1
|
Tripathi A, Ekanayake A, Tyagi VK, Vithanage M, Singh R, Rao YRS. Emerging contaminants in polluted waters: Harnessing Biochar's potential for effective treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123778. [PMID: 39721395 DOI: 10.1016/j.jenvman.2024.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Biochar is a carbon-rich, sponge-like material with intricate functionalities, making it suitable for various environmental remediation applications, including water treatment, soil amendment and, additives in construction materials, anaerobic digesters, and electrodes, among others. Its easy adaptability and low cost make it particularly attractive. This review highlights a range of biochar and surface-modified biochar exhibiting high uptake and degradation efficiencies for a broad spectrum of contaminants, including humic acid, disinfection by-products (DBPs), radioactive materials, dyes, heavy metals, antibiotics, microplastics, pathogens, Per- and polyfluoroalkyl substances (PFAS), and cytotoxins. The study provides a detailed discussion on different classes of pollutants and their removal mechanisms using biochar, covering processes like physical and chemical adsorption, electrostatic interactions, π-π interactions, hydrogen bonding, as well as surface complexation, chelation, among others. This review article stands out for its comprehensive exploration of biochar's effectiveness in removing a wide range of emerging contaminants, as well as recent advancements in the removal of conventional pollutants like heavy metals and antibiotics.
Collapse
Affiliation(s)
- Abhilasha Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India
| | - Anusha Ekanayake
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India.
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, 248007, India; Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| | - Y R S Rao
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| |
Collapse
|
2
|
Li H, Liu Y, TaoYuan, Liu Y, Li T, Yan J, Yang C. Insights into the characteristics and toxicity of microalgal biochar-derived dissolved organic matter by spectroscopy and machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177648. [PMID: 39566617 DOI: 10.1016/j.scitotenv.2024.177648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Microalgal biochar has potential applications in various fields; however, there is limited research on the properties and risks of microalgal biochar-derived dissolved organic matter (MBDOM). This study examined how different pyrolysis temperatures (200 °C and 500 °C) and extraction solutions (0.1 mol/L HCl, Milli-Q water, and 0.1 mol/L NaOH) affect the characteristics and toxicity of MBDOM from three microalgae using multi-spectroscopy methods. Results showed that higher pyrolysis temperature reduced dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) but increased total potassium (TK) in the MBDOM. Alkaline solution promoted DOC and TN dissolution, while acidic solutions enhanced TP and TK release from biochar. The molecular weight, aromaticity, and fluorescent composition of MBDOM varied based on pyrolysis temperature, extraction solution, and microalgae species. MBDOM from low pyrolysis temperature and alkaline extraction exhibited significant toxicity to Photobacterium phosphoreum T3. Correlation analysis and machine learning revealed that pyrolysis temperature had a greater influence on the characteristics and toxicity of MBDOM than the extraction solution. The toxicity of MBDOM was primarily associated with TN and DOC contents and also influenced by molecular weight, aromaticity, and humification. These findings are essential for optimizing microalgal biochar production and application.
Collapse
Affiliation(s)
- Hongjia Li
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China
| | - Yangzhi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - TaoYuan
- Zhoushan Dinghai Ecological Environment Monitoring Station (Zhoushan Dinghai Ecological Environment Protection Technology Service Center), Zhoushan 316000, China
| | - Yuxue Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tiejun Li
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China
| | - Jun Yan
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China.
| | - Chenghu Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Guo B, Kan E, Zeng S. Enhanced adsorption of aqueous perfluorooctanoic acid on iron-functionalized biochar: elucidating the roles of inner-sphere complexation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176926. [PMID: 39426545 DOI: 10.1016/j.scitotenv.2024.176926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/16/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Perfluorooctanoic acid (PFOA) is ubiquitously detected in various water bodies, which raises the urgent need for developing effective and economic remediation methods in response to its health risks. The adsorptive removal of PFOA by biochar (BC) is regarded as a simple, effective, and economical technique. However, engineered BCs, including FeCl3-activated BC, for PFOA removal and adsorption mechanisms have been ill-studied. In this study, a FeCl3-activated dairy manure-derived biochar (Fe@MBC) was prepared via one-step pyrolysis/activation, and its properties and adsorption characteristics were compared with a pristine manure-derived biochar (P-MBC). The FeCl3 activation largely increased the surface area of Fe@MBC and the deposition of FexOy minerals on surface of Fe@MBC while significantly elevating the surface roughness of Fe@MBC. The maximum adsorption capacity of Fe@MBC for PFOA (233 mg·g-1) was five times higher than that of P-MBC (46 mg·g-1). PFOA adsorption was favorable at low solution pH and was independent on ionic strength, which supported the major contribution by inner-sphere complexation rather than out-sphere complexation. This mechanism was further confirmed by the disappearance of FeO peak on Fourier transform infrared spectrum and the blue-shift of Fe binding energies on X-ray photoelectron Fe 2p spectrum of Fe@MBC after PFOA adsorption. Fe@MBC maintained a near 100% adsorption capacity for PFOA after 4 cycles of chemical regeneration. Fe@MBC also exhibited efficient removal for PFOA and other PFAS compounds at trace levels in the lake water and wastewater treatment plant effluent. Thus, this study highlights a promising insight for selectively eliminating PFASs from water.
Collapse
Affiliation(s)
- Binglin Guo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843, USA; Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX 76401, USA
| | - Eunsung Kan
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX 76401, USA.
| | - Shengquan Zeng
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX 76401, USA; School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
| |
Collapse
|
4
|
Teng B, Zhao Z, Xia L, Wu J, Wang H. Progress on the removal of PFAS contamination in water by different forms of iron-modified biochar. CHEMOSPHERE 2024; 369:143844. [PMID: 39612997 DOI: 10.1016/j.chemosphere.2024.143844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) contamination poses a significant threat to human health. Iron-modified biochar is an eco-friendly, cost-effective, and efficient adsorption material. There is a beneficial interaction between iron groups and biochar to remove PFAS from water through adsorption and degradation. The removal mechanism of the iron-modified biochar mainly includes advanced oxidation, iron group reduction, and adsorption. The adsorption mechanism shifted from being dominated by hydrophobic interactions to electrostatic interactions and ion exchange. Different forms of iron-modified biochar showed excellent removal of short-chain PFAS, which is not found in other modified biochar. Few existing studies have systematically investigated the role of various forms of iron-modified biochar in PFAS removal. Accordingly, this review explores the following areas, the synthesis methods of different forms of iron-modified biochar, the removal effect on long and short-chain PFAS, the key factors affecting removal capacity and the mechanisms of their interaction, the mechanism of PFAS removal, and the regeneration capacity of the composites. In this study, the potential of different forms of iron-modified biochar for PFAS remediation was explored in depth. To provide new ideas for subsequent studies of PFAS removal using iron-modified biochar.
