1
|
Lee YK, Badalge NDK, He W, Guo H, Hur J. Impacts of climatic stressors on dissolved organic matter leaching from microplastics and their effects on biogeochemical processes: A review. WATER RESEARCH 2025; 271:122867. [PMID: 39626546 DOI: 10.1016/j.watres.2024.122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 01/14/2025]
Abstract
This review explores the potential impact of microplastic-derived dissolved organic matter (MP-DOM) on biogeochemical processes associated with global carbon and nitrogen cycles, with consideration given to the possible influence of irregular climate changes. We synthesize literature on MP-DOM leaching behaviors during various natural aging processes, such as heavy rainfall, heat waves, and UV irradiation, which may be intensified by climate change. MP-DOM release varies with plastic type and conditions, with organic additives significantly influencing leaching under UV exposure. Increased turbulence from hydrological events and rising temperatures also enhances MP-DOM release. While most research has focused on specific additive releases, the broader effects of polymer degradation and subsequent impacts on microbial communities and biogeochemical cycles are only recently recognized. These disruptions may affect cellular processes in algae and plant roots, enhance microbial utilization of dissolved organic carbon, and potentially increase greenhouse gas production. Our review highlights overlooked roles of MP-DOM exacerbated by climatic stressors and calls for further research to understand its broader biogeochemical impacts. We also emphasize the importance of distinguishing between polymers and commercial plastics when assessing MP-DOM's effects on biogeochemical processes associated with carbon and nitrogen cycles and recommend investigating additional aging processes influencing MP-DOM release.
Collapse
Affiliation(s)
- Yun Kyung Lee
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | | | - Wei He
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution & School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Huaming Guo
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution & School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| |
Collapse
|
2
|
Zang B, Zhou H, Zhao Y, Sano D, Chen R. Investigating potential auxiliary anaerobic digestion activity of phage under polyvinyl chloride microplastic stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135950. [PMID: 39326145 DOI: 10.1016/j.jhazmat.2024.135950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/18/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Polyvinyl chloride (PVC) microplastics present in sewage were trapped in sludge, thereby hindering anaerobic digestion performance of waste active sludge (WAS). Phages regulate virocell metabolism by encoding auxiliary metabolic genes (AMGs) related to energy acquisition and material degradation, supporting hosts survive in harsh environments and play a crucial role in biogeochemical cycles. This study investigated the potential effects of phages on the recovery of WAS anaerobic digestion under PVC stress. We observed a significant alteration in the phage community induced by PVC microplastics. Phages encoded AMGs related to anaerobic digestion and cell growth probably alleviate PVC microplastics inhibition on WAS anaerobic digestion, and 54.2 % of hydrolysis-related GHs and 40.8 % of acidification-related AMGs were actively transcribed in the PVC-exposed group. Additionally, the degradation of chitin and peptidoglycan during hydrolysis and the conversion of glucose to pyruvate during acidification were more susceptible to phages. Prediction of phage-host relationship indicated that the phyla Pseudomonadota were predominantly targeted hosts by hydrolysis-related and acidification-related phages, and PVC toxicity had minimal impact on phage-host interaction. Our findings highlight the importance of phages in anaerobic digestion and provide a novel strategy for using phages in the functional recovery of microplastic-exposed sludge.
Collapse
Affiliation(s)
- Bei Zang
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hang Zhou
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yubin Zhao
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
3
|
Alam M, Mostafa A, Dhar BR. Impact of petroleum versus bio-based nano/microplastics on fermentative biohydrogen production from sludge. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024; 94:959-970. [DOI: 10.1016/j.ijhydene.2024.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Jiang K, Yang X, Gao Q, Ni J, Feng J, Wu D, Zou X, Hu L, Liu X, Song Z, Wang Z. Exogenous signaling molecules N-acyl-homoserine lactones promotes the reconstruction of sludge particles after impact with highly concentrated urea-formaldehyde resin microplastics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123179. [PMID: 39504669 DOI: 10.1016/j.jenvman.2024.123179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
In this study, exogenous N-acyl-homoserine lactones (AHLs) was added to resist the stress by high concentration (0.5 g/L) of urea formaldehyde resin microplastics (UF-MPs) on anaerobic granular sludge (AnGS), aiming to provide a viable strategy for AnGS to withstand elevated levels of UF-MPs toxicity elucidate the intricate regulatory mechanism of AHL-mediated AnGS-QS regulation. The results showed that the three different signaling molecules (C4-HSL, C6-HSL, and C8-HSL) improved the performance of AnGS under high concentration (0.5 g/L) urea-formaldehyde resin stress, and increased sludge COD removal (4.48%, 4.76%, and 3.35%, respectively) and methanogenic activity (8.38%, 1.92%, and 18.76%, respectively). The addition of C4-HSL has the best effect on sludge particle size and strength, which is attributed to the fact that C4-HSL can significantly increase the content of polysaccharides and proteins in tightly bound extracellular polymeric substances (TB-EPS) (27.1% and 27.1%, respectively). C8-HSL most obviously promotes energy metabolism and EPS biosynthesis gene expression. Metagenomic analysis showed that trace AHLs could promote the abundance of enzymes and functional genes related to the main pathway of methane metabolism, increase the relative abundance of Methanothrix of acetophilic methanogens from 27.79% in the control group to 27.85% (C4-HSL), 28.90% (64-HSL), and 30.03% (C8-HSL), thereby improving community stability.
Collapse
Affiliation(s)
- Keyang Jiang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiao Yang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; Jiaozhou Emergency Management Bureau, Qingdao 266300, China
| | - Qian Gao
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Junxia Ni
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jinhu Feng
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Di Wu
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xuelian Zou
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Li Hu
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xi Liu
- Anhui Bossco Environm Co Ltd, Ningguo 242300, China
| | - Zhaoping Song
- State Key Laboratory of Bio based Materials and Green Papermaking, Qilu University of Technology, Jinan 250353 China
| | - Zhiwei Wang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Alimohammadi M, Demirer GN. Microplastics in anaerobic digestion: occurrence, impact, and mitigation strategies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:397-411. [PMID: 39464825 PMCID: PMC11499492 DOI: 10.1007/s40201-024-00910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/08/2024] [Indexed: 10/29/2024]
Abstract
Microplastic pollution has emerged as a global environmental concern, with pervasive contamination in terrestrial and aquatic ecosystems. This review paper delves into the intricate dynamics of microplastics within anaerobic digestion systems, addressing their occurrence, impact, and potential mitigation strategies. The occurrence of microplastics in anaerobic digesters is widespread, entering these systems through diverse inputs, such as sewage sludge, organic waste, and etc. Microplastics in anaerobic digestion have been associated with potential adverse impacts on biogas production, process performance, microbial communities, and degradation processes, though the relationship is complex and context dependent. This review highlights the urgent need for comprehensive research into the fate of microplastics within anaerobic digesters. Mitigation strategies offer promise in alleviating microplastic contamination, with advanced separation methods, innovative techniques such as magnetic micro-submarines, photocatalytic micro-motors, membrane bioreactors combined with activated carbon filters, rapid sand filtration, or conventional activated sludge, and disintegration-oriented techniques such as electrocatalysis, biodegradation, and thermal decomposition. Nonetheless, there is a significant knowledge gap that necessitates further research into the fate and long-term effects of microplastics in digestate. Collaborative efforts are crucial to addressing this emerging concern and ensuring the sustainability of anaerobic digestion systems in the face of microplastic challenges.
Collapse
Affiliation(s)
- Mahsa Alimohammadi
- School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859 USA
| | - Goksel N. Demirer
- School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Institute for Great Lakes Research, Central Michigan University, Mt. Pleasant, MI 48859 USA
| |
Collapse
|
6
|
Zheng J, You Z, Sun Y, Chen H. Improving methane production from waste-activated sludge by coupling thermal hydrolysis with potassium ferrate pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123332. [PMID: 39536572 DOI: 10.1016/j.jenvman.2024.123332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Thermal hydrolysis (TH) is effective in improving the solubilization of waste-activated sludge, but opportunities for enhancement remain, particularly in increasing organic matter conversion and reducing the generation of refractory substances. This study proposed a novel pretreatment method combining TH and potassium ferrate (PF) and evaluated its performance in improving sludge methane production. The results indicated that the combined pretreatment increased the methane yield from 118 ± 2 mL/g VS to 215 ± 7 mL/g VS, an increase of 82.2 % compared to the control. Combined pretreatment promoted the exposure of functional groups in the extracellular polymeric substances (EPS) and altered protein secondary structure composition, thereby disrupting EPS. PF improved the biodegradability of TH-treated sludge by degrading humic acids and Maillard reaction products. In addition, Fe(III) produced by PF induces dissimilar iron reduction, which enhances microbial electron transfer activity and facilitates subsequent hydrolysis and acidification processes. Combined pretreatment increased the abundance of hydrolyzing and acidifying bacteria, but reduced hydrogenotrophic methanogens. This article reveals that PF improves the biodegradability of TH-treated sludge and provides new ideas for advanced TH technologies for sludge resource recovery.
