1
|
Wang Z, Wang PS, Yang C. Dysregulation of Long Non-coding RNAs-the Novel lnc in Metal Toxicity and Carcinogenesis. Curr Environ Health Rep 2024; 12:3. [PMID: 39715843 PMCID: PMC11755759 DOI: 10.1007/s40572-024-00468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
PURPOSE OF REVIEW Metals are common environmental pollutants. Acute and chronic exposures to non-essential toxic metals or excessive essential metals cause various diseases including cancer in humans. However, the underlying mechanisms have not been well understood. Long non-coding RNAs (lncRNAs) refer to RNA transcripts that have more than 200 nucleotides but do not have significant protein coding capacities. While lncRNAs were once considered transcription noise, they have become increasingly recognized as crucial players in various physiological and pathogenesis processes. The goal of this article is to review and discuss recent studies that show important roles of lncRNA dysregulations in metal toxicity and carcinogenesis. RECENT FINDINGS Recent studies showed that metal exposures dysregulate expression of lncRNAs in cultured cells, animals and humas. However, only a few studies determined the mechanisms of how metal exposure dysregulated expression of lncRNAs. The majority of the studies reported the association of abnormally expressed lncRNAs with various toxic effects of metal exposures, only limited studies established causal relationships demonstrating causal roles of dysregulated lncRNAs in metal toxicity and carcinogenesis. Mechanistically, most studies reported that dysregulated lncRNAs functioned as microRNA sponges to regulate gene expression, much less studies explored other mechanisms of lncRNA actions. It is evident that metal exposures dysregulate expression of lncRNAs, which may serve as novel mediators in metal toxicity and carcinogenesis. Further studies are needed to establish dysregulated lncRNAs as potential diagnostic biomarkers and therapeutic targets for metal exposure-associated diseases.
Collapse
Affiliation(s)
- Zhishan Wang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Po-Shun Wang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Chengfeng Yang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, 11794, USA.
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 101 Nicolls Road, Stony Brook, NY, 11794, USA.
| |
Collapse
|
2
|
Xu S, Hu Z, Wang Y, Zhang Q, Wang Z, Ma T, Wang S, Wang X, Wang L. Circ_0000284 Is Involved in Arsenite-Induced Hepatic Insulin Resistance Through Blocking the Plasma Membrane Translocation of GLUT4 in Hepatocytes via IGF2BP2/PPAR-γ. TOXICS 2024; 12:883. [PMID: 39771098 PMCID: PMC11679219 DOI: 10.3390/toxics12120883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Arsenic exposure can induce liver insulin resistance (IR) and diabetes (DM), but the underlying mechanisms are not yet clear. Circular RNAs (circRNAs) are involved in the regulation of the onset of diabetes, especially in the progression of IR. This study aimed to investigate the role of circRNAs in arsenic-induced hepatic IR and its underlying mechanism. Male C57BL/6J mice were given drinking water containing sodium arsenite (0, 0.5, 5, or 50 ppm) for 12 months. The results show that sodium arsenite increased circ_0000284 expression, decreased insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) and peroxisome proliferator-activated receptor-γ (PPAR-γ), and inhibited cell membrane protein levels of insulin-responsive glucose transporter protein 4 (GLUT4) in the mouse livers, indicating that arsenic exposure causes liver damage and disruptions to glucose metabolism. Furthermore, sodium arsenite reduced glucose consumption and glycogen levels, increased the expression of circ_0000284, reduced the protein levels of IGF2BP2 and PPAR-γ, and inhibited GLUT4 protein levels in the cell membranes of insulin-treated HepG2 cells. However, a circ_0000284 inhibitor reversed arsenic exposure-induced reductions in IGF2BP2, PPAR-γ, and GLUT4 levels in the plasma membrane. These results indicate that circ_0000284 is involved in arsenite-induced hepatic insulin resistance through blocking the plasma membrane translocation of GLUT4 in hepatocytes via IGF2BP2/PPAR-γ. This study provides a scientific basis for finding early biomarkers for the control of arsenic exposure and type 2 diabetes mellitus (T2DM), and discovering new prevention and control measures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaohui Wang
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou 014040, China; (S.X.); (Z.H.); (Y.W.); (Q.Z.); (Z.W.); (T.M.); (S.W.)