Collapse
Affiliation(s)
- Binglu Teng
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Zhao
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Liling Xia
- Nanjing Vocat Univ Ind Technol, Nanjing, 400054, China
| | - Jiangxuan Wu
- Business School, Institute of Planning and Decision Making, Hohai University, Nanjing, 211100, China
| | - Hailong Wang
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
5
|
Guo C, Hu S, Cheng P, Cheng K, Yang Y, Chen G, Wang Q, Wang Y, Liu T. Speciation and biogeochemical behavior of perfluoroalkyl acids in soils and their environmental implications: A review. ECO-ENVIRONMENT & HEALTH 2024; 3:505-515. [PMID: 39605968 PMCID: PMC11599973 DOI: 10.1016/j.eehl.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 11/29/2024]
Abstract
Perfluoroalkyl acids (PFAAs) are emerging organic pollutants that have attracted significant attention in the fields of environmental chemistry and toxicology. Although PFAAs are pervasive in soils and sediments, there is a paucity of research regarding their environmental forms and driving mechanisms. This review provides an overview of the classification and biotoxicity of per- and polyfluoroalkyl substances (PFAS), organic pollutant forms, PFAS extraction and analytical methods, the prediction of PFAS distribution in soils, and current PFAS remediation strategies. Four predominant PFAA forms have been proposed in soils: (i) aqueous-extracted PFAAs, (ii) organic-solvent extracted PFAAs, (iii) embedded or sequestered PFAAs, and (iv) covalently bound PFAAs. Furthermore, it suggests suitable extraction methods and predictive models for different PFAA forms, which are instrumental in the research on PFAA speciation and prediction in soils. Simultaneously, it was proposed that elemental cycling and microbial activity may affect the speciation of PFAS. Additionally, the categorization of PFAA forms facilitated the analysis of pollution remediation. Understanding the interplay between PFAA speciation, element cycling, and bacterial activity during soil remediation is essential for understanding remediation mechanisms and assessing the long-term stability of remediation methods. Future studies should expand the investigation of varying PFAA forms in different media, consider the potential binding forms of PFAAs to minerals, organic matter, and microbes, and evaluate the possible mechanisms of PFAA speciation variation.
Collapse
Affiliation(s)
| | | | - Pengfei Cheng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kuan Cheng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ying Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
6
|
Fini EH, Kazemi M, Poulikakos L, Lazorenko G, Akbarzade V, Lamanna A, Lammers P. Perspectives on innovative non-fertilizer applications of sewage sludge for mitigating environmental and health hazards. COMMUNICATIONS ENGINEERING 2024; 3:178. [PMID: 39604550 PMCID: PMC11603199 DOI: 10.1038/s44172-024-00298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
As waste production increases and resources become limited, sewage sludge presents a valuable resource with potential beyond traditional land use and incineration. This review emphasizes exploring innovative non-fertilizer applications of sewage sludges and advocates for viewing wastewater treatment plants as sources of valuable feedstock and carbon sequestration. Innovative uses include integrating sewage sludge into construction materials such as asphalt pavements, geopolymer, cementitious composites, and masonry blocks. These methods not only immobilize heavy metals and mitigate environmental hazards but also support carbon sequestration, contrasting with incineration and land application methods that release carbon into the atmosphere. The review also addresses emerging technologies like bio-adhesives, bio-binders for asphalt, hydrogels, bioplastics, and corrosion inhibitors. It highlights the recovery of valuable materials from sewage sludge, including phosphorus, oils, metals, cellulose, and polyhydroxyalkanoates as well as enzyme production. By focusing on these non-fertilizer applications, this review presents a compelling case for re-envisioning wastewater treatment plants as sources of valuable feedstock and carbon sequestration, supporting global efforts to manage waste effectively and enhance sustainability.
Collapse
Affiliation(s)
- Elham H Fini
- Arizona State University, 660 S. College Avenue, Tempe, AZ, 85287, USA.
| | | | - Lily Poulikakos
- EMPA Materials Science and Technology, Ueberlandstrasse, 1298600, Dübendorf, Switzerland
| | - Georgy Lazorenko
- Novosibirsk State University, Pirogov Street, 2, Novosibirsk, 630090, Russia
| | - Vajiheh Akbarzade
- University of Doha for Science and Technology, 24449 Arab League St, Doha, Qatar
| | - Anthony Lamanna
- Arizona State University, 660 S. College Avenue, Tempe, AZ, 85287, USA
| | - Peter Lammers
- Arizona State University, 660 S. College Avenue, Tempe, AZ, 85287, USA
| |
Collapse
|
7
|
Nasrollahpour S, Tanhadoust A, Pulicharla R, Brar SK. Long-chain perfluoroalkyl carboxylic acids removal by biochar: Experimental study and uncertainty based data-driven predictive model. iScience 2024; 27:111140. [PMID: 39502287 PMCID: PMC11536053 DOI: 10.1016/j.isci.2024.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Given the persistence and toxicity of long-chain perfluoroalkyl carboxylic acids (PFCAs) and their rising concentrations, there is an urgent need for effective removal strategies. This study investigated the adsorptive removal of PFCAs, specifically perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA), using biochar derived from wood and compost. Factors such as biochar size, weight, and initial PFCA concentrations were analyzed to assess their impact on adsorption efficiency over time. The adsorption of PFDA and PFNA reached 90.13% and 85.8%, respectively, at an initial concentration of 500 μg/L. Advanced machine learning techniques, specifically deep neural networks, were employed to model adsorption behavior, incorporating noise injection to account for data uncertainties and preventing overfitting. Results demonstrated the superior performance of compost-derived biochar due to its higher aromaticity and functional group availability. The longer chain length of PFDA contributed to its higher adsorption efficiency compared to PFNA.
Collapse
Affiliation(s)
- Sepideh Nasrollahpour
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
| | - Amin Tanhadoust
- Department of Civil Engineering, Isfahan University of Technology (IUT), Isfahan, Iran
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
8
|
Liang D, Li C, Chen H, Sørmo E, Cornelissen G, Gao Y, Reguyal F, Sarmah A, Ippolito J, Kammann C, Li F, Sailaukhanuly Y, Cai H, Hu Y, Wang M, Li X, Cui X, Robinson B, Khan E, Rinklebe J, Ye T, Wu F, Zhang X, Wang H. A critical review of biochar for the remediation of PFAS-contaminated soil and water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:174962. [PMID: 39059650 DOI: 10.1016/j.scitotenv.2024.174962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) present significant environmental and health hazards due to their inherent persistence, ubiquitous presence in the environment, and propensity for bioaccumulation. Consequently, the development of efficacious remediation strategies for soil and water contaminated with PFAS is imperative. Biochar, with its unique properties, has emerged as a cost-effective adsorbent for PFAS. Despite this, a comprehensive review of the factors influencing PFAS adsorption and immobilization by biochar is lacking. This narrative review examines recent findings indicating that the application of biochar can effectively immobilize PFAS, thereby mitigating their environmental transport and subsequent ecological impact. In addition, this paper reviewed the sorption mechanisms of biochar and the factors affecting its sorption efficiency. The high effectiveness of biochars in PFAS remediation has been attributed to their high porosity in the right pore size range (>1.5 nm) that can accommodate the relatively large PFAS molecules (>1.02-2.20 nm), leading to physical entrapment. Effective sorption requires attraction or bonding to the biochar framework. Binding is stronger for long-chain PFAS than for short-chain PFAS, as attractive forces between long hydrophobic CF2-tails more easily overcome the repulsion of the often-anionic head groups by net negatively charged biochars. This review summarizes case studies and field applications highlighting the effectiveness of biochar across various matrices, showcasing its strong binding with PFAS. We suggest that research should focus on improving the adsorption performance of biochar for short-chain PFAS compounds. Establishing the significance of biochar surface electrical charge in the adsorption process of PFAS is necessary, as well as quantifying the respective contributions of electrostatic forces and hydrophobic van der Waals forces to the adsorption of both short- and long-chain PFAS. There is an urgent need for validation of the effectiveness of the biochar effect in actual environmental conditions through prolonged outdoor testing.