Collapse
Affiliation(s)
- Jun Zheng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Zhimin You
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| | - Yihu Sun
- Hunan Diya Environmental Engineering Co., Ltd., Changsha, 410007, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
7
|
Losito O, Pisani P, De Cataldo A, Annese C, Clausi M, Comparelli R, Pinto D, D’Accolti L. Demonstrating the Efficacy of Core-Shell Silica Catalyst in Depolymerizing Polycarbonate. Polymers (Basel) 2024; 16:3209. [PMID: 39599299 PMCID: PMC11598560 DOI: 10.3390/polym16223209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Polycarbonate (PC) is a highly versatile plastic material that is extensively utilized across various industries due to its superior properties, including high impact strength and heat resistance. However, its durability presents significant challenges for recycling and waste management. Polycarbonate is a thermoplastic polymer representative of the class of condensation reaction polymers obtained from the reaction of bisphenol A (BPA) and a carbonyl source, such as phosgene or alkyl and aryl carbonate. The recycling processes for PC waste include mechanical recycling, blending with other materials, pyrolysis, and chemical recycling. The latter is based on the cleavage of carbonate units to their corresponding monomers or derivatives through alcoholysis and/or hydrolysis and ammonolysis, normally under basic conditions and without catalysts. This study investigates the efficacy of the use of several heterogeneous catalysts based on silica gel as a robust support, including Sc(III)silicate (thortveitite), which has been previously reported for the preparation of polyesters, core-shell Si-ILs, and core-shell Si-ILs-ZnO, which has never been used before in the depolymerization of polycarbonate, proposing a sustainable and efficient method for recycling this valuable polymer. We chose to explore core-shell catalysts because these catalysts are robust and recyclable, and have been used in very harsh industrial processes. The core-shell silica catalysts used in this study were characterized by XRD; SEM_EDX, FT-IR, and ICP-OES analysis. In our experimental protocol, polycarbonate samples were exposed to the catalyst under controlled conditions (60-150 °C, for 12-24 h) using both oxygen and nitrogen nucleophiles. The depolymerization process was systematically monitored using advanced analytical techniques (GC/MS and GPC chromatography). The experimental results indicated that core-shell silica catalyst exhibits high efficacy, with up to 75% yield for the ammonolysis reaction, producing monomers of high purity. These monomers can be reused for the synthesis of new polycarbonate materials, contributing to a more sustainable approach to polycarbonate recycling.
Collapse
Affiliation(s)
- Onofrio Losito
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy; (O.L.); (P.P.); (A.D.C.)
| | - Pasquale Pisani
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy; (O.L.); (P.P.); (A.D.C.)
| | - Alessia De Cataldo
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy; (O.L.); (P.P.); (A.D.C.)
- Dipartimento di Meccanica, Matematica e Management (DMMM), Politecnico di Bari, Via E. Orabona 4, 70126 Bari, Italy
| | - Cosimo Annese
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi Link, Via del Casale di San Pio V, 44, 00165 Roma, Italy;
- CNR-ICCOM-SS, BARI (I), Via Orabona 4, 70125 Bari, Italy
| | - Marina Clausi
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy; (M.C.); (D.P.)
| | | | - Daniela Pinto
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy; (M.C.); (D.P.)
| | - Lucia D’Accolti
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy; (O.L.); (P.P.); (A.D.C.)
| |
Collapse
|
8
|
Yang X, Niu S, Li M, Niu Y, Shen K, Dong B, Hur J, Li X. Leaching behavior of microplastics during sludge mechanical dewatering and its effect on activated sludge. WATER RESEARCH 2024; 266:122395. [PMID: 39255567 DOI: 10.1016/j.watres.2024.122395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Dewatering is an indispensable link in sludge treatment, but its effect on the microplastics (MPs) remains inadequately understood. This study investigated the physicochemical changes and leaching behavior of MPs during the mechanical dewatering of sludge, as well as the impact of MP leachates on activated sludge (AS). After sludge dewatering, MPs exhibit rougher surfaces, decreased sizes and altered functional groups due to the addition of dewatering agents and the application of mechanical force. Meanwhile, plastic additives, depolymerization products, and derivatives of their interactions are leached from MPs during sludge dewatering process. The concentration of MP-based leachates in sludge is 2-25 times higher than that in water. The enhancement of pH and ionic strength caused by dewatering agents induces the release of MP leachates enriched with protein-like, fulvic acid-like, and soluble microbial by-product-like substances. The reflux of MP leachates in sludge dewatering liquor to the wastewater treatment system negatively impacts AS, leading to a decrease in COD removal rate and inhibition of the extracellular polymeric substances secretion. More importantly, MP leachates cause oxidative stress to microbial cells and alter the microbial community structure of AS at the phylum and genus levels. These findings confirm that MPs undergo aging and leaching during sludge dewatering process, and MP leachates may negatively affect the wastewater treatment system.
Collapse
Affiliation(s)
- Xingfeng Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shiyu Niu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Man Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yulong Niu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Kailiang Shen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
9
|
Hu P, Qian Y, Radian A, Xu M, Guo C, Gu JD. A global metagenomics-based analysis of BPA degradation and its coupling with nitrogen, sulfur, and methane metabolism in landfill leachates. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135395. [PMID: 39106729 DOI: 10.1016/j.jhazmat.2024.135395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Microbial metabolism in landfill leachate systems is critically important in driving the degradation reactions of organic pollutants, including the emerging pollutant bisphenol A (BPA). However, little research has addressed the microbial degradation of BPA in landfill leachate and its interactions with nitrogen (N), sulfur (S), and methane (CH4) metabolism on a global scale. To this end, in this study on a global scale, an extremely high concentration of BPA was detected throughout the global landfill leachates. Subsequent reconstructive analyses of metagenomic datasets from 113 sites worldwide revealed that the predominant BPA-degrading microflora included Proteobacteria, Firmicutes, and Bacteroidota. Further metabolic analyses revealed that all four biochemical pathways involved in the degradation of BPA were achieved through biochemical cooperation between different bacterial members of the community. In addition, BPA degraders have also been found to actively collaborate synergistically with non-BPA degraders in the N and S removal as well as CH4 catabolism in landfill leachates. Collectively, this study not only provides insights into the dominant microbial communities and specific types of BPA-degrading microbial members in the community of landfill leachates worldwide, but also reveals the synergistic interactions between BPA mineralization and N, S, and CH4 metabolism. These findings offer valuable and important insights for future comprehensive and in-depth investigations into BPA metabolism in different environments.
Collapse
Affiliation(s)
- Pengfei Hu
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, The People's Republic of China
| | - Youfen Qian
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, The People's Republic of China
| | - Adi Radian
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, The People's Republic of China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang 150025, The People's Republic of China
| | - Ji-Dong Gu
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, The People's Republic of China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, The People's Republic of China.
| |
Collapse
|
10
|
Ju T, Zhang X, Jin D, Ji X, Wu P. A review of microplastics on anammox: Influences and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121801. [PMID: 39013314 DOI: 10.1016/j.jenvman.2024.121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Microplastics (MPs) are prevalent in diverse environmental settings, posing a threat to plants and animals in the water and soil and even human health, and eventually converged in wastewater treatment plants (WWTPs), threatening the stable operation of anaerobic ammonium oxidation (anammox). Consequently, a comprehensive summary of their impacts on anammox and the underlying mechanisms must be provided. This article reviews the sources and removal efficiency of MPs in WWTPs, as well as the influencing factors and mechanisms on anammox systems. Numerous studies have demonstrated that MPs in the environment can enter WWTPs via domestic wastewater, rainwater, and industrial wastewater discharges. More than 90% of these MPs are found to accumulate in the sludge following their passage through the treatment units of the WWTPs, affecting the characteristics of the sludge and the efficiency of the microorganisms treating the wastewater. The key parameters of MPs, encompassing concentration, particle size, and type, exert a notable influence on the nitrogen removal efficiency, physicochemical characteristics of sludge, and microbial community structure in anammox systems. It is noteworthy that extracellular polymer secretion (EPS) and reactive oxygen stress (ROS) are important impact mechanisms by which MPs exposure affects anammox systems. In addition, the influence of MPs exposure on the microbial community structure of anammox cells represents a crucial mechanism that demands attention. Future research endeavors will delve into additional crucial parameters of MPs, such as shape and aging, to investigate their effects and mechanisms on anammox. Furthermore, the effective mitigation strategies will also be developed. The paper provides a fresh insight to reveal the influences of MPs exposure on the anammox process and its influence mechanisms, and lays the groundwork for further exploration into the influence of MPs on anammox and potential mitigation strategies.