| | - Li Wang
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou 014040, China; (S.X.); (Z.H.); (Y.W.); (Q.Z.); (Z.W.); (T.M.); (S.W.)
| |
Collapse
|
3
|
Li Z, Wu Z, You X, Tang N. Pan-cancer analysis reveals that TK1 promotes tumor progression by mediating cell proliferation and Th2 cell polarization. Cancer Cell Int 2024; 24:329. [PMID: 39343871 PMCID: PMC11440694 DOI: 10.1186/s12935-024-03515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND TK1 (Thymidine kinase 1) is a member of the thymidine kinase family and has been observed to be significantly upregulated in a variety of cancer types. However, the exact roles of TK1 in tumor progression and the tumor immune microenvironment are not fully understood. This study aims to investigate the comprehensive involvement of TK1 in pan-cancer through the utilization of bioinformatics analysis, validation of pathological tissue samples, and in vitro experimental investigations. METHODS The expression profiles together with diagnostic and prognostic role of TK1 in pan-cancer were investigated though TCGA, TARGET, GTEx, and CPTAC databases. The single-sample gene set enrichment analysis (ssGSEA) and single-cell sequencing datasets were used to examine the relationship between TK1 and immune infiltration. The expression of TK1 were verified in hepatocellular carcinoma (HCC) through qPCR, western blotting and immunohistochemical assays. The proliferative capacity of HCC cell lines was assessed through CCK-8 and colony formation assays, while cytokine levels were measured via ELISA. Furthermore, flow cytometry was utilized to analyze cell cycle distribution and the proportions of Th2 cells. RESULTS TK1 was overexpressed in most cancers and demonstrated significant diagnostic and prognostic value. Among the various immune cells in pan-cancer, Th2 cells exhibited the closest association with TK1. Furthermore, the single-cell atlas provided insights into the distribution and proportion of TK1 in immune cells of HCC. In vitro experiments revealed an elevated expression of TK1 in HCC tissue and cell lines, and its role in influencing HCC cell proliferation by regulating G0/G1 phase arrest. Additionally, TK1 in cancer cells was found to potentially modulate Th2 cell polarization through the chemokine CCL5. CONCLUSION TK1 holds immense potential as a biomarker for pan-cancer diagnosis and prognosis. Additionally, targeting the expression of TK1 represents a promising therapeutic approach that can enhance the efficacy of current anti-tumor immunotherapy by modulating Th2 cell polarization and multiple mechanisms.
Collapse
Affiliation(s)
- Zhecheng Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhaoyi Wu
- Department of Thyroid and Breast Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Human Normal University, Changsha, 410008, China
| | - Xing You
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Neng Tang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
4
|
Li L, Li D, Jin J, Xu F, He N, Ren Y, Wang X, Tian L, Chen B, Li X, Chen Z, Zhang L, Qiao L, Wang L, Wang J. FOSL1-mediated LINC01566 negatively regulates CD4 + T-cell activation in myasthenia gravis. J Neuroinflammation 2024; 21:197. [PMID: 39113081 PMCID: PMC11308467 DOI: 10.1186/s12974-024-03194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune disease characterized by pathogenic antibodies that target structures of the neuromuscular junction. The evidence suggests that the regulation of long noncoding RNAs (lncRNAs) that is mediated by transcription factors (TFs) plays a key role in the pathophysiology of MG. Nevertheless, the detailed molecular mechanisms of lncRNAs in MG remain largely undetermined. METHODS Using microarray analysis, we analyzed the lncRNA levels in MG. By bioinformatics analysis, LINC01566 was found to potentially play an important role in MG. First, qRT‒PCR was performed to verify the LINC1566 expressions in MG patients. Then, fluorescence in situ hybridization was conducted to