Collapse
Affiliation(s)
- Dezhan Liang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Caibin Li
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Hanbo Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Yurong Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ajit Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jim Ippolito
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
| | - Claudia Kammann
- Department of Applied Ecology, Geisenheim University, 65366 Geisenheim, Germany
| | - Fangbai Li
- Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yerbolat Sailaukhanuly
- Laboratory of Engineering Profile, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| | - Heqing Cai
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Yan Hu
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Maoxian Wang
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Xinglan Cui
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Resources and Environmental Technology Corporation Limited, Beijing 101407, China
| | - Brett Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Tingjin Ye
- IronMan Environmental Technology Co., Ltd., Foshan 528041, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
9
|
Adewuyi A, Li Q. Per- and polyfluoroalkyl substances contamination of drinking water sources in Africa: Pollution sources and possible treatment methods. CHEMOSPHERE 2024; 365:143368. [PMID: 39306102 DOI: 10.1016/j.chemosphere.2024.143368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Despite the detection of poly- and perfluorinated alkyl substances (PFAS) in the water system in Africa, the effort towards mitigating PFAS in water in Africa needs to be better understood. Therefore, this review evaluated the contamination status and mitigation methods for handling PFAS-contaminated water systems in Africa. The findings revealed the presence of PFAS in wastewater treatment plant (WWTP) effluents, surface water and commercially available bottled and tap water in African countries. The concentration of PFAS in drinking water sources reviewed ranged from < limits of quantification to 778 ng L-1. The sources of PFAS in water systems in Africa are linked to uncontrolled importation of PFAS-containing products, WWTP effluents and inappropriate disposal of PFAS-containing materials. The information on treatment methods for PFAS-contaminated water systems is scanty. Unfortunately, the treatment method is challenged by poor water research infrastructure and facilities, lack of awareness, poor research funding and weak legislation; however, adsorption and membrane technology seem favourable for removing PFAS from water systems in Africa. It is essential to focus on monitoring and assessing drinking water quality in Africa to reduce the disease burden that this may cause. Most African countries' currently implemented water treatment facilities cannot efficiently remove PFAS during treatment. Therefore, governments in Africa need to fund more research to develop an efficient water treatment technique that is sustainable in Africa.
Collapse
Affiliation(s)
- Adewale Adewuyi
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria; Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, 77005, USA.
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, 77005, USA; NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, 6100 Main Street, Houston, 77005, USA; Department of Materials Science and Nano Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA; Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| |
Collapse
|
10
|
Meservey A, Külaots I, Bryant JD, Gray C, Wahl J, Manz KE, Pennell KD. Adsorption of per- and polyfluoroalkyl substances on biochar derived from municipal sewage sludge. CHEMOSPHERE 2024; 365:143331. [PMID: 39278324 DOI: 10.1016/j.chemosphere.2024.143331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Granular activated carbon (GAC) and ion exchange resin (IXR) are widely used as adsorbents to remove PFAS from drinking water sources and effluent waste streams. However, the high cost associated with GAC and IXR generation has motivated the development of less expensive adsorbents for treatment of PFAS-impacted water. Thus, the objective of this research was to create an economically viable and sustainable PFAS adsorbent from sewage sludge. Stepwise pyrolysis at temperatures from 300 °C to 1000 °C yielded biochars whose specific surface area (SSA) and porosity increased from 41 to 148 m2/g, and from 0.062 to 0.193 cm3/g, respectively. On a per organic char basis, the SSA of the biochar was as high as 1183 m2/g, which is comparable to commercially-available activated carbons. The adsorption of perfluorooctane sulfonic acid (PFOS) on sludge biochar increased with increasing pyrolysis temperature, which was positively correlated with increasing porosity and SSA. When 1000 °C processed biochar was tested with a mixture of eight PFAS, preferential adsorption of longer carbon chain-length species was observed, indicating the importance of PFAS hydrophobic interactions with the biochar and the availability of a wide range of mesopores. The adsorption of each PFAS was dependent upon both chain length and head group, with longer chain-length species exhibiting greater adsorption than shorter chain-length species, along with greater adsorption of species with sulfonic acid head groups compared to their chain length counterparts with carboxylic acid head groups. These findings demonstrate that biochar derived from municipal solid waste can serve as a cost-effective and sustainable adsorbent for the removal of PFOS and PFAS mixtures from source waters. The circular economy benefits and waste reduction potential associated with the use of sewage sludge-derived biochar supports the development of a viable sludge-derived biochar for the removal of PFAS from water.
Collapse
Affiliation(s)
- Alexis Meservey
- School of Engineering, Brown University, Providence, RI, 02912, United States
| | - Indrek Külaots
- School of Engineering, Brown University, Providence, RI, 02912, United States
| | - J Daniel Bryant
- Woodard & Curran, 50 Millstone Road, Building 400, East Windsor, NJ, 08520, United States
| | - Chloe Gray
- School of Engineering, Brown University, Providence, RI, 02912, United States
| | - Julia Wahl
- Woodard & Curran, 47 Pleasant Street, Northampton, MA, 01060, United States
| | - Katherine E Manz
- School of Engineering, Brown University, Providence, RI, 02912, United States; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, 02912, United States.
| |
Collapse
|
11
|
Song Z, He J, Kouzehkanan SMT, Oh TS, Olshansky Y, Duin EC, Carroll KC, Wang D. Enhanced sorption and destruction of PFAS by biochar-enabled advanced reduction process. CHEMOSPHERE 2024; 363:142760. [PMID: 38969229 DOI: 10.1016/j.chemosphere.2024.142760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The biochar-enabled advanced reduction process (ARP) was developed for enhanced sorption (by biochar) and destruction of PFAS (by ARP) in water. First, the biochar (BC) was functionalized by iron oxide (Fe3O4), zero valent iron (ZVI), and chitosan (chi) to produce four biochars (BC, Fe3O4-BC, ZVI-chi-BC, and chi-BC) with improved physicochemical properties (e.g., specific surface area, pore structure, hydrophobicity, and surface functional groups). Batch sorption experimental results revealed that compared to unmodified biochar, all modified biochars showed greater sorption efficiency, and the chi-BC performed the best for PFAS sorption. The chi-BC was then selected to facilitate reductive destruction and defluorination of PFAS in water by ARP in the UV-sulfite system. Adding chi-BC in UV-sulfite ARP system significantly enhanced both degradation and defluorination efficiencies of PFAS (up to ∼100% degradation and ∼85% defluorination efficiencies). Radical analysis using electron paramagnetic resonance (EPR) spectroscopy showed that sulfite radicals dominated at neutral pH (7.0), while hydrated electrons (eaq-) were abundant at higher pH (11) for the efficient destruction of PFAS in the ARP system. Our findings elucidate the synergies of biochar and ARP in enhancing PFAS sorption and degradation, providing new insights into PFAS reductive destruction and defluorination by different reducing radical species at varying pH conditions.
