- Fram
Centre, Norwegian Polar Institute, N-9296 Tromsø, Norway
| |
Collapse
|
30
|
Bond AL, Lavers JL. Can the mass of plastic ingested by seabirds be predicted by the number of ingested items? MARINE POLLUTION BULLETIN 2023; 188:114673. [PMID: 36736263 DOI: 10.1016/j.marpolbul.2023.114673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Plastics pollution has been documented for decades, yet repeatable methods for evaluating quantities are lacking. For wildlife, the mass and number of ingested plastics are widely reported, but these are not without their challenges, especially in field settings. Rapid methods for estimating the mass of ingested plastic could therefore be useful, but the relationship with the number of ingested pieces has not been explored. Using a dataset covering 1278 individuals of 11 Procellariiform species, we investigated this relationship to determine if counts could act as a proxy for the mass of ingested plastic by seabirds. Larger species ingested larger pieces of plastic, and birds that consumed more pieces also ingested items that are physically larger. Across species, sample size significantly influenced the slope of the relationship between the mass and number of ingested plastics. The mass-number relationship is species-specific, highly driven by sample size, and varies temporally.
Collapse
Affiliation(s)
- Alexander L Bond
- Bird Group, The Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, United Kingdom.
| | - Jennifer L Lavers
- Bird Group, The Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, United Kingdom
| |
Collapse
|
31
|
Sarkar S, Diab H, Thompson J. Microplastic Pollution: Chemical Characterization and Impact on Wildlife. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1745. [PMID: 36767120 PMCID: PMC9914693 DOI: 10.3390/ijerph20031745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Microplastics are small pieces of plastic that are less than 5 mm in size and can be found in most environments, including the oceans, rivers, and air. These small plastic particles can have negative impacts on wildlife and the environment. In this review of the literature, we analyze the presence of microplastics in various species of wildlife, including fish, birds, and mammals. We describe a variety of analytical techniques, such as microscopy and spectrometry, which identify and quantify the microplastics in the samples. In addition, techniques of sample preparation are discussed. Summary results show that microplastics are present in all the wildlife species studied, with the highest concentrations often found in fish and birds. The literature suggests that microplastics are widely distributed in the environment and have the potential to affect a wide range of species. Further research is required to fully understand the impacts of microplastics on wildlife and the environment.
Collapse
|