Collapse
Affiliation(s)
- Ting Ju
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xu Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
11
|
Wang P, Su Y, Wu D, Xie B. Plasticizers inhibit food waste anaerobic digestion performance by affecting microbial succession and metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134554. [PMID: 38759407 DOI: 10.1016/j.jhazmat.2024.134554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
The widely existed plastic additives plasticizers in organic wastes possibly pose negative influences on anaerobic digestion (AD) performance, the direct evidence about the effects of plasticizers on AD performance is still lacking. This study evaluated the influencing mechanism of two typical plasticizers bisphenol A (BPA) and dioctyl phthalate on the whole AD process. Results indicated that plasticizers addition inhibited methane production, and the inhibiting effects were reinforced with the increase of concentration. By contrast, 50 mg/L BPA exhibited the strongest inhibition on methane production. Physicochemical analysis showed plasticizers inhibited the metabolism efficiency of soluble polysaccharide and volatile fatty acids. Microbial communities analyses suggested that plasticizers inhibited the direct interspecies electron transfer participators of methanogenic archaea (especially Methanosarcina) and syntrophic bacteria. Furthermore, plasticizers inhibited the methane metabolisms, key coenzymes (CoB, CoM, CoF420 and methanofuran) biosynthesis and the metabolisms of major organic matters. This study shed light on the effects of plasticizers on AD performance and provided new insights for assessing the influences of plasticizers or plastic additives on the disposal of organic wastes.
Collapse
Affiliation(s)
- Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
12
|
Shi J, Sun C, An T, Jiang C, Mei S, Lv B. Unraveling the effect of micro/nanoplastics on the occurrence and horizontal transfer of environmental antibiotic resistance genes: Advances, mechanisms and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174466. [PMID: 38964386 DOI: 10.1016/j.scitotenv.2024.174466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Microplastics can not only serve as vectors of antibiotic resistance genes (ARGs), but also they and even nanoplastics potentially affect the occurrence of ARGs in indigenous environmental microorganisms, which have aroused great concern for the development of antibiotic resistance. This article specifically reviews the effects of micro/nanoplastics (concentration, size, exposure time, chemical additives) and their interactions with other pollutants on environmental ARGs dissemination. The changes of horizontal genes transfer (HGT, i.e., conjugation, transformation and transduction) of ARGs caused by micro/nanoplastics were also summarized. Further, this review systematically sums up the mechanisms of micro/nanoplastics regulating HGT process of ARGs, including reactive oxygen species production, cell membrane permeability, transfer-related genes expression, extracellular polymeric substances production, and ARG donor-recipient adsorption/contaminants adsorption/biofilm formation. The underlying mechanisms in changes of bacterial communities induced by micro/nanoplastics were also discussed as it was an important factor for structuring the profile of ARGs in the actual environment, including causing environmental stress, providing carbon sources, forming biofilms, affecting pollutants distribution and environmental factors. This review contributes to a systematical understanding of the potential risks of antibiotic resistance dissemination caused by micro/nanoplastics and provokes thinking about perspectives for future research and the management of micro/nanoplastics and plastics.
Collapse
Affiliation(s)
- Jianhong Shi
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chaoli Sun
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Tingxuan An
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Changhai Jiang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shenglong Mei
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, China.
| |
Collapse
|
13
|
Zhang T, Luo XS, Kumar A, Liu X, Tong X, Yao X, Fan J, Chen Z, Chaturvedi S. Effects of micro-nano plastics on the environmental biogeochemical cycle of nitrogen: A comprehensive review. CHEMOSPHERE 2024; 357:142079. [PMID: 38642771 DOI: 10.1016/j.chemosphere.2024.142079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Micro-nano plastics (MNPs; size <5 mm), ubiquitous and emerging pollutants, accumulated in the natural environment through various sources, and are likely to interact with nutrients, thereby influencing their biogeochemical cycle. Increasing scientific evidences reveal that MNPs can affect nitrogen (N) cycle processes by affecting biotopes and organisms in the environmental matrix and MNPs biofilms, thus plays a crucial role in nitrous oxide (N2O) and ammonia (NH3) emission. Yet, the mechanism and key processes behind this have not been systematically reviewed in natural environments. In this review, we systematically summarize the effects of MNPs on N transformation in terrestrial, aquatic, and atmospheric ecosystems. The effects of MNPs properties on N content, composition, and function of the microbial community, enzyme activity, gene abundance and plant N uptake in different environmental conditions has been briefly discussed. The review highlights the significant potential of MNPs to alter the properties of the environmental matrix, microbes and plant or animal physiology, resulting in changes in N uptake and metabolic efficiency in plants, thereby inhibiting organic nitrogen (ON) formation and reducing N bioavailability, or altering NH3 emissions from animal sources. The faster the decomposition of plastics, the more intense the perturbation of MNPs to organisms in the natural ecosystem. Findings of this provide a more comprehensive analysis and research directions to the environmentalists, policy makers, water resources planners & managers, biologists, and biotechnologists to do integrate approaches to reach the practical engineering solutions which will further diminish the long-term ecological and climatic risks.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao-San Luo
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xin Liu
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xin Tong
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xuewen Yao
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jiayi Fan
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhihuai Chen
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Sadashiv Chaturvedi
- School of Hydrology and Water Resources, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
14
|
Pourrostami Niavol K, Bordoloi A, Suri R. An overview of the occurrence, impact of process parameters, and the fate of antibiotic resistance genes during anaerobic digestion processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41745-41774. [PMID: 38853230 PMCID: PMC11219439 DOI: 10.1007/s11356-024-33844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Antibiotic resistance genes (ARGs) have emerged as a significant global health threat, contributing to fatalities worldwide. Wastewater treatment plants (WWTPs) and livestock farms serve as primary reservoirs for these genes due to the limited efficacy of existing treatment methods and microbial adaptation to environmental stressors. Anaerobic digestion (AD) stands as a prevalent biological treatment for managing sewage sludge and manure in these settings. Given the agricultural utility of AD digestate as biofertilizers, understanding ARGs' fate within AD processes is essential to devise effective mitigation strategies. However, understanding the impact of various factors on ARGs occurrence, dissemination, and fate remains limited. This review article explores various AD treatment parameters and correlates to various resistance mechanisms and hotspots of ARGs in the environment. It further evaluates the dissemination and occurrence of ARGs in AD feedstocks and provides a comprehensive understanding of the fate of ARGs in AD systems. This review explores the influence of key AD parameters such as feedstock properties, pretreatments, additives, and operational strategies on ARGs. Results show that properties such as high solid content and optimum co-digestion ratios can enhance ARG removal, while the presence of heavy metals, microplastics, and antibiotics could elevate ARG abundance. Also, operational enhancements, such as employing two-stage digestion, have shown promise in improving ARG removal. However, certain pretreatment methods, like thermal hydrolysis, may exhibit a rebounding effect on ARG levels. Overall, this review systematically addresses current challenges and offers future perspectives associated with the fate of ARGs in AD systems.