Collapse
Affiliation(s)
- Ziteng Song
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jianzhou He
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Tae-Sik Oh
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Yaniv Olshansky
- Department of Crop, Soil, and Environmental Sciences, Auburn, AL, 36849, USA
| | - Evert C Duin
- Department of Chemistry and Biochemistry, Auburn, AL, 36849, USA
| | - Kenneth C Carroll
- Department of Plant and Environmental Sciences, New Mexico State University, NM, 88003, USA
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
12
|
Haider MIS, Liu G, Yousaf B, Arif M, Aziz K, Ashraf A, Safeer R, Ijaz S, Pikon K. Synergistic interactions and reaction mechanisms of biochar surface functionalities in antibiotics removal from industrial wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124365. [PMID: 38871166 DOI: 10.1016/j.envpol.2024.124365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Biochar, a carbon-rich material with a unique surface chemistry (high abundance of surface functional groups, large surface area, and well-distributed), has shown great potential as a sustainable solution for industrial wastewater treatment as compared to conventional industrial wastewater treatment techniques demand substantial energy consumption and generate detrimental byproducts. This critical review emphasizes the surface functionalities formation and development in biochar to enhance its physiochemical properties, for utilization in antibiotics removal. Factors affecting the formation of functionalities, including carbonization processes, feedstock materials, operating parameters, and the influence of pre-post treatments, are thoroughly highlighted to understand the crucial role of factors influencing biochar properties for optimal antibiotics removal. Furthermore, the research explores the removal mechanisms and interactions of biochar-based surface functionalities, hydrogen bonding, encompassing electrostatic interactions, hydrophobic interactions, π-π interactions, and electron donor and acceptor interactions, to provide insights into the adsorption/removal behavior of antibiotics on biochar surfaces. The review also explains the mechanism of factors influencing the removal of antibiotics in industrial wastewater treatment, including particle size and pore structure, nature and types of surface functional groups, pH and surface charge, temperature, surface modification strategies, hydrophobicity/hydrophilicity, biochar dose, pollutant concentration, contact time, and the presence of coexisting ions and other substances. Finally, the study offers reusability and regeneration, challenges and future perspectives on the development of biochar-based adsorbents and their applications in addressing antibiotics. It concludes by summarizing the key findings and emphasizing the significance of biochar as a sustainable and effective solution for mitigating antibiotics contamination in industrial wastewater.
Collapse
Affiliation(s)
- Muhammad Irtaza Sajjad Haider
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| | - Muhammad Arif
- Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Kiran Aziz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Department of Botany, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Rabia Safeer
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Krzysztof Pikon
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| |
Collapse
|
13
|
Rullander G, Lorenz C, Strömvall AM, Vollertsen J, Dalahmeh SS. Bark and biochar in horizontal flow filters effectively remove microplastics from stormwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124335. [PMID: 38848957 DOI: 10.1016/j.envpol.2024.124335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
Organic materials such as bark and biochar can be effective filter materials to treat stormwater. However, the efficiency of such filters in retaining microplastics (MPs) - an emerging stormwater pollutant - has not been sufficiently studied. This study investigated the removal and transport of a mixture of MPs commonly associated with stormwater. Different MP types (polyamide, polyethylene, polypropylene, and polystyrene) were mixed into the initial 2 cm material of horizontal bark and biochar filters of 25, 50, and 100 cm lengths. The MP types consisted of spherical and fragmented shapes in size ranges of 25-900 μm. The filters were subjected to a water flow of 5 mL/min for one week, and the total effluents were analyzed for MPs by μFTIR imaging. To gain a deeper insight, one 100 cm bark filter replica was split into 10 cm segments, and MPs in each segment were extracted and counted. The results showed that MPs were retained effectively, >97%, in all biochar and bark filters. However, MPs were detected in all effluents regardless of filter length. Effluent concentrations of 5-750 MP/L and 35-355 MP/L were measured in bark and biochar effluents, respectively, with >91% of the MP counts consisting of small-sized (25 μm) polyamide spherical particles. Combining all data, a decrease in average MP concentration was noticed with longer filters, likely attributed to channeling in a 25 and 50-cm filter. The analyses of MPs in the bark media revealed that most MPs were retained in the 0-10 cm segment but that some MPs were transported further, with 19% of polyamide retained in the 80-90 cm segment. Overall, this study shows promising results for bark and biochar filters to retain MPs, while highlighting the importance of systematic packing of filters to reduce MP emissions to the environment from polluted stormwater.
Collapse
Affiliation(s)
- Gabriella Rullander
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36, Sweden.
| | - Claudia Lorenz
- Environmental Dynamics, Department of Science and Environment, Roskilde University, Universitetsvej 1, 11.2 DK-4000, Roskilde, Denmark
| | - Ann-Margret Strömvall
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Jes Vollertsen
- Aalborg University, Department of The Built Environment, Thomas Manns Vej 23, 9220, Aalborg Øst, Denmark
| | - Sahar S Dalahmeh
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36, Sweden
| |
Collapse
|
14
|
Behnami A, Pourakbar M, Ayyar ASR, Lee JW, Gagnon G, Zoroufchi Benis K. Treatment of aqueous per- and poly-fluoroalkyl substances: A review of biochar adsorbent preparation methods. CHEMOSPHERE 2024; 357:142088. [PMID: 38643842 DOI: 10.1016/j.chemosphere.2024.142088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/25/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are synthetic chemicals widely used in everyday products, causing elevated concentrations in drinking water and posing a global challenge. While adsorption methods are commonly employed for PFAS removal, the substantial cost and environmental footprint of commercial adsorbents highlight the need for more cost-effective alternatives. Additionally, existing adsorbents exhibit limited effectiveness, particularly against diverse PFAS types, such as short-chain PFAS, necessitating modifications to enhance adsorption capacity. Biochar can be considered a cost-effective and eco-friendly alternative to conventional adsorbents. With abundant feedstocks and favorable physicochemical properties, biochar shows significant potential to be applied as an adsorbent for removing contaminants from water. Despite its effectiveness in adsorbing different inorganic and organic contaminants from water environments, some factors restrict its effective application for PFAS adsorption. These factors are related to the biochar properties, and characteristics of PFAS, as well as water chemistry. Therefore, some modifications have been introduced to overcome these limitations and improve biochar's adsorption capacity. This review explores the preparation conditions, including the pyrolysis process, activation, and modification techniques applied to biochar to enhance its adsorption capacity for different types of PFAS. It addresses critical questions about the adsorption performance of biochar and its composites, mechanisms governing PFAS adsorption, challenges, and future perspectives in this field. The surge in research on biochar for PFAS adsorption indicates a growing interest, making this timely review a valuable resource for future research and an in-depth exploration of biochar's potential in PFAS remediation.
Collapse
Affiliation(s)
- Ali Behnami
- Department of Environmental Health Engineering, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran; Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ji-Woong Lee
- Department of Chemistry, Nano-Science Centre, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk CO2 Research Center, Aarhus, Denmark
| | - Graham Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, Halifax, NS, Canada
| | - Khaled Zoroufchi Benis
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
15
|
Masud MAA, Shin WS, Septian A, Samaraweera H, Khan IJ, Mohamed MM, Billah MM, López-Maldonado EA, Rahman MM, Islam ARMT, Rahman S. Exploring the environmental pathways and challenges of fluoroquinolone antibiotics: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171944. [PMID: 38527542 DOI: 10.1016/j.scitotenv.2024.171944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Fluoroquinolone (FQ) antibiotics have become a subject of growing concern due to their increasing presence in the environment, particularly in the soil and groundwater. This review provides a comprehensive examination of the attributes, prevalence, ecotoxicity, and remediation approaches associated with FQs in environmental matrices. The paper discusses the physicochemical properties that influence the fate and transport of FQs in soil and groundwater, exploring the factors contributing to their prevalence in these environments. Furthermore, the ecotoxicological implications of FQ contamination in soil and aquatic ecosystems are reviewed, shedding light on the potential risks to environmental and human health. The latter part of the review is dedicated to an extensive analysis of remediation approaches, encompassing both in-situ and ex-situ methods employed to mitigate FQ contamination. The critical evaluation of these remediation strategies provides insights into their efficacy, limitations, and environmental implications. In this investigation, a correlation between FQ antibiotics and climate change is established, underlining its significance in addressing the Sustainable Development Goals (SDGs). The study further identifies and delineates multiple research gaps, proposing them as key areas for future investigational directions. Overall, this review aims to consolidate current knowledge on FQs in soil and groundwater, offering a valuable resource for researchers, policymakers, and practitioners engaged in environmental management and public health.