determine the localization of LINC01566 in CD4 + T cells. Finally, the impact of LINC01566 knockdown or overexpression on CD4 + T-cell function was also analyzed using flow cytometry and CCK-8 assay. A dual-luciferase reporter assay was used to validate the binding of the TF FOSL1 to the LINC01566 promoter. RESULTS Based on the lncRNA microarray and differential expression analyses, we identified 563 differentially expressed (DE) lncRNAs, 450 DE mRNAs and 19 DE TFs in MG. We then constructed a lncRNA-TF-mRNA network. Through network analysis, we found that LINC01566 may play a crucial role in MG by regulating T-cell-related pathways. Further experiments indicated that LINC01566 is expressed at low levels in MG patients. Functionally, LINC01566 is primarily distributed in the nucleus and can facilitate CD4 + T-cell apoptosis and inhibit cell proliferation. Mechanistically, we hypothesized that LINC01566 may negatively regulate the expressions of DUSP3, CCR2, FADD, SIRPB1, LGALS3 and SIRPB1, which are involved in the T-cell activation pathway, to further influence the cellular proliferation and apoptosis in MG. Moreover, we found that the effect of LINC01566 on CD4 + T cells in MG was mediated by the TF FOSL1, and in vitro experiments indicated that FOSL1 can bind to the promoter region of LINC01566. CONCLUSIONS In summary, our research revealed the protective roles of LINC01566 in clinical samples and cellular experiments, illustrating the potential roles and mechanism by which FOSL1/LINC01566 negatively regulates CD4 + T-cell activation in MG.
Collapse
Affiliation(s)
- Lifang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Danyang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Jingnan Jin
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Fanfan Xu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Ni He
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yingjie Ren
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiaokun Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Liting Tian
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Biying Chen
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiaoju Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Zihong Chen
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Lanxin Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Lukuan Qiao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
5
|
Gao R, Mao J. Noncoding RNA-Mediated Epigenetic Regulation in Hepatic Stellate Cells of Liver Fibrosis. Noncoding RNA 2024; 10:44. [PMID: 39195573 DOI: 10.3390/ncrna10040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Liver fibrosis is a significant contributor to liver-related disease mortality on a global scale. Despite this, there remains a dearth of effective therapeutic interventions capable of reversing this condition. Consequently, it is imperative that we gain a comprehensive understanding of the underlying mechanisms driving liver fibrosis. In this regard, the activation of hepatic stellate cells (HSCs) is recognized as a pivotal factor in the development and progression of liver fibrosis. The role of noncoding RNAs (ncRNAs) in epigenetic regulation of HSCs transdifferentiation into myofibroblasts has been established, providing new insights into gene expression changes during HSCs activation. NcRNAs play a crucial role in mediating the epigenetics of HSCs, serving as novel regulators in the pathogenesis of liver fibrosis. As research on epigenetics expands, the connection between ncRNAs involved in HSCs activation and epigenetic mechanisms becomes more evident. These changes in gene regulation have attracted considerable attention from researchers in the field. Furthermore, epigenetics has contributed valuable insights to drug discovery and the identification of therapeutic targets for individuals suffering from liver fibrosis and cirrhosis. As such, this review offers a thorough discussion on the role of ncRNAs in the HSCs activation of liver fibrosis.