Collapse
Affiliation(s)
- Kasra Pourrostami Niavol
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Achinta Bordoloi
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Rominder Suri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
15
|
Zhang Y, He R, Sun Y, Zhao J, Zhang X, Wang J, Bildyukevich AV. Influence of microplastics and environmentally persistent free radicals on the ability of biochar components to promote degradation of antibiotics by activated peroxymonosulfate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123827. [PMID: 38574947 DOI: 10.1016/j.envpol.2024.123827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024]
Abstract
Microplastics (MPs) in sludge can affect the ability of biochar-activated peroxymonosulfate (PMS) to degrade antibiotics. In this work, biochar was prepared by mixing sludge and polystyrene (PS) through hydrothermal carbonization (HTC) and high-temperature pyrolysis processes. The resulting biochar was used to activate PMS to degrade ofloxacin (OFX), levofloxacin (LEV), and pefloxacin (PFX). The addition of PS significantly enhanced the ability of biochar/PMS to degrade antibiotics and the levels of environmentally persistent free radicals (EPFRs, 4.59 × 1020 spin/g) due to the decomposition of PS. The addition of PS resulted in a slight decrease in the specific surface area of biochar (2-3 m2/g on average), but a significant increase in the concentration of EPFRs increased the removal efficiency. The activation of PMS by biochar is dominated by free radicals, accounting for about 70%, in which SO4•- and •OH contribute the most and O2•- the least. However, 1O2 contributes 15-20% to the degradation of antibiotics in non-free radical processes. Overall, the process of biochar/PMS degradation of antibiotics is mainly dominated by free radicals, and the effect of non-free radicals is not obvious. Both hydrochar and pyrocarbon samples showed good hydrophilicity, and this property should improve the ability of active sites on biochar to degrade antibiotics. In the HTC process, PS can decompose during hydrochar preparation, with a maximum reduction value of 40.09%. The three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM) and total organic carbon (TOC) results show that the protein content in sludge plays a major role in reducing PS, with little effect of polysaccharide and SiO2. There are six to seven degradation intermediates of quinolone antibiotics, which are eventually degraded into CO2, H2O, and inorganic substances. The regeneration experiment showed good reusability of hydrochar and pyrocarbon, further demonstrating the suitability of biochar for the degradation of antibiotics.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Rui He
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Yutai Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Jing Zhao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Xiaozhuan Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Jiqin Wang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Alexandr V Bildyukevich
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, 220072, Minsk, Surganov str. 13, Belarus.
| |
Collapse
|
16
|
Fu Q, Li C, Liu Z, Ma X, Xu Y, Wang Y, Liu X, Wang D. The Impact of Bisphenol A on the Anaerobic Sulfur Transformation: Promoting Sulfur Flow and Toxic H 2S Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8043-8052. [PMID: 38648493 DOI: 10.1021/acs.est.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA), as a typical leachable additive from microplastics and one of the most productive bulk chemicals, is widely distributed in sediments, sewers, and wastewater treatment plants, where active sulfur cycling takes place. However, the effect of BPA on sulfur transformation, particularly toxic H2S production, has been previously overlooked. This work found that BPA at environmentally relevant levels (i.e., 50-200 mg/kg total suspended solids, TSS) promoted the release of soluble sulfur compounds and increased H2S gas production by 14.3-31.9%. The tryptophan-like proteins of microbe extracellular polymeric substances (EPSs) can spontaneously adsorb BPA, which is an enthalpy-driven reaction (ΔH = -513.5 kJ mol-1, ΔS = -1.60 kJ mol-1K -1, and ΔG = -19.52 kJ mol-1 at 35 °C). This binding changed the composition and structure of EPSs, which improved the direct electron transfer capacity of EPSs, thereby promoting the bioprocesses of organic sulfur hydrolysis and sulfate reduction. In addition, BPA presence enriched the functional microbes (e.g., Desulfovibrio and Desulfuromonas) responsible for organic sulfur mineralization and inorganic sulfate reduction and increased the abundance of related genes involved in ATP-binding cassette transporters and sulfur metabolism (e.g., Sat and AspB), which promoted anaerobic sulfur transformation. This work deepens our understanding of the interaction between BPA and sulfur transformation occurring in anaerobic environments.
Collapse
Affiliation(s)
- Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Chenxi Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zirui Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xingyu Ma
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yunhao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yan Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
17
|
Wang Y, Liu X, Han W, Jiao J, Ren W, Jia G, Huang C, Yang Q. Migration and transformation modes of microplastics in reclaimed wastewater treatment plant and sludge treatment center with thermal hydrolysis and anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 400:130649. [PMID: 38570098 DOI: 10.1016/j.biortech.2024.130649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Microplastics in wastewater have been investigated globally, but less research on the migration and transformation of microplastics throughout wastewater and sludge treatment. This study investigated the fate of microplastics in a reclaimed wastewater treatment plant and a centralized sludge treatment center with thermal hydrolysis and anaerobic digestion. The results exhibited that the effluent microplastics of this reclaimed wastewater treatment plant were 0.75 ± 0.26 items/L. Approximately 98 % of microplastics were adsorbed and precipitated into sludge. After thermal hydrolysis, anaerobic digestion and plate and frame dewatering, the removal rate of microplastics was 41 %. Thermal hydrolysis was the most effective method for removing microplastics. Polypropylene, polyamide and polyethylene were widely detected in wastewater and sludge. 30 million microplastics were released into the downstream river and 51.80 billion microplastics entered soil through sludge cake daily. Therefore, substantial microplastics still entered the natural environment despite the high microplastics removal rate of reclaimed wastewater and sludge treatment.
Collapse
Affiliation(s)
- Yaxin Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiuhong Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Weipeng Han
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiatong Jiao
- Beijing Drainage Group Co., Ltd, Beijing 100034, China
| | - Wenyang Ren
- Beijing Drainage Group Co., Ltd, Beijing 100034, China
| | - Gaofeng Jia
- Beijing Drainage Group Co., Ltd, Beijing 100034, China
| | - Chenduo Huang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qing Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
18
|
Zhang S, Li Y, Jiang L, Chen X, Zhao Y, Shi W, Xing Z. From organic fertilizer to the soils: What happens to the microplastics? A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170217. [PMID: 38307274 DOI: 10.1016/j.scitotenv.2024.170217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
In recent, soil microplastic pollution arising from organic fertilizers has been of a great increasing concern. In response to this concern, this review presents a comprehensive analysis of the occurrence and evolution of microplastics in organic fertilizers, their ingress into the soil, and the subsequent impacts. Organic fertilizers are primarily derived from solid organic waste generated by anthropocentric activities including urban (daily-life, municipal wastes and sludge), agricultural (manure, straw), and industrial (like food industrial waste etc.) processes. In order to produce organic fertilizer, the organic solid wastes are generally treated by aerobic composting or anaerobic digestion. Currently, microplastics have been widely detected in the raw materials and products of organic fertilizer. During the process of converting organic solid waste materials into fertilizer, intense oxidation, hydrolysis, and microbial actions significantly alter the physical, chemical, and surface biofilm properties of the plastics. After the organic fertilizer application, the abundances of microplastics significantly increased in the soil. Additionally, the degradation of these microplastics often promotes the adsorption of organic pollutants and affects their retention time in the soil. These microplastics, covered by biofilms, also significantly alter soil ecology due to the unique properties of the biofilm. Furthermore, the biofilms also play a role in the degradation of microplastics in the soil environment. This review offers a new perspective on the soil environmental processes involving microplastics from organic fertilizer sources and highlights the challenges associated with further research on organic fertilizers and microplastics.
Collapse
Affiliation(s)
- Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Linshu Jiang
- Beijing University of Agriculture, Beijing 102206, China.
| | - Xingcai Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenzhuo Shi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhijie Xing
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
19
|
He X, Xiang Y, Xu R, Gao H, Guo Z, Sun W. Bisphenol A affects microbial interactions and metabolic responses in sludge anaerobic digestion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19635-19648. [PMID: 38363507 DOI: 10.1007/s11356-024-32422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The widespread use of bisphenol A (BPA) has resulted in the emergence of new pollutants in various environments, particularly concentrated in sewage sludge. This study investigated the effects of BPA on sludge anaerobic digestion, focusing specifically on the interaction of microbial communities and their metabolic responses. While the influence of BPA on methane accumulation is not significant, BPA still enhanced the conversion of soluble COD, protein, and polysaccharides. BPA also positively influenced the hydrolysis-acidogenesis process, leading to 17% higher concentrations of volatile fatty acids (VFAs). Lower BPA levels (0.2-0.5 mg/kg dw) led to decreased hydrolysis and acidogenesis gene abundance, indicating metabolic inhibition; conversely, higher concentrations (1-5 mg/kg dw) increased gene abundance, signifying metabolic enhancement. Diverse methane metabolism was observed and exhibited alterations under BPA exposure. The presence of BPA impacted both the diversity and composition of microbial populations. Bacteroidetes, Proteobacteria, Firmicutes, and Chloroflexi dominated in BPA-treated groups and varied in abundance among different treatments. Changes of specific genera Sedimentibacter, Fervikobacterium, Blvii28, and Coprothermobacter in response to BPA, affecting hydrolysis and acetogenesis. Archaeal diversity declined while the hydrogenotrophic methanogen Methanospirillum thrived under BPA exposure. BPA exposure enabled microorganisms to form structured community interaction networks and boost their metabolic activities during anaerobic digestion. The study also observed the enrichment of BPA biodegradation pathways at high BPA concentrations, which could interact and overlap to ensure efficient BPA degradation. The study provides insights into the digestion performance and interactions of microbial communities to BPA stress and sheds light on the potential effect of BPA during anaerobic digestion.
