1
|
Huang T, Linklater D, Li X, Gamage SSB, Alkazemi H, Farrugia B, Heath DE, O'Brien-Simpson NM, O'Connor AJ. One-Step Synthesis of Antimicrobial Polypeptide-Selenium Nanoparticles Exhibiting Broad-Spectrum Efficacy against Bacteria and Fungi with Superior Resistance Prevention. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68996-69010. [PMID: 39636760 DOI: 10.1021/acsami.4c17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The growing threat of antimicrobial resistance (AMR) necessitates innovative strategies beyond conventional antibiotics. In response, we developed a rapid one-step method to sythesize antimicrobial peptide (AMP) ε-poly-L-lysine stabilized selenium nanoparticles (ε-PL-Se NPs). These polycrystalline NPs with highly positive net surface charges, exhibited superior antimicrobial activity against a broad panel of pathogens, including the Gram-positive and -negative bacteria Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa and their drug-resistant counterparts, as well as the yeast Candida albicans. Notably, 10PL-Se NPs exhibited 6-log reduction of methicillin-resistant S. aureus (MRSA) at a concentration of 5 μg/mL within 90 min, with minimum bactericidal concentrations (MBCs) below 50 μg/mL for all tested bacterial strains. The minimum fungicidal concentration (MFC) of 10PL-Se NPs against C. albicans was 26 ± 10 μg/mL. Crucially, bacteria exposed to ε-PL-Se NPs exhibited significantly delayed resistance development compared to the conventional antibiotic kanamycin. S. aureus developed resistance to kanamycin after ∼72 generations, whereas resistance to 10PL-Se NPs emerged after ∼216 generations. Remarkably, E. coli showed resistance to kanamycin after ∼39 generations but failed to develop resistance to 10PL-Se NPs even after 300 generations. This work highlights the synergistic interactions between ε-PL and Se NPs, offering a robust and scalable strategy to combat AMR.
Collapse
Affiliation(s)
- Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Denver Linklater
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Xin Li
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Shaveen S B Gamage
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Hazem Alkazemi
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Brooke Farrugia
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Neil M O'Brien-Simpson
- ACTV Research Group, Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne Fitzroy, Melbourne, Victoria 3065, Australia
| |
Collapse
|
2
|
Yang F, Shu R, Dai W, Li B, Liu C, Yang H, Johnson HM, Yu S, Bai D, Yang W, Deng Y. H 2Se-evolving bio-heterojunctions promote cutaneous regeneration in infected wounds by inhibiting excessive cellular senescence. Biomaterials 2024; 311:122659. [PMID: 38861831 DOI: 10.1016/j.biomaterials.2024.122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Pathogenic infection leads to excessive senescent cell accumulation and stagnation of wound healing. To address these issues, we devise and develop a hydrogen selenide (H2Se)-evolving bio-heterojunction (bio-HJ) composed of graphene oxide (GO) and FeSe2 to deracinate bacterial infection, suppress cellular senescence and remedy recalcitrant infected wounds. Excited by near-infrared (NIR) laser, the bio-HJ exerts desired photothermal and photodynamic effects, resulting in rapid disinfection. The crafted bio-HJ could also evolve gaseous H2Se to inhibit cellular senescence and dampen inflammation. Mechanism studies reveal the anti-senescence effects of H2Se-evolving bio-HJ are mediated by selenium pathway and glutathione peroxidase 1 (GPX1). More critically, in vivo experiments authenticate that the H2Se-evolving bio-HJ could inhibit cellular senescence and potentiate wound regeneration in rats. As envisioned, our work not only furnishes the novel gasotransmitter-delivering bio-HJ for chronic infected wounds, but also gets insight into the development of anti-senescence biomaterials.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenyu Dai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chuang Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hang Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Washington, USA
| | - Sheng Yu
- Department of Chemistry, Washington State University, Washington, USA
| | - Ding Bai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weizhong Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China.