Collapse
Affiliation(s)
- Ruoyu Gao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
6
|
Long N, Sun RL, Lai QH, Lu MY, Li XH, Chen YN, Zhu DY. HOTAIR/miR-1277-5p/FBN2 signaling axis is involved in recurrent spontaneous abortion by regulating the growth, migration, and invasion of HTR-8/SVneo cells†. Biol Reprod 2024; 111:135-147. [PMID: 38401166 DOI: 10.1093/biolre/ioae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/09/2024] [Accepted: 02/23/2024] [Indexed: 02/26/2024] Open
Abstract
OBJECTIVE This study aimed to explore the specific pathways by which HOX transcript antisense intergenic RNA contributes to the pathogenesis of unexplained recurrent spontaneous abortion. METHODS Real-time quantitative PCR was employed to assess the differential expression levels of HOX transcript antisense intergenic RNA in chorionic villi tissues from unexplained recurrent spontaneous abortion patients and women with voluntarily terminated pregnancies. HTR-8/SVneo served as a cellular model. Knockdown and overexpression of HOX transcript antisense intergenic RNA in the cells were achieved through siRNA transfection and pcDNA3.1 transfection, respectively. Cell viability, migration, and invasion were evaluated using cell counting kit-8, scratch, and Transwell assays, respectively. The interaction among the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 axis was predicted through bioinformatics analysis and confirmed through in vitro experiments. Furthermore, the regulatory effects of the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 signaling axis on cellular behaviors were validated in HTR-8/SVneo cells. RESULTS We found that HOX transcript antisense intergenic RNA was downregulated in chorionic villi tissues from unexplained recurrent spontaneous abortion patients. Overexpression of HOX transcript antisense intergenic RNA significantly enhanced the viability, migration, and invasion of HTR-8/SVneo cells, while knockdown of HOX transcript antisense intergenic RNA had the opposite effects. We further confirmed the regulatory effect of the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 signaling axis in unexplained recurrent spontaneous abortion. Specifically, HOX transcript antisense intergenic RNA and fibrillin 2 were found to reduce the risk of unexplained recurrent spontaneous abortion by enhancing cell viability, migration, and invasion, whereas miR-1277-5p exerted the opposite effects. CONCLUSION HOX transcript antisense intergenic RNA promotes unexplained recurrent spontaneous abortion development by targeting inhibition of miR-1277-5p/fibrillin 2 axis.
Collapse
Affiliation(s)
- Na Long
- Department of Reproductive Health, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Ru-Liang Sun
- Department of Pathology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Qing-Hua Lai
- Department of Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Mei-Yin Lu
- Department of Sample Library, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Xiao-Hong Li
- Department of Reproductive Health, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Yan-Na Chen
- Department of Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Dong-Yan Zhu
- Department of Sample Library, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Xie D, Wang P, Chen W, Lin J, Wu M, Wang Y, Xia H, Cheng C, Ye F, Syed BM, Liu Q. Urea cycle promotion via ammonia-upregulated CPS1 is involved in arsenite-induced pulmonary fibrosis through enhancing collagen synthesis. Chem Biol Interact 2024; 396:111029. [PMID: 38703806 DOI: 10.1016/j.cbi.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Arsenic exposure is connected with lung toxicity and is related to lung fibrotic changes. Idiopathic pulmonary fibrosis (IPF) is characterized by extracellular matrix (ECM) deposition. Various genetic mechanisms and environmental factors induce or exacerbate pulmonary fibrosis. Collagen synthesis induced by sodium arsenite (NaAsO2) is closely associated with IPF. Fibroblasts tend to fine-tune their metabolic networks to support their synthetic requirements in response to environmental stimuli. Alterations in metabolism have an influential role in the pathogenesis of IPF. However, it is unclear how arsenic affects the metabolism in IPF. The urea cycle (UC) is needed for collagen formation, which provides adequate levels of proline (Pro) for biosynthesis of collagen. Carbamoyl phosphate synthetase 1 (CPS1) converts the ammonia to carbamoyl phosphate, which controls the first reaction of the UC. We show that, in arsenite-exposed mice, high amounts of ammonia in the lung microenvironment promotes the expression levels of CPS1 and the Pro metabolism. Reduction of ammonia and CPS1 ablation inhibit collagen synthesis and ameliorate IPF phenotypes induced by arsenite. This work takes advantage of multi-omics data to enhance understanding of the underlying pathogenic mechanisms, the key molecules and the complicated cellular responses to this pollutant, which provide a target for the prevention of pulmonary fibrosis caused by arsenic.