Collapse
Affiliation(s)
- Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ardie Septian
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Badan Riset dan Inovasi Nasional, BRIN, Serpong 15314, Indonesia
| | - Hasara Samaraweera
- Department of Civil and Environmental Engineering, Western University, London, Ontario, Canada
| | | | - Mohamed Mostafa Mohamed
- Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates; National Water and Energy Center, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates.
| | - Md Masum Billah
- Inter-Departmental Research Centre for Environmental Science-CIRSA, University of Bologna, Ravenna Campus, Italy
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP 22390, Tijuana, Baja California, Mexico
| | | | | | - Saidur Rahman
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia; School of Engineering, Lancaster University, Lancaster LA1 4YW, UK
| |
Collapse
|
16
|
Morales M, Arp HPH, Castro G, Asimakopoulos AG, Sørmo E, Peters G, Cherubini F. Eco-toxicological and climate change effects of sludge thermal treatments: Pathways towards zero pollution and negative emissions. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134242. [PMID: 38626686 DOI: 10.1016/j.jhazmat.2024.134242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 04/07/2024] [Indexed: 04/18/2024]
Abstract
The high moisture content and the potential presence of hazardous organic compounds (HOCs) and metals (HMs) in sewage sludge (SS) pose technical and regulatory challenges for its circular economy valorisation. Thermal treatments are expected to reduce the volume of SS while producing energy and eliminating HOCs. In this study, we integrate quantitative analysis of SS concentration of 12 HMs and 61 HOCs, including organophosphate flame retardants (OPFRs) and per- and poly-fluoroalkyl substances (PFAS), with life-cycle assessment to estimate removal efficiency of pollutants, climate change mitigation benefits and toxicological effects of existing and alternative SS treatments (involving pyrolysis, incineration, and/or anaerobic digestion). Conventional SS treatment leaves between 24 % and 40 % of OPFRs unabated, while almost no degradation occurs for PFAS. Thermal treatments can degrade more than 93% of target OPFRs and 95 % of target PFAS (with the rest released to effluents). The different treatments affect how HMs are emitted across environmental compartments. Conventional treatments also show higher climate change impacts than thermal treatments. Overall, thermal treatments can effectively reduce the HOCs emitted to the environment while delivering negative emissions (from about -56 to -111 kg CO2-eq per tonne of sludge, when pyrolysis is involved) and producing renewable energy from heat integration and valorization.
Collapse
Affiliation(s)
- Marjorie Morales
- Industrial Ecology Programme (IndEcol), Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway.
| | - Hans Peter H Arp
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; Norwegian Geotechnical Institute (NGI), 0886 Oslo, Norway
| | - Gabriela Castro
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; Department of Analytical Chemistry, Nutrition and Food Sciences, Institute for Research in Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | - Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), 0886 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Gregory Peters
- Division of Environmental Systems Analysis, Chalmers University of Technology, Gothenburg, SE 412 96, Sweden
| | - Francesco Cherubini
- Industrial Ecology Programme (IndEcol), Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| |
Collapse
|
17
|
Hamid H, Nicomel NR, Mohamed BA, Abida O, Li LY. Adsorption and leaching of fluorotelomer compounds and perfluoroalkyl acids in aqueous media by activated carbon prepared from municipal biosolids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120839. [PMID: 38599091 DOI: 10.1016/j.jenvman.2024.120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous in nature and pose serious health risks to humans and animals. Limiting PFAA exposure requires novel technology for their effective removal from water. We investigated the efficacy of biosolid-based activated carbon (Bio-SBAC) in removing frequently detected PFAAs and their precursor fluorotelomer compounds at environmentally relevant concentrations (∼50 μg/L). Batch experiments were performed to investigate adsorption kinetics, isotherms, and leachability. Bio-SBAC achieved >95% removal of fluorotelomeric compounds, indicating that the need for PFAA removal from the environment could be minimised if the precursors were targeted. Kinetic data modelling suggested that chemisorption is the dominant PFAA adsorption mechanism. As evidenced by the isotherm modelling results, Freundlich adsorption intensity, n-1, values of <1 (0.707-0.938) indicate chemisorption. Bio-SBAC showed maximum capacities for the adsorption of perfluorooctanoic acid (1429 μg/g) and perfluorononanoic acid (1111 μg/g). Batch desorption tests with 100 mg/L humic acid and 10 g/L NaCl showed that Bio-SBAC effectively retained the adsorbed PFAA with little or no leaching, except perfluorobutanoic acid. Overall, this study revealed that Bio-SBAC is a value-added material with promising characteristics for PFAA adsorption and no leachability. Additionally, it can be incorporated into biofilters to remove PFAAs from stormwater, presenting a sustainable approach to minimise biosolid disposal and improve the quality of wastewater before discharge into receiving waters.
Collapse
Affiliation(s)
- Hanna Hamid
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Nina Ricci Nicomel
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Badr A Mohamed
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza, 12613, Egypt
| | - Otman Abida
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
18
|
Sørmo E, Lade CBM, Zhang J, Asimakopoulos AG, Åsli GW, Hubert M, Goranov AI, Arp HPH, Cornelissen G. Stabilization of PFAS-contaminated soil with sewage sludge- and wood-based biochar sorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170971. [PMID: 38408660 DOI: 10.1016/j.scitotenv.2024.170971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Sustainable and effective remediation technologies for the treatment of soil contaminated with per- and polyfluoroalkyl substances (PFAS) are greatly needed. This study investigated the effects of waste-based biochars on the leaching of PFAS from a sandy soil with a low total organic carbon content (TOC) of 0.57 ± 0.04 % impacted by PFAS from aqueous film forming foam (AFFF) dispersed at a former fire-fighting facility. Six different biochars (pyrolyzed at 700-900 °C) were tested, made from clean wood chips (CWC), waste timber (WT), activated waste timber (aWT), two digested sewage sludges (DSS-1 and DSS-2) and de-watered raw sewage sludge (DWSS). Up-flow column percolation tests (15 days and 16 pore volume replacements) with 1 % biochar indicated that the dominant congener in the soil, perfluorooctane sulphonic acid (PFOS) was retained best by the aWT biochar with a 99.9 % reduction in the leachate concentration, followed by sludge-based DWSS (98.9 %) and DSS-2 and DSS-1 (97.8 % and 91.6 %, respectively). The non-activated wood-based biochars (CWC and WT) on the other hand, reduced leaching by <42.4 %. Extrapolating this to field conditions, 90 % leaching of PFOS would occur after 15 y for unamended soil, and after 1200 y and 12,000 y, respectively, for soil amended with 1 % DWSS-amended and aWT biochar. The high effectiveness of aWT and the three sludge-based biochars in reducing PFAS leaching from the soil was attributed largely to high porosity in a pore size range (>1.5 nm) that can accommodate the large PFAS molecules (>1.02-2.20 nm) combined with a high affinity to the biochar matrix. Other factors like anionic exchange capacity could play a contributing role. Sorbent effectiveness was better for long-chain than for short-chain PFAS, due to weaker, apolar interactions between the biochar and the latter's shorter hydrophobic CF2-tails. The findings were the first to demonstrate that locally sourced activated wood-waste biochars and non-activated sewage sludge biochars could be suitable sorbents for the ex situ stabilization and in situ remediation of PFAS-contaminated soil, bringing this technology one step closer to full-scale field testing.