Collapse
Affiliation(s)
- Xiao He
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, No. 932 Lushan South Road, Changsha, 410083, People's Republic of China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, People's Republic of China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, No. 932 Lushan South Road, Changsha, 410083, People's Republic of China.
| | - Hanbing Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, No. 932 Lushan South Road, Changsha, 410083, People's Republic of China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, No. 932 Lushan South Road, Changsha, 410083, People's Republic of China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, People's Republic of China
| |
Collapse
|
20
|
Kong W, Jalalah M, Alsareii SA, Harraz FA, Almadiy AA, Thakur N, Salama ES. Occurrence, characteristics, and microbial community of microplastics in anaerobic sludge of wastewater treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123370. [PMID: 38244902 DOI: 10.1016/j.envpol.2024.123370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Wastewater treatment plants (WWTPs) usually contain microplastics (MPs) due to daily influents of domestic and municipal wastewater. Thus, the WWTPs act as a point source of MPs distribution in the environment due to their incapability to remove MPs completely. In this study, MPs occurrence and distribution in anaerobic sludge from WWTPs in different regions (Kaifeng "KHP", Jinan "JSP", and Lanzhou "LGP") were studied. Followed by MPs identification by microscopy and Fourier transform infrared (FTIR) spectrum. The microbial communities associated with anaerobic sludge and MPs were also explored. The results showed that MPs concentrations were 16.5, 38.5, and 17.2 particles/g of total solids (TS) and transparent MPs accounted for 49.1%, 58.5%, and 48.3% in KHP, JSP, and LGP samples, respectively. Fibers represented the most common shape of MPs in KHP (49.1%), JSP (56.0%), and LGP (69.0%). The FTIR spectroscopy indicated the predominance of polyethylene polymer in 1-5 mm MPs. The Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, and Planctomycetes were the abundant phyla in all anaerobic sludge. The bacterial genera in KHP and LGP were similar, in which Caldilinea (>23%), Terrimonas (>10%), and Ferruginibacter (>7%) formed the core bacterial genera. While Rhodococcus (15.3%) and Rhodoplanes (10.9%) were dominating in JSP. The archaeal genera Methanosaeta (>69%) and Methanobrevibacter (>10%) were abundant in KHP and LGP sludge. While Methanomethylovorans accounted for 90% of JSP. Acetyltransferase and hydratase were the major bacterial enzymes, while reductase was the key archaeal enzyme in all anaerobic sludge. This study provided the baseline for MPs distribution, characterization, and MPs associated microbes in WWTPs.
Collapse
Affiliation(s)
- Wenbo Kong
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Electrical Engineering, College of Engineering, Najran University, Najran, 11001, Saudi Arabia
| | - Saeed A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Surgery, College of Medicine, Najran University, Najran, 11001, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah, 68342, Saudi Arabia
| | - Abdulrhman A Almadiy
- Department of Biology, Faculty of Arts and Sciences, Najran University, 1988, Najran, Saudi Arabia
| | - Nandini Thakur
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| |
Collapse
|
21
|
Jiang Q, Feng L, Luo J, Wu Y, Dong H, Mustafa AM, Su Y, Zhao Y, Chen Y. Simultaneous volatile fatty acids promotion and antibiotic resistance genes reduction in fluoranthene-induced sludge alkaline fermentation: Regulation of microbial consortia and cell functions. BIORESOURCE TECHNOLOGY 2024; 395:130367. [PMID: 38266788 DOI: 10.1016/j.biortech.2024.130367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
The impact and mechanism of fluoranthene (Flr), a typical polycyclic aromatic hydrocarbon highly detected in sludge, on alkaline fermentation for volatile fatty acids (VFAs) recovery and antibiotic resistance genes (ARGs) transfer were studied. The results demonstrated that VFAs production increased from 2189 to 4272 mg COD/L with a simultaneous reduction of ARGs with Flr. The hydrolytic enzymes and genes related to glucose and amino acid metabolism were provoked. Also, Flr benefited for the enrichment of hydrolytic-acidifying consortia (i.e., Parabacteroides and Alkalibaculum) while reduced VFAs consumers (i.e., Rubrivivax) and ARGs potential hosts (i.e., Rubrivivax and Pseudomonas). Metagenomic analysis indicated that the genes related to cell wall synthesis, biofilm formation and substrate transporters to maintain high VFAs-producer activities were upregulated. Moreover, cell functions of efflux pump and Type IV secretion system were suppressed to inhibit ARGs proliferation. This study provided intrinsic mechanisms of Flr-induced VFAs promotion and ARGs reduction during alkaline fermentation.
Collapse
Affiliation(s)
- Qingyang Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, School of Medicine, Tongji Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Yu Su
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yuxiao Zhao
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Biomass Gasification Technology, Jinan 250014, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
22
|
Abd Rahman NN, Mazlan N, Shukhairi SS, Nazahuddin MNA, Shawel AS, Harun H, Baktir A. Evaluation of the microplastics in bivalves and water column at Pantai Teluk Likas, North Borneo, Malaysia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23178-23192. [PMID: 38418781 DOI: 10.1007/s11356-024-32628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Microplastics (MPs) are a pervasive pollutant in the marine environment. Pantai Teluk Likas in Sabah, Malaysia is one of the most visited beaches where tourism, recreational, and fisheries activities are high in this area. Hence, the area suffers from severe pollution, particularly from plastics. This study aims to quantify the microplastic composition in terms of color, shapes, and polymer types in marine bivalves (Anadara granosa, Glauconome virens, and Meretrix lyrata) and water column samples from Pantai Teluk Likas. All samples were digested using sodium hydroxide (NaOH) and incubated in the oven for at least 48 h. Serial filtration was done for each sample before they were observed under the dissecting microscope. The microplastics were identified and counted based on their physical attributes which were colors and shapes. The functional group of the polymers was determined using FTIR spectroscopy. Microplastics were found present in all samples collected. G. virens had the highest abundance of microplastics at 113.6 ± 6.5 particles/g followed by M. lyrata at 78.4 ± 3.7 particles/g. On the contrary, A. granosa had the least microplastics with an abundance of 24.4 ± 0.6 particles/g. Meanwhile, 110.0 ± 36.2 particles/L of microplastics were found in water column samples from Pantai Teluk Likas. Based on the analysis, fibers were the most common shape in bivalves, while fibers and films were common in the water column. In terms of colors, black, blue, and red were a few of the most abundant colors observed in both samples. The most common polymer detected in all bivalve species and water column samples is polycarbonate (PC), followed by polymethyl methacrylate (PMMA). Future study that focuses on the correlation between microplastic abundance in the marine biota and the water column is recommended to better understand microplastic availability and exposure.
Collapse
Affiliation(s)
- Nur Nashrah Abd Rahman
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Nurzafirah Mazlan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Sarah Syazwani Shukhairi
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | | | - Amir Syazwan Shawel
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Haniza Harun
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 44100, Shah Alam, Malaysia
| | - Afaf Baktir
- Faculty of Science and Technology, Campus Merr C, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno Mulyorejo, Surabaya, 60115, Indonesia
| |
Collapse
|
23
|
Zhou S, Wang L, Liu J, Zhang C, Liu X. Microplastics' toxic effects and influencing factors on microorganisms in biological wastewater treatment units. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:1539-1553. [PMID: 38557717 DOI: 10.2166/wst.2024.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/03/2024] [Indexed: 04/04/2024]
Abstract
Prior to entering the water body, microplastics (MPs) are mostly collected at the sewage treatment plant and the biological treatment unit is the sewage treatment facility's central processing unit. This review aims to present a comprehensive analysis of the detrimental impacts of MPs on the biological treatment unit of a sewage treatment plant and it covers how MPs harm the effluent quality of biological treatment processes. The structure of microbial communities is altered by MPs presence and additive release, which reduces functional microbial activity. Extracellular polymers, oxidative stress, and enzyme activity are explored as micro views on the harmful mechanism of MPs on microorganisms, examining the toxicity of additives released by MPs and the harm caused to microorganisms by harmful compounds that have been adsorbed in the aqueous environment. This article offers a theoretical framework for a thorough understanding of the potential problems posed by MPs in sewage treatment plants and suggests countermeasures to mitigate those risks to the aquatic environment.