Collapse
Affiliation(s)
- Daxiao Xie
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Weiyong Chen
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jiaheng Lin
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yue Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; School of Public Health, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Fuping Ye
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Binafsha Manzoor Syed
- Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro, 76090, Sindh, Pakistan.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Li H, Guo Y, Su W, Zhang H, Wei X, Ma X, Gong S, Qu G, Zhang L, Xu H, Shen F, Jiang S, Xu D, Li J. The mitochondria-targeted antioxidant MitoQ ameliorates inorganic arsenic-induced DCs/Th1/Th2/Th17/Treg differentiation partially by activating PINK1-mediated mitophagy in murine liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116350. [PMID: 38653026 DOI: 10.1016/j.ecoenv.2024.116350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Inorganic arsenic is a well-established environmental toxicant linked to acute liver injury, fibrosis, and cancer. While oxidative stress, pyroptosis, and ferroptosis are known contributors, the role of PTEN-induced kinase 1 (PINK1)-mediated mitophagy in arsenic-induced hepatic immunotoxicity remains underexplored. Our study revealed that acute arsenic exposure prompts differentiation of hepatic dendritic cells (DCs) and T helper (Th) 1, Th2, Th17, and regulatory T (Treg) cells, alongside increased transcription factors and cytokines. Inorganic arsenic triggered liver redox imbalance, leading to elevated alanine transaminase (ALT), hydrogen peroxide (H2O2), malondialdehyde (MDA), and activation of nuclear factor erythroid 2-related factor (Nrf2)/heme oxygenase-1 (HO-1) pathway. PINK1-mediated mitophagy was initiated, and its inhibition exacerbates H2O2 accumulation while promoting DCs/Th1/Th2/Treg differentiation in the liver of arsenic-exposed mice. Mitoquinone (MitoQ) pretreatment relieved arsenic-induced acute liver injury and immune imbalance by activating Nrf2/HO-1 and PINK1-mediated mitophagy. To our knowledge, this is the first report identifying PINK1-mediated mitophagy as a protective factor against inorganic arsenic-induced hepatic DCs/Th1/Th2 differentiation. This study has provided new insights on the immunotoxicity of inorganic arsenic and established a foundation for exploring preventive and therapeutic strategies targeting PINK1-mediated mitophagy in acute liver injury. Consequently, the application of mitochondrial antioxidant MitoQ may offer a promising treatment for the metalloid-induced acute liver injury.
Collapse
Affiliation(s)
- Hui Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Yaning Guo
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Wei Su
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Huan Zhang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Xiaoxi Wei
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Xinyu Ma
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Shuwen Gong
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Gaoyang Qu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Lin Zhang
- Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu, Anhui Province 241000, PR China
| | - Hong Xu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Fuhai Shen
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Shoufang Jiang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Dingjie Xu
- College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, Hebei Province, 063210, PR China.
| | - Jinlong Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China.
| |
Collapse
|
9
|
Zhang Y, Tian T, Liang C, Wang J, Zhang J, Tian S, Xie R, Yang T, Han B. Lysine specific demethylase 1 inhibits sodium arsenite activation of HSCs by regulating SESN2/AMPK/ULK1 signaling pathway activity. ENVIRONMENTAL TOXICOLOGY 2024; 39:3563-3577. [PMID: 38477077 DOI: 10.1002/tox.24184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/10/2024] [Accepted: 02/10/2024] [Indexed: 03/14/2024]
Abstract
Lysine specific demethylase 1 (LSD1) is a histone demethylase that specifically catalyzes the demethylation of histone H3K4 (H3K4me1/2) and regulates gene expression. In addition, it can mediate the process of autophagy through its demethylase activity. Sestrin2 (SESN2) is a stress-induced protein and a positive regulator of autophagy. In NaAsO2-induced mouse fibrotic livers and activated hepatic stellate cells (HSCs), LSD1 expression is decreased, SESN2 expression is increased, and autophagy levels are also increased. Overexpression of LSD1 and silencing of SESN2 decreased the level of autophagy and attenuated the activation of HSCs induced by NaAsO2. LSD1 promoted SESN2 gene transcription by increasing H3K4me1/2 in the SESN2 promoter region. 3-methyladenine (3-MA) and chloroquine were used to inhibit autophagy of HSCs, and the degree of activation was also alleviated. Taken together, LSD1 positively regulates SESN2 by increasing H3K4me1/2 enrichment in the SESN2 promoter region, which in turn increases the level of autophagy and promotes the activation of HSCs. Our results may provide new evidence for the importance of LSD1 in the process of autophagy and activation of HSCs induced by arsenic poisoning. Increasing the expression and activity of LSD1 is expected to be an effective way to reverse the autophagy and activation of HSCs induced by arsenic poisoning.