| | - Yi Deng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Martinez-Moreno MF, Povedano-Priego C, Morales-Hidalgo M, Mumford AD, Aranda E, Vilchez-Vargas R, Jroundi F, Ojeda JJ, Merroun ML. Microbial influence in Spanish bentonite slurry microcosms: Unveiling a-year long geochemical evolution and early-stage copper corrosion related to nuclear waste repositories. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124491. [PMID: 38964646 DOI: 10.1016/j.envpol.2024.124491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The deep geological repository (DGR) concept consists of storing radioactive waste in metal canisters, surrounded by compacted bentonite, and placed deeply into a geological formation. Here, bentonite slurry microcosms with copper canisters, inoculated with bacterial consortium and amended with acetate, lactate and sulfate were set up to investigate their geochemical evolution over a year under anoxic conditions. The impact of microbial communities on the corrosion of the copper canisters in an early-stage (45 days) was also assessed. The amended bacterial consortium and electron donors/acceptor accelerated the microbial activity, while the heat-shocked process had a retarding effect. The microbial communities partially oxidize lactate to acetate, which is subsequently consumed when the lactate is depleted. Early-stage microbial communities showed that the bacterial consortium reduced microbial diversity with Pseudomonas and Stenotrophomonas dominating the community. However, sulfate-reducing bacteria such as Desulfocurvibacter, Anaerosolibacter, and Desulfosporosinus were enriched coupling oxidation of lactate/acetate with reduction of sulfates. The generated biogenic sulfides, which could mediate the conversion of copper oxides (possibly formed by trapped oxygen molecules on the bentonite or driven by the reduction of H2O) to copper sulfide (Cu2S), were identified by X-ray photoelectron spectroscopy (XPS). Overall, these findings shed light on the ideal geochemical conditions that would affect the stability of DGR barriers, emphasizing the impact of the SRB on the corrosion of the metal canisters, the gas generation, and the interaction with components of the bentonite.
Collapse
Affiliation(s)
| | | | - Mar Morales-Hidalgo
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| | - Adam D Mumford
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Elisabet Aranda
- Institute of Water Research, Department of Microbiology, University of Granada, Granada, Spain
| | - Ramiro Vilchez-Vargas
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Fadwa Jroundi
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| | - Jesus J Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Mohamed L Merroun
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Morales-Hidalgo M, Povedano-Priego C, Martinez-Moreno MF, Ojeda JJ, Jroundi F, Merroun ML. Long-term tracking of the microbiology of uranium-amended water-saturated bentonite microcosms: A mechanistic characterization of U speciation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135044. [PMID: 38943881 DOI: 10.1016/j.jhazmat.2024.135044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Deep geological repositories (DGRs) stand out as one of the optimal options for managing high-level radioactive waste (HLW) such as uranium (U) in the near future. Here, we provide novel insights into microbial behavior in the DGR bentonite barrier, addressing potential worst-case scenarios such as waste leakage (e.g., U) and groundwater infiltration of electron rich donors in the bentonite. After a three-year anaerobic incubation, Illumina sequencing results revealed a bacterial diversity dominated by anaerobic and spore-forming microorganisms mainly from the phylum Firmicutes. Highly U tolerant and viable bacterial isolates from the genera Peribacillus, Bacillus, and some SRB such as Desulfovibrio and Desulfosporosinus, were enriched from U-amended bentonite. The results obtained by XPS and XRD showed that U was present as U(VI) and as U(IV) species. Regarding U(VI), we have identified biogenic U(VI) phosphates, U(UO2)·(PO4)2, located in the inner part of the bacterial cell membranes in addition to U(VI)-adsorbed to clays such as montmorillonite. Biogenic U(IV) species as uraninite may be produced as result of bacterial enzymatic U(VI) reduction. These findings suggest that under electron donor-rich water-saturation conditions, bentonite microbial community can control U speciation, immobilizing it, and thus enhancing future DGR safety if container rupture and waste leakage occurs.
Collapse
Affiliation(s)
- Mar Morales-Hidalgo
- Faculty of Science, Department of Microbiology, University of Granada, Granada, Spain.
| | | | | | - Jesus J Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Fadwa Jroundi
- Faculty of Science, Department of Microbiology, University of Granada, Granada, Spain
| | - Mohamed L Merroun
- Faculty of Science, Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
5
|
Bartak D, Šachlová Š, Kašpar V, Říha J, Dobrev D, Večerník P, Hlaváčková V, Matulová M, Černá K. Dramatic loss of microbial viability in bentonite exposed to heat and gamma radiation: implications for deep geological repository. World J Microbiol Biotechnol 2024; 40:264. [PMID: 38990244 PMCID: PMC11239606 DOI: 10.1007/s11274-024-04069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Bentonite is an integral part of the engineered barrier system (EBS) in deep geological repositories (DGR) for nuclear waste, but its indigenous microorganisms may jeopardize long-term EBS integrity. To predict microbial activity in DGRs, it is essential to understand microbial reactions to the early hot phase of DGR evolution. Two bentonites (BCV and MX-80) with varied bentonite/water ratios and saturation levels (compacted to 1600 kg.m- 3 dry density/powder/suspension), were subjected to heat (90-150 °C) and irradiation (0.4 Gy.h- 1) in the long-term experiments (up to 18 months). Molecular-genetic, microscopic, and cultivation-based techniques assessed microbial survivability. Exposure to 90 °C and 150 °C notably diminished microbial viability, irrespective of bentonite form, with negligible impacts from irradiation or sample type compared to temperature. Bentonite powder samples exhibited microbial recovery after 90 °C heating for up to 6 months but not 12 months in most cases; exposure to 150 °C had an even stronger effect. Further long-term experiments at additional temperatures combined with the mathematical prediction of temperature evolution in DGR are recommended to validate the possible evolution and spatial distribution of microbially depleted zones in bentonite buffer around the waste canisters and refine predictions of microbial effects over time in the DGR.