Collapse
Affiliation(s)
- Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Clara Benedikte Mader Lade
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | | | - Geir Wold Åsli
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway
| | - Michel Hubert
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway
| | - Aleksandar I Goranov
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway.
| |
Collapse
|
19
|
He D, Zhang Z, Zhang W, Zhang H, Liu J. Municipal sludge biochar skeletal sodium alginate beads for phosphate removal. Int J Biol Macromol 2024; 261:129732. [PMID: 38280708 DOI: 10.1016/j.ijbiomac.2024.129732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
A novel Fe/La decorative biochar filled in sodium alginate beads (SA-KBC-Fe/La) was prepared by a simple sol-gel method and applied to adsorb phosphate (P) efficiently from water in this study. The morphology, structure and chemical component of the hydrogel beads were characterized in detail. And the synthesized bead exhibited easy separation and high P uptake of 46.65 mg/g when the Fe: La was of 1: 2 at 298 K with initial P of 100 mg/L, which was much higher than SA gel bead. The adsorption showed that the optimal pH was 6, and the adsorption was met with pseudo-second-order kinetics and Langmuir isothermal models, indicating a chemical adsorption process. The adsorption capacity remained 82 % after 5 cycles of adsorption. The adsorption mechanism of P was mainly of ligand exchange and electrostatic attraction. Compared with other reported adsorbents, the modification of Fe/La could enhance the mechanical property of SA-KBC-Fe/La beads with increasing active sites. Additionally, the involved biochar could lead to excellent thermal stability and hierarchical porous structure of beads with larger specific surface area (54.22 m2/g). The study could provide new ideas for P removal and strategy for the final disposal of municipal sludge.
Collapse
Affiliation(s)
- Dandan He
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China
| | - Zeyu Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China
| | - Wenbo Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| | - Hong Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| | - Juanli Liu
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| |
Collapse
|
20
|
Hubert M, Meyn T, Hansen MC, Hale SE, Arp HPH. Per- and polyfluoroalkyl substance (PFAS) removal from soil washing water by coagulation and flocculation. WATER RESEARCH 2024; 249:120888. [PMID: 38039821 DOI: 10.1016/j.watres.2023.120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Soil washing is currently attracting attention as a promising remediation strategy for land contaminated with per- and polyfluoroalkyl substances (PFAS). In the soil washing process, the contaminant is transferred from the soil into the liquid phase, producing a PFAS contaminated process water. One way to treat such process water is to use coagulation and flocculation; however, few studies are available on the performance of coagulation and flocculation for removing PFAS from such process water. This study evaluated 6 coagulants and flocculants (polyaluminium chloride (PACl), zirconium oxychloride octahydrate, cationic and anionic polyacrylamide, Polyclay 685 and Perfluor Ad®), for the treatment of a proxy PFAS contaminated washing water, spiked with PFAS concentrations found at typical Aqueous Film Forming Foam (AFFF) contaminated sites. PFAS removal efficiencies (at constant pH) varied greatly depending on the coagulants and flocculants, as well as the dosage used and the targeted PFAS. All tested coagulants and flocculants reduced the turbidity by >95%, depending on the dosage. Perfluor Ad®, a specially designed coagulant, showed the highest removal efficiency for all longer chain (>99%) and shorter chain PFAS (>68%). The cationic polyacrylamide polymer removed longer chain PFAS up to an average of 80%, whereas average shorter chain PFAS removal was lower (<30%). The two metal-based coagulants tested, PACl and zirconium, removed longer chain PFAS by up to an average of 61% and shorter chain PFAS up to 48%. Polyclay 685, a mixture of powdered activated carbon (PAC) and aluminium sulphate, removed longer chain PFAS by 90% and shorter chain PFAS on average by 76%, when very high dosages of the coagulant were used (2,000 mg/L). PFAS removal efficiencies correlated with chain length and headgroup. Shorter chain PFAS removal was dependent on electrostatic interaction with the precipitating flocs, whereas for longer chain PFAS, hydrophobic interactions between apolar functional groups and flocs created by the coagulant/flocculant, dissolved organic matter and suspended solids played a major role. The results of this study showed that by selecting the most efficient coagulant and aqueous conditions, a greater amount of PFAS can be removed from process waters in soil washing facilities, and thus included as part of various treatment trains.
Collapse
Affiliation(s)
- Michel Hubert
- Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway; Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Thomas Meyn
- Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | | | - Sarah E Hale
- Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway; DVGW-Technologiezentrum Wasser, 76139 Karsruhe, Germany
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway; Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
21
|
Zhao Y, Hu Z, Lu Y, Shan S, Zhuang H, Gong C, Cui X, Zhang F, Li P. Facilitating mitigation of agricultural non-point source pollution and improving soil nutrient conditions: The role of low temperature co-pyrolysis biochar in nitrogen and phosphorus distribution. BIORESOURCE TECHNOLOGY 2024; 394:130179. [PMID: 38092075 DOI: 10.1016/j.biortech.2023.130179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The current study generated co-pyrolysis biochar by pyrolyzing rice straw and pig manure at 300 °C and subsequently applying it in a field. Co-pyrolysis biochar demonstrated superior efficiency in mitigating agricultural non-point source pollution compared to biochar derived from individual sources. Furthermore, it displayed notable capabilities in retaining and releasing nutrients, resulting in increased soil levels of total nitrogen, total phosphorus, and organic matter during the maturation stage of rice. Moreover, co-pyrolysis biochar influences soil microbial communities, potentially impacting nutrient cycling. During the rice maturation stage, the soil treated with co-pyrolysis biochar exhibited significant increases in available nutrients and rice yield compared to the control (p < 0.05). These findings emphasize the potential of co-pyrolysis biochar for in-situ nutrient retention and enhanced soil nutrient utilization. To summarize, the co-pyrolysis of agricultural waste materials presents a promising approach to waste management, contributing to controlling non-point source pollution, improving soil fertility, and promoting crop production.