Collapse
Affiliation(s)
- Yingwan Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tian Tian
- Department of Eugenic Genetics, Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou, China
| | - Cai Liang
- Southwest Hospital, Army Medical University, Chongqing, China
| | - Junli Wang
- The Second People's Hospital of Guiyang, Guizhou, China
| | - Jiayuan Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shanshan Tian
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Rujia Xie
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bing Han
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
10
|
Topchieva LV, Kurbatova IV, Dudanova OP, Vasileva AV, Zhulai GA. Immune cell balance as potential biomarker of progressing non-alcoholic fatty liver disease. GENES & CELLS 2024; 19:105-125. [DOI: 10.17816/gc610252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a widespread chronic, slowly progressive metabolic multifactorial disease. It is represented by several clinical and morphological forms: steatosis, nonalcoholic steatohepatitis (NASH) (with or without fibrosis), and liver cirrhosis. The search for minimally invasive and cost-effective biomarkers of NAFLD is a key task in the diagnosis, staging of progression, and long-term monitoring of NAFLD. This article discusses the possibility of using immune cell balance as potential minimally invasive peripheral markers of NAFLD progression. In the progression of NASH from steatosis to fibrosis and cirrhosis, inflammation plays an important role because of the activation of Kupffer cells and increased migration of monocytes, dendritic cells, neutrophils, and activated T lymphocytes into the tissues. Macrophages originating from monocytes, with NASH progression, gradually begin to prevail over the pool of resident macrophages. The risk of NASH and fibrosis development in patients with NAFLD increases with the ratio of neutrophils/lymphocytes in the liver. An increase in the Th17 cell count and a decrease in T-regulatory cell count can contribute to increased hepatic steatosis and inflammation development in NAFLD and accelerate the transition from simple steatosis to steatohepatitis and fibrosis. Information on the participation of noncoding RNAs in the regulation of the balance of immune cells in NAFLD is presented, which also allows us to consider them as additional, along with cellular, markers of disease progression.
Collapse
|
11
|
Xu SJ, Chen JH, Chang S, Li HL. The role of miRNAs in T helper cell development, activation, fate decisions and tumor immunity. Front Immunol 2024; 14:1320305. [PMID: 38264670 PMCID: PMC10803515 DOI: 10.3389/fimmu.2023.1320305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
T helper (Th) cells are central members of adaptive immunity and comprise the last line of defense against pathogen infection and malignant cell invasion by secreting specific cytokines. These cytokines then attract or induce the activation and differentiation of other immune cells, including antibody-producing B cells and cytotoxic CD8+ T cells. Therefore, the bidirectional communication between Th cells and tumor cells and their positioning within the tumor microenvironment (TME), especially the tumor immune microenvironment (TIME), sculpt the tumor immune landscape, which affects disease initiation and progression. The type, number, and condition of Th cells in the TME and TIME strongly affect tumor immunity, which is precisely regulated by key effectors, such as granzymes, perforins, cytokines, and chemokines. Moreover, microRNAs (miRNAs) have emerged as important regulators of Th cells. In this review, we discuss the role of miRNAs in regulating Th cell mediated adaptive immunity, focusing on the development, activation, fate decisions, and tumor immunity.