Collapse
Affiliation(s)
- Deepa Bartak
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec, 460 01, Czech Republic
| | - Šárka Šachlová
- Disposal Processes and Safety, ÚJV Řež, a. s., Hlavní 130, Husinec, 250 68, Czech Republic
| | - Vlastislav Kašpar
- Disposal Processes and Safety, ÚJV Řež, a. s., Hlavní 130, Husinec, 250 68, Czech Republic
| | - Jakub Říha
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec, 460 01, Czech Republic
| | - David Dobrev
- Disposal Processes and Safety, ÚJV Řež, a. s., Hlavní 130, Husinec, 250 68, Czech Republic
| | - Petr Večerník
- Disposal Processes and Safety, ÚJV Řež, a. s., Hlavní 130, Husinec, 250 68, Czech Republic
| | - Veronika Hlaváčková
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec, 460 01, Czech Republic
| | - Michaela Matulová
- Radioactive Waste Repository Authority, SÚRAO, Dlážděná 6, Prague, 11000, Czech Republic
| | - Kateřina Černá
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec, 460 01, Czech Republic.
| |
Collapse
|
6
|
Morales-Hidalgo M, Povedano-Priego C, Martinez-Moreno MF, Ruiz-Fresneda MA, Lopez-Fernandez M, Jroundi F, Merroun ML. Insights into the Impact of Physicochemical and Microbiological Parameters on the Safety Performance of Deep Geological Repositories. Microorganisms 2024; 12:1025. [PMID: 38792854 PMCID: PMC11123828 DOI: 10.3390/microorganisms12051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Currently, the production of radioactive waste from nuclear industries is increasing, leading to the development of reliable containment strategies. The deep geological repository (DGR) concept has emerged as a suitable storage solution, involving the underground emplacement of nuclear waste within stable geological formations. Bentonite clay, known for its exceptional properties, serves as a critical artificial barrier in the DGR system. Recent studies have suggested the stability of bentonite within DGR relevant conditions, indicating its potential to enhance the long-term safety performance of the repository. On the other hand, due to its high resistance to corrosion, copper is one of the most studied reference materials for canisters. This review provides a comprehensive perspective on the influence of nuclear waste conditions on the characteristics and properties of DGR engineered barriers. This paper outlines how evolving physico-chemical parameters (e.g., temperature, radiation) in a nuclear repository may impact these barriers over the lifespan of a repository and emphasizes the significance of understanding the impact of microbial processes, especially in the event of radionuclide leakage (e.g., U, Se) or canister corrosion. Therefore, this review aims to address the long-term safety of future DGRs, which is critical given the complexity of such future systems.
Collapse
Affiliation(s)
- Mar Morales-Hidalgo
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (C.P.-P.); (M.F.M.-M.); (M.A.R.-F.); (M.L.-F.); (M.L.M.)
| | | | | | | | | | - Fadwa Jroundi
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (C.P.-P.); (M.F.M.-M.); (M.A.R.-F.); (M.L.-F.); (M.L.M.)
| | | |
Collapse
|
7
|
Povedano-Priego C, Jroundi F, Morales-Hidalgo M, Pinel-Cabello M, Peula-Ruiz E, Merroun ML, Martin-Sánchez I. Unveiling fungal diversity in uranium and glycerol-2-phosphate-amended bentonite microcosms: Implications for radionuclide immobilization within the Deep Geological Repository system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168284. [PMID: 37924892 DOI: 10.1016/j.scitotenv.2023.168284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Uranium (U) represents the preeminent hazardous radionuclide within the context of nuclear waste repositories. Indigenous microorganisms in bentonite can influence radionuclide speciation and migration in Deep Geological Repositories (DGRs) for nuclear waste storage. While bacterial communities in bentonite samples have been extensively studied, the impact of fungi has been somewhat overlooked. Here, we investigate the geomicrobiological processes in bentonite microcosms amended with uranyl nitrate and glycerol-2-phosphate (G2P) for six-month incubation. ITS sequencing revealed that the fungal community was mainly composed of Ascomycota (96.6 %). The presence of U in microcosms enriched specific fungal taxa, such as Penicillium and Fusarium, potentially associated with uranium immobilization mechanisms. Conversely, the amendment of U into G2P-suplemented samples exhibited minimal impact, resulting in a fungal community akin to the control group. Several fungal strains were isolated from bentonite microcosms to explore their potential in the U biomineralization, including Fusarium oxysporum, Aspergillus sp., Penicillium spp., among others. High Annular Angle Dark-Field Scanning Transmission Electron Microscopy (HAADF) analyses showed the capacity of F. oxysporum B1 to form U-phosphate mineral phases, likely mediated by phosphatase activity. Therefore, our study emphasizes the need to take into account indigenous bentonite fungi in the overall assessment of the impact of microbial processes in the immobilization of U within DGRs environments.
