1
|
Badea SL, Cristea NI, Niculescu VC, Korolova Y, Enache S, Soare A, Tiliakos A, Botoran OR, Ionete RE, Höhener P. Degradation study of δ-hexachlorocyclohexane by iron sulfide nanoparticles: Elucidation of reaction pathway using compound specific isotope analysis and pH variation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125278. [PMID: 39521171 DOI: 10.1016/j.envpol.2024.125278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
pH influences the reactivity of iron (II) minerals towards halogenated pollutants like hexachlorocyclohexanes (HCHs). To explore these incompletely understood interactions, we investigated the carbon isotope fractionation of the δ-HCH isomer during dehalogenation by iron sulfide at pHs spanning a pH range across slightly acidic to alkaline domains (5.8-9.6). The δ-1,3,4,5,6-pentachlorocyclohex-1-ene (δ-PCCH) was the intermediate degradation product, while benzene, monochlorobenzene (MCB), but especially 1,2-dichlorobenzene (1,2-DCB), and 1,2,4-trichlorobenzene (1,2,4-TCB), were the main degradation products of δ-HCH. These degradation products suggested dehydrochlorination as the main degradation pathway of δ-HCH by iron sulfide. Different kinetic experiments indicate that the rate constants (ka) during dechlorination of δ-HCH by iron sulfide rose with pH: 0.003 d-1 (pH 5.8) < 0.034 d-1 (pH 8) < 0.085 (pH 9.3) < 0.286 d-1 (pH 9.6). Upon Rayleigh model calculations, an enrichment factor (εC) of -7.8 ± 1.0 ‰ was calculated for δ-HCH dehalogenation by FeS at pH 8.0. This suggests an apparent kinetic isotope effect (AKIEC) value of 1.049 ± 0.006 for dehydrohalogenation. The magnitude of the isotope effect from this paper furthermore supports dehydrohalogenation and opens the possibility to study the degradation of HCHs by iron (II) minerals containing FeS as mackinawite in oxygen-deprived environments.
Collapse
Affiliation(s)
- Silviu-Laurentiu Badea
- National Research and Development Institute for Cryogenic and Isotopic Technologies - ICSI Rm. Vâlcea, 4th Uzinei Street, 240050, Ramnicu Valcea, Romania.
| | - Nicolae-Ionut Cristea
- National Research and Development Institute for Industrial Ecology, 57-73 Drumul Podu Dambovitei, District 6, 060652, Bucharest, Romania
| | - Violeta-Carolina Niculescu
- National Research and Development Institute for Cryogenic and Isotopic Technologies - ICSI Rm. Vâlcea, 4th Uzinei Street, 240050, Ramnicu Valcea, Romania
| | - Yevheniia Korolova
- National Research and Development Institute for Cryogenic and Isotopic Technologies - ICSI Rm. Vâlcea, 4th Uzinei Street, 240050, Ramnicu Valcea, Romania
| | - Stanica Enache
- National Research and Development Institute for Cryogenic and Isotopic Technologies - ICSI Rm. Vâlcea, 4th Uzinei Street, 240050, Ramnicu Valcea, Romania
| | - Amalia Soare
- National Research and Development Institute for Cryogenic and Isotopic Technologies - ICSI Rm. Vâlcea, 4th Uzinei Street, 240050, Ramnicu Valcea, Romania
| | - Athanasios Tiliakos
- National Research and Development Institute for Cryogenic and Isotopic Technologies - ICSI Rm. Vâlcea, 4th Uzinei Street, 240050, Ramnicu Valcea, Romania; Babeş-Bolyai University of Cluj-Napoca, Department of Engineering Science, Centre for Vibrodiagnostics for Equipment Testing and Automation (CVDTEA), 1 Mihail Kogălniceanu str., RO-400084, Cluj-Napoca, Romania
| | - Oana-Romina Botoran
- National Research and Development Institute for Cryogenic and Isotopic Technologies - ICSI Rm. Vâlcea, 4th Uzinei Street, 240050, Ramnicu Valcea, Romania
| | - Roxana-Elena Ionete
- National Research and Development Institute for Cryogenic and Isotopic Technologies - ICSI Rm. Vâlcea, 4th Uzinei Street, 240050, Ramnicu Valcea, Romania
| | - Patrick Höhener
- Aix-Marseille University - Environmental Chemistry Laboratory (LCE), UMR 7376, 3 place Victor Hugo - Case 29, 13331, Marseille Cedex 3, France
| |
Collapse
|
2
|
Katheras AS, Karalis K, Krack M, Scheinost AC, Churakov SV. Computational Study on the Octahedral Surfaces of Magnetite Nanoparticles and Their Solvent Interaction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21068-21076. [PMID: 39542692 DOI: 10.1021/acs.est.4c06531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Magnetite nanoparticles (MNPs) play an important role in geological and environmental systems because of their redox reactivity and ability to sequester a wide range of metals and metalloids. X-ray absorption spectroscopy conducted at metal and metalloid edges has suggested that the magnetite {111} faces of octahedrally shaped nanoparticles play a dominant role in the redox and sorption processes of these elements. However, studies directly probing the magnetite surfaces, especially in their fully solvated state, are scarce. Therefore, we investigated the speciation and stability over a wide Eh/pH range of octahedrally shaped MNPs of 2 nm size by means of Kohn-Sham density functional theory with Hubbard correction (DFT+U). By altering the protonation state of the crystals, a redox-sensitive response of the octahedrally coordinated Fe could be achieved. Furthermore, the preferential H distribution could be identified, highlighting the difference between the edges, vertices, and facets of the nanocrystals. Subsequently, the interactions of the MNPs with a solvent of pure water or a 0.5 M NaCl solution were studied by classical molecular dynamics (MD) simulations. Finally, a comparison of the corresponding macroscopic magnetite (111) surface to the investigated MNPs was conducted.