Collapse
Affiliation(s)
- Sijie Zhou
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China; Sijie Zhou and Lili Wang contributed equally to this work
| | - Lili Wang
- Waterway Transportation Environmental Protection Technology Laboratory, Tianjin Institute of Water Transportation Engineering Science and Research, Ministry of Transportation, Tianjin 300456, China; Sijie Zhou and Lili Wang contributed equally to this work
| | - Jin Liu
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chuanguo Zhang
- Waterway Transportation Environmental Protection Technology Laboratory, Tianjin Institute of Water Transportation Engineering Science and Research, Ministry of Transportation, Tianjin 300456, China
| | - Xianbin Liu
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China E-mail:
| |
Collapse
|
24
|
Yang M, Du D, Zhu F, Wang X. Metabolomic analysis reveals the toxicity mechanisms of bisphenol A on the Microcystis aeruginosa under different phosphorus levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123022. [PMID: 38008252 DOI: 10.1016/j.envpol.2023.123022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Harmful cyanobacterial blooms have been a global environmental problem. Discharge of anthropogenic pollutants and excess nutrient import into the freshwater bodies may be the biggest drivers of bloom. Bisphenol A (BPA), a typical endocrine-disrupting compound, is frequently detected in different natural waters, which was a threat to the balance of aquatic ecosystem. Yet mechanistic understanding of the bloom and microcystin generation under combined pollution conditions is still a mystery. Herein, the cellular and metabolomic responses to BPA exposure and phosphorus (P) levels in Microcystis aeruginosa were investigated throughout its growth period. The results showed that the stress response of M. aeruginosa to BPA was characterized by a decrease in growth density, an increase in P utilization, an increase in ATPase activity, a disruption of the photosynthetic system, and an increase in the production and release of microcystins (MCs). However, these effects are highly dependent on the growth stage of the cyanobacterial cell and the magnitude of the added P concentration. In addition, exposure to a high concentration (10 μM) of BPA significantly stimulated the production of 20.7% more and the release of 29.2% more MCs from M. aeruginosa cells at a low P level. The responses of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) suggested that exposure to BPA exposure at a low P level can lead to oxidative stress in M. aeruginosa. In addition, the differentially expressed 63 metabolites showed that cell growth, energy generation and photosynthesis were mainly regulated by the metabolic network of 3-phosphoglyceric acid (3-PGA), D-glucose 6-phosphate, UDP-α-D-galactose and UDP-N-acetyl-D-galactosamine (UDP-GalNAc) metabolism. Amino acids and lipid metabolism collectively mediated MCs production and release. These findings will provide important references for the control of harmful cyanobacterial blooms under combined pollution.
Collapse
Affiliation(s)
- Meng Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Daolin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Fang Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiangrong Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
25
|
Zhao L, Wang P, Li Y, Yu M, Zheng Y, Ren L, Wang Y, Li J. Feasibility of anaerobic co-digestion of biodegradable plastics with food waste, investigation of microbial diversity and digestate phytotoxicity. BIORESOURCE TECHNOLOGY 2024; 393:130029. [PMID: 37977495 DOI: 10.1016/j.biortech.2023.130029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The effects of biodegradable plastics of different thicknesses (30 and 40 μm) and sizes (20 × 20, 2 × 2, and 1 × 1 mm) on anaerobic digestion of food waste and digestate phytotoxicity were investigated. Methane productions (38 days) for the groups with 20 × 20, 2 × 2, and 1 × 1 mm of 30 μm plastics were 92.46, 138.27, and 259.95 mL/gVSremoval, respectively which are nearly 58 % higher than the control group (58.86 mL/gVSremoval). Methane production in 40 μm plastics groups was lower than in 30 μm groups of equal size. All sizes of 30 µm plastics promoted substrate hydrolysis, acidification, and relative abundance of key hydrolytic bacteria and methanogens. Phytotoxicity tests results showed that seed root elongation was inhibited in groups with 40 μm plastics. In conclusion, 30 μm biodegradable plastics were more suitable for anaerobic digestion with food waste than 40 μm.
Collapse
Affiliation(s)
- Liya Zhao
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yingnan Li
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Miao Yu
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yi Zheng
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Lianhai Ren
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yongjing Wang
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Ji Li
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
26
|
Jiménez-Skrzypek G, Lusiardi R, González-Sálamo J, Vega-Moreno D, Hernández-Borges J. Insights into emerging organic pollutants extraction from polypropylene, polystyrene, and polyethylene microplastics. Anal Chim Acta 2024; 1287:342071. [PMID: 38182337 DOI: 10.1016/j.aca.2023.342071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Microplastics have the capability of retaining contaminants on their surface, increasing their persistence, preconcentrating them, and acting as transport vectors. Nevertheless, the determination of these compounds in plastic matrices poses several analytical issues and challenges, including the capability of many of these methods of only determining the extractable pollutants fractions, repeatability issues, etc. In this sense, it is primordial to evaluate the effect of the critical parameters that allow to obtain a quantitative extraction of the target analytes from microplastics, including the matrix effect of each of the studied polymers, the influence of particle size, and the effect of weathering. RESULTS A simple and effective methodology for the extraction of 17 emerging organic pollutants from both pristine (polypropylene, polystyrene, and low- and high-density polyethylene) and weathered (polypropylene and polyethylene) microplastics has been developed, optimized, and validated, achieving recovery values of 70-120 % and low method quantification limits (9.2-35.5 ng/g). Results show the importance of cryomilling microplastics (as smaller particle sizes improve recovery and homogenization), something ignored in most publications. The differences in matrix effect for the studied pristine polymers highlights the importance of treating polymers individually, without extrapolating results. In weathered microplastics, matrix effect is overall higher than in their pristine counterparts, evidencing the necessity of always carrying out matrix effect and recovery studies in environmental microplastics. The analysis of 10 samples collected in Playa Grande (Tenerife, Canary Islands, Spain) revealed quantitative amounts of bisphenol A (10.8 ± 3.4 ng/g) in one of them. SIGNIFICANCE For the first time, the effect of particle size, weathering and matrix effect have been simultaneously evaluated on microplastics, revealing the importance of their assessment to properly validate the methodology. Additionally, the method shows good performance in all the different polymers and has been successfully applied to the analysis of environmental samples of microplastics.
Collapse
Affiliation(s)
- Gabriel Jiménez-Skrzypek
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Rachele Lusiardi
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain.
| | - Daura Vega-Moreno
- Departamento de Química, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain.
| |
Collapse
|
27
|
Ali N, Liu W, Zeb A, Shi R, Lian Y, Wang Q, Wang J, Li J, Zheng Z, Liu J, Yu M, Liu J. Environmental fate, aging, toxicity and potential remediation strategies of microplastics in soil environment: Current progress and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167785. [PMID: 37852500 DOI: 10.1016/j.scitotenv.2023.167785] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Microplastics (MPs) are small plastic debris (<5 mm) that result from the fragmentation of plastic due to physical and physiochemical processes. MPs are emerging pollutants that pose a significant threat to the environment and human health, primarily due to their pervasive presence and potential bioaccumulation within the food web. Despite their importance, there is a lack of comprehensive studies on the fate, toxicity, and aging behavior of MPs. Therefore, this review aims to address this gap by providing a cohesive understanding of several key aspects. Firstly, it summarizes the sources and fate of MPs, highlighting their ubiquitous presence and the potential pathways through which they enter ecosystems. Secondly, it evaluates the aging process of MPs and the factors influencing it, including the morphological and physiological changes observed in crops and the release of pollutants from aged MPs, which can have detrimental effects on the environment and human health. Furthermore, the impacts of aging MPs on various processes are discussed, such as the mobilization of other pollutants in the environment. The influence of aged MPs on the soil environment, particularly their effect on heavy metal adsorption, is examined. Finally, the review explores strategies for the prevention technologies and remediation of MPs, highlighting the importance of developing effective approaches to tackle this issue. Overall, this review aims to contribute to our understanding of MPs, their aging process, and their impacts on the environment and human health. It underscores the urgency of addressing the issue of MPs and promoting research and remediation efforts to mitigate their adverse effects.