Collapse
Affiliation(s)
- Yufei Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhijun Hu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yunpeng Lu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Haifeng Zhuang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Chenpan Gong
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xin Cui
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Fuhao Zhang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Peng Li
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
22
|
Chen F, Chen J, Liu X, Zhi Y, Qian S, Li W, Wang X. Removal of per- and polyfluoroalkyl substances by activated hydrochar derived from food waste: Sorption performance and desorption hysteresis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 340:122820. [PMID: 39491159 DOI: 10.1016/j.envpol.2023.122820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
Carbonaceous materials, derived from waste biomass, have proven to be a viable and appealing alternative for removing emerging micro-pollutants, such as per- and polyfluoroalkyl substances (PFAS). To assess the feasibility and efficacy of using material derived from food waste to alleviate PFAS pollution, this study prepared activated hydrochar (AHC) for sorbing ten PFAS, including five perfluoroalkyl carboxylic acids (PFCA; C4-C8), three perfluoroalkyl sulfonic acids (PFSA; C4, C6, C8), and two emerging PFAS, namely hexafluoropropylene oxide dimer acid (commercial name GenX, an alternative to perfluorooctanoic acid (PFOA)) and 6:2 fluorotelomer sulfonic acid (6:2 FTS). The results demonstrated that AHC possessed a relatively high specific surface area (207 m2/g) and hydrophobic surface properties. At environmentally relevant concentrations (40 μg/L), the sorption partition coefficients (log Kd) of PFAS on AHC ranged from 2.33 to 6.49 L/kg. Notably, GenX exhibited a lower log Kd value (2.33 L/kg) than PFOA (3.88 L/kg). The AHC showed favorable sorption performance for all tested PFAS, with log Kd values surpassing other reported sorbents (e.g., 0.83 for GenX on pyrochar, and 2.83 for PFOA on commercial biochar). Additionally, desorption hysteresis was observed for all PFAS, except for PFOA, and was particularly pronounced in PFBA, GenX, and 6:2 FTS at high initial concentrations, with Hysteresis Index (HI) values varying from 0.31 to 1.45, 0.68 to 1.88, and 0.51 to 1.85, respectively. Given its robust sorption capacity and desorption hysteresis toward PFAS, AHC is expected to be a favorable candidate for remediating PFAS-contaminated water. This study underscores, for the first time, the potential of food waste-derived hydrochar as an efficient sorbent for alleviating PFAS contamination, and further study is needed to investigate the sorption and desorption behaviors of PFAS on AHC at various environmental conditions.
Collapse
Affiliation(s)
- Fan Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Jiangliang Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xuemei Liu
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Yue Zhi
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Shenhua Qian
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Wei Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Xiaoming Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
23
|
Hu J, Gong H, Liu X, Luo J, Zhu N. Target-prepared sludge biochar-derived synergistic Mn and N/O induces high-performance periodate activation for reactive iodine radicals generation towards ofloxacin degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132362. [PMID: 37659237 DOI: 10.1016/j.jhazmat.2023.132362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/04/2023]
Abstract
Converting waste activated sludge into catalysts for the removal of antibiotics in water fulfils the dual purpose of waste-to-resource and hazardous pollution elimination. In this study, sludge-derived biochar (SDB) for efficient periodate (PI) activation was first prepared via one-step pyrolysis of potassium permanganate-polyhexamethylenebiguanide conditioned sludge without additional modification. The SDB (750 °C)-PI system degraded 100% ofloxacin (OFL, 41.5 μM) within 6 min and was almost undisturbed by inorganic ions or humic acids. The experimental results confirmed that the predominant role of reactive iodine species (RIS) and the auxiliary involvement of singlet oxygen (1O2) jointly contributed to the OFL degradation. Theoretical calculations further indicated that the synergy between Mn and N/O induced local charge redistribution and improved electron transfer capability of SDB, leading to the formation of electron-rich Mn sites and enhanced Mn(II)↔Mn(III)↔Mn(IV) redox to promote PI activation. More importantly, the enhanced adsorption and charge transfer of PI on the Mn site of the Mn-N/O-C structures induced the I-O bond stretching and the rapid generation of RIS. This study offered a cost-effective strategy for developing SDB-based catalysts, further advancing the comprehension of sludge management and the intricate mechanisms underlying RIS formation in PI-advanced oxidation processes.
Collapse
Affiliation(s)
- Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Liu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinming Luo
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
24
|
Choudhary M, Datta SP, Golui D, Meena MC, Nogiya M, Samal SK, Raza MB, Rahman MM, Mishra R. Effect of sludge amelioration on yield, accumulation and translocation of heavy metals in soybean grown in acid and alkaline soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101343-101357. [PMID: 37651010 DOI: 10.1007/s11356-023-29568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
A greenhouse pot experiment was conducted with seven different levels of sludge (0, 5, 10, 20, 40, 80, 160 g kg-1) to assess the potential impact of sludge application on soybean (Glycine max (L.) Merr.) productivity, metal accumulation and translocation, and physico-chemical changes in acid and alkaline soils. The outcomes revealed that the application of sludge @ 5.0 to 160 g kg-1 resulted in a significant (p < 0.05) increase in seed and straw yield in both acid and alkaline soils compared to control. All the assessed heavy metals in soybean were within permissible ranges and did not exceed the phytotoxic limit, except for Fe, Zn, and Cu in the roots from the application of sewage sludge. The values of bioaccumulation factor (BFroot/soil) and translocation factor i.e., TFstraw/root and TFseed/straw were < 1.0 for Ni, Pb and Cr. Overall, for all the sludge application doses the soil pH was observed to increase in the acid soil and decline in alkaline soil when compared to the control. All the investigated heavy metals (Fe, Mn, Zn, Cu, Ni, Cd, Pb, and Cr) in the different plant tissues (root, straw and seed) of soybean were correlated with the soil variables. The study finds that sludge can be a potential organic fertilizer and function as an eco-friendly technique for the recycling of nutrients in the soil while keeping a check on the heavy metals' availability to plants.
Collapse
Affiliation(s)
- Mahipal Choudhary
- ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Siba Prasad Datta
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- ICAR-Indian Institute of Soil Science, Bhopal, 462001, India.
| | - Debasis Golui
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Department of Civil Construction and Environmental Engineering, North Dakota State University, Fargo, ND, 58102, USA
| | - Mahesh Chand Meena
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Saubhagya Kumar Samal
- ICAR-Indian Institute of Soil & Water Conservation, RC Koraput, Panchkula, Odisha, 763002, India
| | - Mohammed Basit Raza
- ICAR-Directorate of Floricultural Research, Pune, Maharashtra, 411036, India
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Rahul Mishra
- ICAR-Indian Institute of Soil Science, Bhopal, 462001, India
| |
Collapse
|
25
|
Qiu L, Zong X, Yuan R, Zhou B, Chen H, Zhang J. Preparation of wavy three-dimensional graphene-like biochar and its adsorption mechanism of embedded separation for dimethoate. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131893. [PMID: 37354717 DOI: 10.1016/j.jhazmat.2023.131893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
In this study, graphene-like biochar (IZBC) was prepared by pyrolysis of wheat straw in the presence of catalyst and activator. The formation of graphene in IZBC could be divided into three stages: shell core generation, carburization, and carbon precipitation. When the pyrolysis temperatures were in the ranges of 500-600 ℃, 600-700 ℃, 700-800 ℃ and 800-900 ℃, 17%, 32%, 13% and 38% of graphene were produced, respectively. The contribution ratios of graphene by FeCl3, ZnCl2 and HCl were 64%, 23% and 13%, respectively. Moreover, IZBC was filled with porous wavy three-dimensional graphene nanosheets that enabled self-aggregation to be effectively prevented, which was superior to the striped two-dimensional structure. The adsorption of IZBC for dimethoate was a spontaneous exothermic reaction with the adsorption capacity of 980 μmol/g, which was consistent with the pseudo-second-order and intraparticle diffusion models. The adsorption was inhibited by coexisting cations, anions, and humic acid in water. Dimethoate was adsorbed on graphene through embedded separation, with pore filling, cation-π and electrostatic attraction as the key driving forces. In addition, the adsorbed saturated IZBC could be effectively regenerated for many times by 2 mol/L HCl solution.