Collapse
Affiliation(s)
- Anita S Katheras
- Institute of Geological Sciences, University of Bern, 3012 Bern, Switzerland
| | | | - Matthias Krack
- PSI Center for Scientific Computing, Theory and Data, 5232 Villigen PSI, Switzerland
| | - Andreas C Scheinost
- European Synchrotron Radiation Lab, The Rossendorf Beamline (BM20), 38043 Grenoble, France
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden-Rossendorf, Germany
| | - Sergey V Churakov
- Institute of Geological Sciences, University of Bern, 3012 Bern, Switzerland
- Laboratory for Waste Management (LES), Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| |
Collapse
|
3
|
Cheng D, Xiong J, Dong L, Wong JWC, Liu X. Spatial distribution of PAHs and microbial communities in intertidal sediments of the Pearl River Estuary, South China. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109992. [PMID: 39084352 DOI: 10.1016/j.cbpc.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The exploration of sediment pollution caused by PAHs and its impact on microbial communities can provide valuable insights for the remediation of sediments. The spatial distribution of PAHs and their impact on the microbial community within the Pearl River Estuary were investigated in this study. The findings revealed that the total concentration ranges of 16 PAHs were between 24.26 and 3075.93 ng/g, with naphthalene, fluorene, and phenanthrene potentially exerting adverse biological effects. More PAHs were found to accumulate in subsurface sediments, and their average accumulation rates gradually decreased as the number of rings in PAHs increased, ranging from 180 % for 2-ring to 36 % for 6-ring. The phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Chloroflexi were found to dominate both surface and subsurface sediments The correlation between microbial genera and PAHs contents was weak in sediments with low levels of PAHs contamination, while a more significant positive relationship was observed in sediments with high levels of PAHs contamination. The physicochemical properties of sediments, such as pH, soil structure and Cu significantly influence bacterial community composition in highly contaminated sediments. Additionally, the network analysis revealed that certain bacterial genera, including Novosphingobium, Robiginitalea and Synechococcus_CC9902, played a pivotal role in the degradation of PAHs. These findings are significant in comprehending the correlation between bacterial communities and environmental factors in intertidal ecosystems, and establish a scientific foundation for bioremediation of intertidal zones.
Collapse
Affiliation(s)
- Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Jisen Xiong
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Lu Dong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Jonathan Woon Chung Wong
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Xinhui Liu
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai 519087, PR China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
4
|
Katheras AS, Karalis K, Krack M, Scheinost AC, Churakov SV. Stability and Speciation of Hydrated Magnetite {111} Surfaces from Ab Initio Simulations with Relevance for Geochemical Redox Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:935-946. [PMID: 38133817 DOI: 10.1021/acs.est.3c07202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Magnetite is a common mixed Fe(II,III) iron oxide in mineral deposits and the product of (anaerobic) iron corrosion. In various Earth systems, magnetite surfaces participate in surface-mediated redox reactions. The reactivity and redox properties of the magnetite surface depend on the surface speciation, which varies with environmental conditions. In this study, Kohn-Sham density functional theory (DFT + U method) was used to examine the stability and speciation of the prevalent magnetite crystal face {111} in a wide range of pH and Eh conditions. The simulations reveal that the oxidation state and speciation of the surface depend strongly on imposed redox conditions and, in general, may differ from those of the bulk state. Corresponding predominant phase diagrams for the surface speciation and structure were calculated from first principles. Furthermore, classical molecular dynamics simulations were conducted investigating the mobility of water near the magnetite surface. The obtained knowledge of the surface structure and oxidation state of iron is essential for modeling retention of redox-sensitive nuclides.
Collapse
Affiliation(s)
- Anita S Katheras
- Institute of Geological Sciences, University of Bern, CH-3012 Bern, Switzerland
| | | | - Matthias Krack
- Laboratory for Materials Simulations (LMS), Paul Scherrer Institute (PSI), CH-5232 Villigen PSI, Switzerland
| | - Andreas C Scheinost
- The Rossendorf Beamline (BM20), European Synchrotron Radiation Lab, FR-38043 Grenoble, France
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, DE-01328 Dresden-Rossendorf, Germany
| | - Sergey V Churakov
- Institute of Geological Sciences, University of Bern, CH-3012 Bern, Switzerland
- Laboratory for Waste Management (LES), Paul Scherrer Institute (PSI), CH-5232 Villigen PSI, Switzerland
| |
Collapse
|