Collapse
Affiliation(s)
- Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Zeqi Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianv Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
28
|
Zhao W, Hu T, Ma H, He S, Zhao Q, Jiang J, Wei L. Deciphering the role of polystyrene microplastics in waste activated sludge anaerobic digestion: Changes of organics transformation, microbial community and metabolic pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166551. [PMID: 37633377 DOI: 10.1016/j.scitotenv.2023.166551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Microplastics are ubiquitous in the natural environment, which inevitably affect the relevant biochemical process. Nevertheless, the knowledge about the impacts of microplastics on organics transformation and corresponding microbial metabolism response in anaerobic environment is limited. Here, polystyrene (PS) microplastics were selected as model microplastics to explore their potential impacts on organics transformation, microbial community and metabolic pathway during sludge anaerobic digestion system operation. The results indicated that the PS microplastics exhibited the dose-dependent effects on methane production, i.e., the additive of 20-40 particles/g TS of PS microplastics improved the maximum methane yield by 3.38 %-8.22 %, whereas 80-160 particles/g TS additive led to a 4.78 %-11.04 % declining. Overall, PS microplastics facilitated the solubilization and hydrolysis of sludge, but inhibited the acidogenesis process. Key functional enzyme activities were stimulated under low PS microplastics exposure, whereas were almost severely inhibited due to the increased oxidative stress induced from excess PS microplastics. Microbial community and further metabolic analysis indicated that low PS microplastics improved the acetotrophic and hydrogenotrophic methanogenesis, while a high level of PS microplastics shifted methanogenesis from acetotrophic to hydrogenotrophic pathway. Further analysis showed that the reacted PS microplastics exhibited greater toxicity and ecological than the raw PS microplastics due to that they are more likely to adsorb contaminants. These findings revealed the dosage-dependent relationships between microplastics and organics transformation process in anaerobic environments, providing new insights for assessing the impact of PS microplastics on sludge anaerobic digestion.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
29
|
Li J, Dagnew M, Ray MB. Microfibers in anaerobic digestion: Effect of ozone pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118792. [PMID: 37738723 DOI: 10.1016/j.jenvman.2023.118792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/23/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
Wastewater treatment plants receive significant microplastics, which are eventually discharged into the environment. Previous studies indicated that over 90% of microplastics, especially microfibers from laundry wastewater, are retained in primary sludge. The effect of microfibers from household laundry on anaerobic digestion has yet to be fully understood, which is the objective of the present study. The results in this study showed a positive correlation between methane production and the presence of microfibers. Compared to the control, the methane production increased by 2%, 27% and 43% with 20 mg/L, 100 mg/L and 1000 mg/L microfibers spiked into primary sludge, respectively. The present study suggests that microfibers at 20 mg/L insignificantly affected methane production in controlled anaerobic digestion. In contrast, ozone pretreatment of microfibers enhanced gas production by 12% in the same concentration level. Interestingly, ozone pretreatment at a higher concentration (100 mg/L-1000 mg/L) of microfibers did not affect methane production. SEM/EDX results imply that the ozone pretreatment has changed the surface characteristics of the microfibers, which provide more surface area for adsorption. The significant reduction of soluble phosphorus by 58% indicates that microfibers potentially act as a site for adsorption during anaerobic digestion. Overall, the presence of microfibers had a positive effect on anaerobic digestion. However, this work also indicated that the microfibers were not biodegraded during anaerobic digestion. Therefore, microfibers accumulate on biosolids, potentially affecting the final disposal of microfibers.
Collapse
Affiliation(s)
- Juan Li
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A5B9, Canada
| | - Martha Dagnew
- Department of Civil and Environmental Engineering, University of Western Ontario, London, ON, N6A5B9, Canada.
| | - Madhumita B Ray
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A5B9, Canada.
| |
Collapse
|
30
|
Yang J, Wang W, Yang X, Long S, Tian X, Chen L, Liu X, Yang Q, Zhou T, Wang D. Enhancing acidogenic fermentation of waste activated sludge via urea hydrogen peroxide pretreatment: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2023; 386:129483. [PMID: 37454957 DOI: 10.1016/j.biortech.2023.129483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Improving the anaerobic treatment performance of waste activated sludge (WAS) to achieve resource recovery is an indispensable requirement to reduce carbon emissions, minimize and stabilize biosolids. In this study, a novel strategy by using urea hydrogen peroxide (UHP) to enhance SCFAs production through accelerating WAS disintegration, degrading recalcitrant substances and alleviating competitive suppression of methanogens. The SCFAs production and acetate proportion rose from 436.9 mg COD/L and 31.3% to 3102.6 mg COD/L and 54.1%, respectively, when UHP grew from 0 to 80 mg/g TSS. Mechanism investigation revealed that OH, O2 and urea were the major contributors to accelerate WAS disintegration with the sequence of OH> O2 > urea. Function microbes related to acidification and genes associated with acetate production ([EC:2.3.1.8] and [EC:2.7.2.1]) were upregulated while genes encoding propionic acid production ([EC:6.4.1.3] and [EC:6.2.1.1]) were downregulated. These results raised the application prospects of UHP in WAS resource utilization.
Collapse
Affiliation(s)
- Jingnan Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha 410208, PR China
| | - Xianli Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Sha Long
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xiaohang Tian
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Lizhen Chen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qiliang Yang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha 410208, PR China
| | - Tao Zhou
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha 410208, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
31
|
Mohammad Mirsoleimani Azizi S, Zakaria BS, Haffiez N, Ranjan Dhar B. Granular activated carbon remediates antibiotic resistance propagation and methanogenic inhibition induced by polystyrene nanoplastics in sludge anaerobic digestion. BIORESOURCE TECHNOLOGY 2023; 377:128938. [PMID: 36948429 DOI: 10.1016/j.biortech.2023.128938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Nano/microplastics (NPs/MPs) in sewage sludge can induce oxidative stress to the anaerobic digestion (AD) and also proliferate antibiotic resistance genes (ARGs). Recently, granular activated carbon (GAC) has been used as an additive to enhance methane production in AD via direct interspecies electron transfer (DIET); however, its impact on AD exposed to NPs/MPs is yet to be studied. This study examined the effect of GAC (5 and 15 g/L) on sludge AD exposed to 150 µg/L of polystyrene nanoplastics (PsNPs). PsNPs decreased methane yield by 32.3% due to elevated levels of reactive oxygen species. However, GAC addition counteracted this adverse effect and improved methane production, attributed to the potential enrichment of DIET-active microbes and the adsorption of PsNPs by GAC. Moreover, GAC reduced the total abundance of ARGs, which was increased by PsNPs exposure. Thus, GAC can provide dual benefits in mitigating methanogenic inhibition caused by PsNPs and ARG spread.
Collapse
Affiliation(s)
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Nervana Haffiez
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
32
|
Shang Z, Wang R, Zhang X, Tu Y, Sheng C, Yuan H, Wen L, Li Y, Zhang J, Wang X, Yang G, Feng Y, Ren G. Differential effects of petroleum-based and bio-based microplastics on anaerobic digestion: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162674. [PMID: 36894074 DOI: 10.1016/j.scitotenv.2023.162674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The number of plastics is increasing owing to the rapid development of the plastics industry. Microplastics (MPs) are formed during the use of both petroleum-based plastics and newly developed bio-based plastics. These MPs are inevitably released into the environment and are enriched in wastewater treatment plant sludge. Anaerobic digestion is a popular sludge stabilization method for wastewater treatment plants. Understanding the potential impacts of different MPs on anaerobic digestion is critical. This paper provides a comprehensive review of the mechanisms of petroleum-based MPs and bio-based MPs in anaerobic digestion methane production and compares their potential effects on biochemical pathways, key enzyme activities, and microbial communities. Finally, it identifies problems that must be solved in the future, proposes the focus of future research, and predicts the future development direction of the plastics industry.
Collapse
Affiliation(s)
- Zezhou Shang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Rui Wang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Xiyi Zhang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Yongle Tu
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Chenjing Sheng
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Huan Yuan
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Lei Wen
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Yulu Li
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Jing Zhang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Xiaojiao Wang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China.
| | - Gaihe Yang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Yongzhong Feng
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Guangxin Ren
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| |
Collapse
|
33
|
Jiménez-Skrzypek G, Hernández-Expósito OM, Hernández-Borges J, González-Sálamo J. Sorption of levonorgestrel on polyethylene, polystyrene and polypropylene microplastics. CHEMOSPHERE 2023:139042. [PMID: 37244556 DOI: 10.1016/j.chemosphere.2023.139042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Sorption studies involving microplastics (MPs) are essential to understand the mechanisms implicated in contaminant retention. In this research, a complete study of the sorption behaviour of a hormonal contraceptive -levonorgestrel- in MPs of different composition in two distinct matrices was performed, using high-performance liquid chromatography coupled to a UV detector for the determination of levonorgestrel. Characterization of the studied MPs was achieved by X-ray diffraction and differential scanning calorimetry, and Fourier-transformed infrared spectroscopy. Kinetic and isotherm studies were performed using a batch design under controlled conditions: 500 mg of MPs pellets of 3-5 mm diameter, agitation at 125 rpm, and 30 °C. The comparison of results in ultrapure water and artificial seawater, revealed changes in sorption capacity, and the predominant sorption mechanisms involved. Overall, all studied MPs showed sorption affinity towards levonorgestrel, being low-density polyethylene the one with the highest sorption capacity in ultrapure water and polystyrene in seawater.