Collapse
Affiliation(s)
- Cristina Povedano-Priego
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| | - Fadwa Jroundi
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| | - Mar Morales-Hidalgo
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| | - María Pinel-Cabello
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| | - Esther Peula-Ruiz
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| | - Mohamed L Merroun
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| | - Inés Martin-Sánchez
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| |
Collapse
|
8
|
Martinez-Moreno MF, Povedano-Priego C, Morales-Hidalgo M, Mumford AD, Ojeda JJ, Jroundi F, Merroun ML. Impact of compacted bentonite microbial community on the clay mineralogy and copper canister corrosion: a multidisciplinary approach in view of a safe Deep Geological Repository of nuclear wastes. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131940. [PMID: 37390682 DOI: 10.1016/j.jhazmat.2023.131940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Deep Geological Repository (DGR) is the preferred option for the final disposal of high-level radioactive waste. Microorganisms could affect the safety of the DGR by altering the mineralogical properties of the compacted bentonite or inducing the corrosion of the metal canisters. In this work, the impact of physicochemical parameters (bentonite dry density, heat shock, electron donors/acceptors) on the microbial activity, stability of compacted bentonite and corrosion of copper (Cu) discs was investigated after one-year anoxic incubation at 30 ºC. No-illitization in the bentonite was detected confirming its structural stability over 1 year under the experimental conditions. The microbial diversity analysis based on 16 S rRNA gene Next Generation Sequencing showed slight changes between the treatments with an increase of aerobic bacteria belonging to Micrococcaceae and Nocardioides in heat-shock tyndallized bentonites. The survival of sulfate-reducing bacteria (the main source of Cu anoxic corrosion) was demonstrated by the most probable number method. The detection of CuxS precipitates on the surface of Cu metal in the bentonite/Cu metal samples amended with acetate/lactate and sulfate, indicated an early stage of Cu corrosion. Overall, the outputs of this study help to better understand the predominant biogeochemical processes at the bentonite/Cu canister interface upon DGR closure.
Collapse
Affiliation(s)
| | | | - Mar Morales-Hidalgo
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Adam D Mumford
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Jesus J Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Fadwa Jroundi
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
9
|
Ruiz-Fresneda MA, Martinez-Moreno MF, Povedano-Priego C, Morales-Hidalgo M, Jroundi F, Merroun ML. Impact of microbial processes on the safety of deep geological repositories for radioactive waste. Front Microbiol 2023; 14:1134078. [PMID: 37007474 PMCID: PMC10062484 DOI: 10.3389/fmicb.2023.1134078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
To date, the increasing production of radioactive waste due to the extensive use of nuclear power is becoming a global environmental concern for society. For this reason, many countries have been considering the use of deep geological repositories (DGRs) for the safe disposal of this waste in the near future. Several DGR designs have been chemically, physically, and geologically well characterized. However, less is known about the influence of microbial processes for the safety of these disposal systems. The existence of microorganisms in many materials selected for their use as barriers for DGRs, including clay, cementitious materials, or crystalline rocks (e.g., granites), has previously been reported. The role that microbial processes could play in the metal corrosion of canisters containing radioactive waste, the transformation of clay minerals, gas production, and the mobility of the radionuclides characteristic of such residues is well known. Among the radionuclides present in radioactive waste, selenium (Se), uranium (U), and curium (Cm) are of great interest. Se and Cm are common components of the spent nuclear fuel residues, mainly as 79Se isotope (half-life 3.27 × 105 years), 247Cm (half-life: 1.6 × 107 years) and 248Cm (half-life: 3.5 × 106 years) isotopes, respectively. This review presents an up-to-date overview about how microbes occurring in the surroundings of a DGR may influence their safety, with a particular focus on the radionuclide-microbial interactions. Consequently, this paper will provide an exhaustive understanding about the influence of microorganisms in the safety of planned radioactive waste repositories, which in turn might improve their implementation and efficiency.
Collapse
|