Collapse
Affiliation(s)
- Shi-Jun Xu
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
- Henan Medical Device Engineering Research Center of Interventional Therapy for Non-vascular Tumors, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jin-Hua Chen
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Suhwan Chang
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hai-Liang Li
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
- Henan Medical Device Engineering Research Center of Interventional Therapy for Non-vascular Tumors, Henan Cancer Hospital, Zhengzhou, Henan, China
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Hu F, Zhou X, Peng Q, Ma L. Suppressed Histone H3 Lysine 18 Acetylation Is Involved in Arsenic-Induced Liver Fibrosis in Rats by Triggering the Dedifferentiation of Liver Sinusoidal Endothelial Cells. TOXICS 2023; 11:928. [PMID: 37999580 PMCID: PMC10675694 DOI: 10.3390/toxics11110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
Arsenic pollution is a global environmental concern. Arsenic-induced chronic liver injury and its irreversible outcomes, including liver cirrhosis and liver cancer, threaten the health of residents in arsenic-contaminated areas. Liver fibrosis is a reversible pathological stage in the progression of arsenic-induced chronic liver injury to cirrhosis and liver cancer. The aim of this study is to identify the epigenetic mechanism of arsenic-induced liver fibrosis based on the dedifferentiation of liver sinusoidal endothelial cells (LSECs). Rats were treated with 0.0, 2.5, 5.0, or 10.0 mg/kg sodium arsenite for 36 weeks. Marked fibrotic phenotypes were observed in the rat livers, manifested by hepatic stellate cell activation and an increased extracellular matrix, as well as the deposition of collagen fibers. The reduced fenestrations on the cells' surface and the increased expression of the dedifferentiation marker CD31 corroborated the LSECs' dedifferentiation in the liver tissue, which was also found to be significantly associated with fibrotic phenotypes. We further revealed that arsenic exposure could inhibit the enrichment of histone H3 lysine 18 acetylation (H3K18ac) in the promoters of Fcgr2b and Lyve1, two key genes responsible for maintaining the differentiation phenotype of LSECs. This inhibition subsequently suppressed the genes' expression, promoting LSEC dedifferentiation and subsequent liver fibrosis. In conclusion, arsenic can trigger liver fibrosis by inhibiting H3K18ac-dependent maintenance of LSEC differentiation. These findings uncover a novel mechanism of arsenic-induced liver fibrosis based on a new insight into epigenetically dependent LSEC dedifferentiation.
Collapse
Affiliation(s)
- Fang Hu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (F.H.); (X.Z.); (Q.P.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 550025, China
| | - Xingcheng Zhou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (F.H.); (X.Z.); (Q.P.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 550025, China
| | - Qianqian Peng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (F.H.); (X.Z.); (Q.P.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 550025, China
| | - Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (F.H.); (X.Z.); (Q.P.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
13
|
Yang H, Mo M, Yang L, Yu J, Li J, Cheng S, Sun B, Xu B, Zhang A, Luo H. A Novel Quinazoline Derivative Prevents and Treats Arsenic-Induced Liver Injury by Regulating the Expression of RecQ Family Helicase. Int J Mol Sci 2023; 24:15521. [PMID: 37958505 PMCID: PMC10647758 DOI: 10.3390/ijms242115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Arsenic is a carcinogenic metalloid toxicant widely found in the natural environment. Acute or prolonged exposure to arsenic causes a series of damages to the organs, mainly the liver, such as hepatomegaly, liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Therefore, it is imperative to seek drugs to prevent arsenic-induced liver injury. Quinazolines are a class of nitrogen heterocyclic compounds with biological and pharmacological effects in vivo and in vitro. This study was designed to investigate the ameliorating effects of quinazoline derivatives on arsenic-induced liver injury and its molecular mechanism. We investigated the mechanism of the quinazoline derivative KZL-047 in preventing and ameliorating arsenic-induced liver injury in vitro by cell cycle and apoptosis. We performed real-time fluorescence quantitative polymerase chain reaction (qPCR) and Western blotting combined with molecular docking. In vivo, the experiments were performed to investigate the mechanism of KZL-047 in preventing and ameliorating arsenic-induced liver injury using arsenic-infected mice. Physiological and biochemical indices of liver function in mouse serum were measured, histopathological changes in liver tissue were observed, and immunohistochemical staining was used to detect changes in the expression of RecQ-family helicases in mouse liver tissue. The results of in vitro experiments showed that sodium arsenite (SA) inhibited the proliferation of L-02 cells, induced apoptosis, blocked the cell cycle at the G1 phase, and decreased the expression of RecQ family helicase; after KZL-047 treatment in arsenic-induced L-02 cells, the expression of RecQ family helicase was upregulated, and the apoptosis rate was slowed, leading to the restoration of the cell viability level. KZL-047 inhibited arsenic-induced oxidative stress, alleviated oxidative damage and lipid peroxidation in vivo, and ameliorated arsenic toxicity-induced liver injury. KZL-047 restored the expression of RecQ family helicase proteins, which is consistent with the results of in vitro studies. In summary, KZL-047 can be considered a potential candidate for the treatment of arsenic-induced liver injury.