Collapse
Affiliation(s)
- Gabriel Jiménez-Skrzypek
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, S/n., 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, S/n., 38206, San Cristóbal de La Laguna, Spain
| | - Orlando Manuel Hernández-Expósito
- Centro Asociado de Tenerife de La Universidad Nacional de Educación a Distancia (UNED). C. San Agustín, 30. 38009, San Cristóbal de La Laguna, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, S/n., 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, S/n., 38206, San Cristóbal de La Laguna, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, S/n., 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, S/n., 38206, San Cristóbal de La Laguna, Spain; Department of Chemistry, Sapienza University, P.le Aldo Moro, 5. 00185, Rome, Italy.
| |
Collapse
|
34
|
Baumgarten LG, Freitas AA, Santana ER, Winiarski JP, Dreyer JP, Vieira IC. Graphene and gold nanoparticle-based bionanocomposite for the voltammetric determination of bisphenol A in (micro)plastics. CHEMOSPHERE 2023; 334:139016. [PMID: 37224974 DOI: 10.1016/j.chemosphere.2023.139016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/02/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
The monitoring of endocrine disruptors in the environment is one of the main strategies in the investigation of potential risks associated with exposure to these chemicals. Bisphenol A is one of the most prevalent endocrine-disrupting compounds and is prone to leaching out from polycarbonate plastic in both freshwater and marine environments. Additionally, microplastics also can leach out bisphenol A during their fragmentation in the water environment. In the quest for a highly sensitive sensor to determine bisphenol A in different matrices, an innovative bionanocomposite material has been achieved. This material is composed of gold nanoparticles and graphene, and was synthesized using a green approach that utilized guava (Psidium guajava) extract for reduction, stabilization, and dispersion purposes. Transmission electron microscopy images revealed well-spread gold nanoparticles with an average diameter of 31 nm on laminated graphene sheets in the composite material. An electrochemical sensor was developed by depositing the bionanocomposite onto a glassy carbon surface, which displayed remarkable responsiveness towards bisphenol A. Experimental conditions such as the amount of graphene, extract: water ratio of bionanocomposite and pH of the supporting electrolyte were optimized to improve the electrochemical performance. The modified electrode displayed a marked improvement in current responses for the oxidation of bisphenol A as compared to the uncovered glassy carbon electrode. A calibration plot was established for bisphenol A in 0.1 mol L-1 Britton-Robinson buffer (pH 4.0), and the detection limit was determined to equal to 15.0 nmol L-1. Recovery data from 92 to 109% were obtained in (micro)plastics samples using the electrochemical sensor and were compared with UV-vis spectrometry, demonstrating its successful application with accurate responses.
Collapse
Affiliation(s)
- Luan Gabriel Baumgarten
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Aline Alves Freitas
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Edson Roberto Santana
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil.
| | - João Paulo Winiarski
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Juliana Priscila Dreyer
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Iolanda Cruz Vieira
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
35
|
Yang H, Li X, Guo M, Cao X, Zheng X, Bao D. UV-induced microplastics (MPs) aging leads to comprehensive toxicity. MARINE POLLUTION BULLETIN 2023; 189:114745. [PMID: 36848786 DOI: 10.1016/j.marpolbul.2023.114745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Herein, the toxicity of 4 MPs and additives released from MPs during UV-aging was quantitatively evaluated by the transcriptional effect level index (TELI) based on E. coli whole-cell microarray assay, and MPs-antibiotics complex pollutants. Results showed that MPs and these additives had high toxicity potential, the maximum TELI was 5.68/6.85 for polystyrene (PS)/bis(2-ethylhexyl) phthalate (DEHP). There were many similar toxic pathways between MPs and additives, indicating that part of the toxicity risk of MPs was caused by the release of additives. MPs were compounded with antibiotics, the toxicity value changed significantly. The TELI values of amoxicillin (AMX) + polyvinyl chloride (PVC) and ciprofloxacin (CIP) + PVC were as high as 12.30 and 14.58 (P < 0.05). Three antibiotics all decreased the toxicity of PS and had little effect on polypropylene (PP) and polyethylene (PE). The combined toxicity mechanism of MPs and antibiotics was very complicated, and the results could be divided into four types: MPs (PVC/PE + CIP), antibiotics (PVC + TC, PS + AMX/ tetracycline (TC)/CIP, PE + TC), both (PP + AMX/TC/CIP), or brand-new mechanisms (PVC + AMX).
Collapse
Affiliation(s)
- Heyun Yang
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Xiaoliang Li
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China.
| | - MengHan Guo
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Xi'an Water Conservancy Planning Survey and Design Institute, Xi'an 710054, China
| | - Xin Cao
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; National Supervision & Inspection Center of Environmental Protection Equipment Quality, Jiangsu, Yixing 214205, China.
| | - Dongguan Bao
- Shanghai Hanyuan Engineering & Technology Co., Ltd, Shanghai 201507, China
| |
Collapse
|
36
|
Fan Y, Yin M, Chen H. Insights into the role of chitosan in hydrogen production by dark fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160401. [PMID: 36414059 DOI: 10.1016/j.scitotenv.2022.160401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Chitosan is widely used as a dewatering flocculant, but whether it affects hydrogen production from sludge anaerobic fermentation is unclear. This study aimed to elucidate the role of chitosan in the dark fermentation of waste activated sludge for hydrogen production. The results showed that chitosan had a negative effect on hydrogen production from sludge. Chitosan at 30 g/kg total suspended solids reduced hydrogen accumulation by 56.70 ± 1.22 % from 3.94 ± 0.12 to 1.71 ± 0.10 mL/g volatile suspended solids. Chitosan hindered the solubilization of sludge by flocculation, which reduced the available substrate for anaerobic fermentation. In addition, chitosan interfered with the electron transport system by reducing cytochrome C and caused lipid peroxidation by inducing reactive oxygen species, thereby inhibiting the activity of enzymes involved in anaerobic fermentation. Hydrogen production was reduced because hydrogen-producing processes (i.e., hydrolysis, acidification, and acetification) were inhibited more strongly than hydrogen-consuming processes (i.e., methanogenesis, sulfate reduction, and homoacetogenesis). Furthermore, chitosan enriched the abundance of Spirochaetaceae sp. and Holophagaceae sp., which occupied the survival space of hydrogen-producing microorganisms. This study reveals the potential impact of chitosan on hydrogen production in dark fermentation of sludge and provide direct evidence that chitosan triggers oxidative stress in anaerobic fermentation.
Collapse
Affiliation(s)
- Yanchen Fan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mengyu Yin
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
37
|
Kadac-Czapska K, Knez E, Gierszewska M, Olewnik-Kruszkowska E, Grembecka M. Microplastics Derived from Food Packaging Waste-Their Origin and Health Risks. MATERIALS (BASEL, SWITZERLAND) 2023; 16:674. [PMID: 36676406 PMCID: PMC9866676 DOI: 10.3390/ma16020674] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plastics are commonly used for packaging in the food industry. The most popular thermoplastic materials that have found such applications are polyethylene (PE), polypropylene (PP), poly(ethylene terephthalate) (PET), and polystyrene (PS). Unfortunately, most plastic packaging is disposable. As a consequence, significant amounts of waste are generated, entering the environment, and undergoing degradation processes. They can occur under the influence of mechanical forces, temperature, light, chemical, and biological factors. These factors can present synergistic or antagonistic effects. As a result of their action, microplastics are formed, which can undergo further fragmentation and decomposition into small-molecule compounds. During the degradation process, various additives used at the plastics' processing stage can also be released. Both microplastics and additives can negatively affect human and animal health. Determination of the negative consequences of microplastics on the environment and health is not possible without knowing the course of degradation processes of packaging waste and their products. In this article, we present the sources of microplastics, the causes and places of their formation, the transport of such particles, the degradation of plastics most often used in the production of packaging for food storage, the factors affecting the said process, and its effects.
Collapse
Affiliation(s)
- Kornelia Kadac-Czapska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Eliza Knez
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Magdalena Gierszewska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| |
Collapse
|