Collapse
Affiliation(s)
- Lijia Qiu
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xufang Zong
- Qinhuangdao Qingchen Environmental Testing Technology Co., Ltd., Economic and Technological Development Zone, Qinhuangdao 066000, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jia Zhang
- Henan Branch of Beijing Zhongjiao Hongyi Environmental Protection Engineering Co., Ltd., Zhengdong New District, Zhengzhou 450046, China
| |
Collapse
|
26
|
Zhang W, He Y, Xing X, Wang Y, Li Q, Wang L, Zhu Y. In-depth insight into the effects of intrinsic calcium compounds on the pyrolysis of hazardous petrochemical sludge. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131593. [PMID: 37172378 DOI: 10.1016/j.jhazmat.2023.131593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/14/2023]
Abstract
To understand the potential effects of intrinsic calcium compounds on sludge pyrolysis, the pyrolysis behavior of petrochemical sludge (PS), calcium carbonate blend PS (CaPS), and decalcified PS (DePS) were investigated using thermogravimetric analysis (TGA) and in-situ Fourier-transform infrared spectroscopy coupled with pyrolysis-gas chromatography and mass spectrometry (Py-GC/MS). The TGA results indicated that decalcification increased and decreased the energy barriers of PS decomposition in ranges 200-350 °C and 350-600 °C, respectively. In contrast, copyrolysis with CaCO3 decreased the activation energy (E) of the pseudoreaction phase 2 (PH2) and altered the mechanism model. Meanwhile, during copyrolysis, char deposition and interaction hindered CaCO3 decomposition. The two-dimensional correlation spectroscopy results, on the other hand, showed that the reaction priority of O-containing groups and CH- vibration of methyl groups were affected by both decalcification and CaCO3 copyrolysis. The Py-GC/MS results indicated that the three sludges mainly released hydrocarbons, N-containing organics, alcohols, aldehydes, and acids. During pyrolysis, CaCO3 also played a neutralization role, which reduced the release of pyrolytic acidic products. In addition, the increase of the pyrolysis temperature increased the hydrocarbon content. This research will guide the industrial application of sludge pyrolysis.
Collapse
Affiliation(s)
- Wenqi Zhang
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China; Jiangsu Province Engineering Research Center of Organic solid wastes deeply treatment and hydrogen production, Jiangsu, China
| | - Yahui He
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China; Jiangsu Province Engineering Research Center of Organic solid wastes deeply treatment and hydrogen production, Jiangsu, China
| | - Xinxin Xing
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China; Jiangsu Province Engineering Research Center of Organic solid wastes deeply treatment and hydrogen production, Jiangsu, China
| | - Yinfeng Wang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China; Jiangsu Province Engineering Research Center of Organic solid wastes deeply treatment and hydrogen production, Jiangsu, China.
| | - Qiyuan Li
- School of Chemical Engineering, The University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Lei Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yuezhao Zhu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China; Jiangsu Province Engineering Research Center of Organic solid wastes deeply treatment and hydrogen production, Jiangsu, China
| |
Collapse
|
27
|
Aumeier BM, Georgi A, Saeidi N, Sigmund G. Is sorption technology fit for the removal of persistent and mobile organic contaminants from water? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163343. [PMID: 37030383 DOI: 10.1016/j.scitotenv.2023.163343] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Persistent, Mobile, and Toxic (PMT) and very persistent and very mobile (vPvM) substances are a growing threat to water security and safety. Many of these substances are distinctively different from other more traditional contaminants in terms of their charge, polarity, and aromaticity. This results in distinctively different sorption affinities towards traditional sorbents such as activated carbon. Additionally, an increasing awareness on the environmental impact and carbon footprint of sorption technologies puts some of the more energy-intensive practices in water treatment into question. Commonly used approaches may thus need to be readjusted to become fit for purpose to remove some of the more challenging PMT and vPvM substances, including for example short chained per- and polyfluoroalkyl substances (PFAS). We here critically review the interactions that drive sorption of organic compounds to activated carbon and related sorbent materials and identify opportunities and limitations of tailoring activated carbon for PMT and vPvM removal. Other less traditional sorbent materials, including ion exchange resins, modified cyclodextrins, zeolites and metal-organic frameworks are then discussed for potential alternative or complementary use in water treatment scenarios. Sorbent regeneration approaches are evaluated in terms of their potential, considering reusability, potential for on-site regeneration, and potential for local production. In this context, we also discuss the benefits of coupling sorption to destructive technologies or to other separation technologies. Finally, we sketch out possible future trends in the evolution of sorption technologies for PMT and vPvM removal from water.
Collapse
Affiliation(s)
- Benedikt M Aumeier
- RWTH Aachen University, Institute of Environmental Engineering, Mies-van-der-Rohe-Strasse 1, 52074 Aachen, Germany.
| | - Anett Georgi
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, 04318 Leipzig, Germany
| | - Navid Saeidi
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, 04318 Leipzig, Germany
| | - Gabriel Sigmund
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Wien, Austria; Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
28
|
Balda M, Mackenzie K, Woszidlo S, Uhlig H, Möllmer J, Kopinke FD, Schüürmann G, Georgi A. Bottom-Up Synthesis of De-Functionalized and Dispersible Carbon Spheres as Colloidal Adsorbent. Int J Mol Sci 2023; 24:ijms24043831. [PMID: 36835241 PMCID: PMC9964220 DOI: 10.3390/ijms24043831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Recent innovative adsorption technologies for water purification rely on micrometer-sized activated carbon (AC) for ultrafast adsorption or in situ remediation. In this study, the bottom-up synthesis of tailored activated carbon spheres (aCS) from sucrose as renewable feedstock is demonstrated. The synthesis is based on a hydrothermal carbonization step followed by a targeted thermal activation of the raw material. This preserves its excellent colloid properties, i.e., narrow particle size distribution around 1 µm, ideal spherical shape and excellent aqueous dispersibility. We investigated the ageing of the freshly synthesized, highly de-functionalized AC surface in air and aqueous media under conditions relevant to the practice. A slow but significant ageing due to hydrolysis and oxidation reactions was observed for all carbon samples, leading to an increase of the oxygen contents with storage time. In this study, a tailored aCS product was generated within a single pyrolysis step with 3 vol.-% H2O in N2 in order to obtain the desired pore diameters and surface properties. Adsorption characteristics, including sorption isotherms and kinetics, were investigated with monochlorobenzene (MCB) and perfluorooctanoic acid (PFOA) as adsorbates. The product showed high sorption affinities up to log (KD/[L/kg]) of 7.3 ± 0.1 for MCB and 6.2 ± 0.1 for PFOA, respectively.
Collapse
Affiliation(s)
- Maria Balda
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Katrin Mackenzie
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Silke Woszidlo
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Hans Uhlig
- Institut für Nichtklassische Chemie e.V.—INC, 04318 Leipzig, Germany
| | - Jens Möllmer
- Institut für Nichtklassische Chemie e.V.—INC, 04318 Leipzig, Germany
| | - Frank-Dieter Kopinke
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Gerrit Schüürmann
- Institute of Organic Chemistry, Technical University Bergakademie Freiberg, 09599 Freiberg, Germany
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Anett Georgi
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
- Correspondence:
| |
Collapse
|