Collapse
Affiliation(s)
- Heping Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China (M.M.); (B.S.)
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.); (B.X.)
| | - Min Mo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China (M.M.); (B.S.)
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.); (B.X.)
| | - Langlang Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China (M.M.); (B.S.)
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.); (B.X.)
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, China
| | - Jiao Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.); (B.X.)
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.); (B.X.)
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China (M.M.); (B.S.)
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.); (B.X.)
| | - Bixue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.); (B.X.)
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China (M.M.); (B.S.)
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.); (B.X.)
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, China
| |
Collapse
|
14
|
Sun J, Wu L, Wu M, Liu Q, Cao H. Non-coding RNA therapeutics: Towards a new candidate for arsenic-induced liver disease. Chem Biol Interact 2023; 382:110626. [PMID: 37442288 DOI: 10.1016/j.cbi.2023.110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Arsenic, a metalloid toxicant, has caused serious environmental pollution and is presently a global health issue. Long-term exposure to arsenic causes diverse organ and system dysfunctions, including liver disease. Arsenic-induced liver disease comprises a spectrum of liver pathologies, ranging from hepatocyte damage, steatosis, fibrosis, to hepatocellular carcinoma. Various mechanisms, including an imbalance in redox reactions, mitochondrial dysfunction and epigenetic changes, participate in the pathogenesis of arsenic-induced liver disease. Altered epigenetic processes involved in its initiation and progression. Dysregulated modulations of non-coding RNAs (ncRNAs), including miRNAs, lncRNAs and circRNAs, exert regulating effects on these processes. Here, we have reviewed the underlying pathogenic mechanisms that lead to progressive arsenic-induced liver disease, and we provide a discussion focusing on the effects of ncRNAs on dysfunctions in intercellular communication and on the activation of hepatic stellate cells and malignant transformation of hepatocytes. Further, we have discussed the roles of ncRNAs in intercellular communication via extracellular vesicles and cytokines, and have provided a perspective for the application of ncRNAs as biomarkers in the early diagnosis and evaluation of the pathogenesis of arsenic-induced liver disease. Further investigations of ncRNAs will help us to understand the nature of arsenic-induced liver disease and to identify biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jing Sun
- Department of Nutrition, Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| | - Hong Cao
- Department of Nutrition, Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Ruan L, Lei J, Yuan Y, Li H, Yang H, Wang J, Zhang Q. MIR31HG, a potential lncRNA in human cancers and non-cancers. Front Genet 2023; 14:1145454. [PMID: 37636269 PMCID: PMC10449471 DOI: 10.3389/fgene.2023.1145454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Long non-coding RNAs have recently attracted considerable attention due to their aberrant expression in human diseases. LncMIR31HG is a novel lncRNA that is abnormally expressed in multiple diseases and implicated in various stages of disease progression. A large proportion of recent studies have indicated that MIR31HG has biological functions by triggering various signalling pathways in the pathogenesis of human diseases, especially cancers. More importantly, the abnormal expression of MIR31HG makes it a potential biomarker in diagnosis and prognosis, as well as a promising target for treatments. This review aims to systematically summarize the gene polymorphism, expression profiles, biological roles, underlying mechanisms, and clinical applications of MIR31HG in human diseases.
Collapse
Affiliation(s)
- Luxi Ruan
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Lei
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yihang Yuan
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huizi Li
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Yang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyan Wang
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Quanan Zhang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|