1
|
Zou Y, Cao P, Bao Z, Xu Y, Xu Z, Guo H. Histological, physiological and transcriptomic analysis in hepatopancreas of Procambarus clarkii under heat stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117459. [PMID: 39647367 DOI: 10.1016/j.ecoenv.2024.117459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
In the context of global warming, heat stress poses a threat to aquatic organisms. In the present study, a comprehensive analysis in hepatopancreas from Procambarus clarkii was conducted to examine the histology, physiological changes, and transcriptome alterations after exposed at 32 and 37 ℃ for 24 and 72 h, respectively, with 26 ℃ as the control group. The results demonstrated that the survival rate of P. clarkii decreased significantly with the stress time and the temperature increased, with a corresponding damage to its hepatopancreas. Significant fluctuations were observed in the malondialdehyde (MDA) content, reactive oxygen species (ROS) production, total antioxidant capacity (T-AOC), and activities of pyruvate kinase (PK), hexokinase (HK), alkaline phosphatase (ALP), lysozyme (LYS), acid phosphatase (ACP), fatty acid synthase (FAS), as well as lipoprotein lipase (LPL) in response to different stress conditions (P < 0.05). Heat stress notably altered the expression of genes related to glucose, lipid, and protein metabolism, as well as oxidative phosphorylation pathways. The expression of genes related to protein processing and degradation pathways in the endoplasmic reticulum was up-regulation. On the contrary, the expression of genes related to ER autophagy was suppressed. Simultaneously, the differentially expressed genes (DEGs) were significantly enriched in lysosomal and phagosomal pathways. In summary, heat stress induced oxidative damage, disrupted metabolic pathways, impacted protein processing, and compromised immune defense mechanisms, ultimately resulting in decreased survival rates of P. clarkii. These findings contribute to a deeper understanding of aquatic organisms respond to heat stress.
Collapse
Affiliation(s)
- Yongfeng Zou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Panhui Cao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhiming Bao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yu Xu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, PR China
| | - Zhiqiang Xu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, PR China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
2
|
Wang L, Zhu Q, Hu M, Zhou X, Guan T, Wu N, Zhu C, Wang H, Wang G, Li J. Toxic mechanisms of nanoplastics exposure at environmental concentrations on juvenile red swamp crayfish (Procambarus clarkii): From multiple perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124125. [PMID: 38740244 DOI: 10.1016/j.envpol.2024.124125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Nanoplastics pollution has emerged as a global issue due to its widespread potential toxicity. This study delved in to toxic effects of nanoplastics on juvenile P. clarkii and molecular mechanisms from perspectives of growth, biochemical, histopathological analysis and transcriptome level for the first time. The findings of this study indicated that nanoplastics of different concentrations have varying influence mechanisms on juvenile P. clarkii. Nanoplastics have inhibitory effects on growth of juvenile P. clarkii, can induce oxidative stress. The biochemical analysis and transcriptome results indicated that 10 mg/L nanoplastics can activate the antioxidant defense system and non-specific immune system in juvenile P. clarkii, and affect energy metabolism and oxidative phosphorylation. While 20 mg/L and 40 mg/L have a destructive influence on the immune function in juvenile P. clarkii, leading to lipid peroxidation and oxidative damage, and induce apoptosis, can affect ion transport and osmotic pressure regulation. The findings of this study can offer foundational data for delving further into impacts of nanoplastics on crustaceans and toxicity mechanism.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu, 223300, China
| | - Qianqian Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Meng Hu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xinyi Zhou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Tianyu Guan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu, 223300, China
| | - Nan Wu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Jiangsu Engineering Center for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, 223300, China
| | - Chuankun Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Hui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| | - Guiling Wang
- Jiangsu Engineering Center for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu, 223300, China
| | - Jiale Li
- Jiangsu Engineering Center for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu, 223300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
3
|
Wang Z, Li J, Zhao P, Yu Z, Yang L, Ding X, Lv H, Yi S, Sheng Q, Zhang L, Zhou F, Wang H. Integrated microbiome and metabolome analyses reveal the effects of low pH on intestinal health and homeostasis of crayfish (Procambarus clarkii). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106903. [PMID: 38503037 DOI: 10.1016/j.aquatox.2024.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Low pH (LpH) poses a significant challenge to the health, immune response, and growth of aquatic animals worldwide. Crayfish (Procambarus clarkii) is a globally farmed freshwater species with a remarkable adaptability to various environmental stressors. However, the effects of LpH stress on the microbiota and host metabolism in crayfish intestines remain poorly understood. In this study, integrated analyses of antioxidant enzyme activity, histopathological damage, 16S rRNA gene sequencing, and liquid chromatography-mass spectrometry (LC-MS) were performed to investigate the physiology, histopathology, microbiota, and metabolite changes in crayfish intestines exposed to LpH treatment. The results showed that LpH stress induced obvious changes in superoxide dismutase and catalase activities and histopathological alterations in crayfish intestines. Furthermore, 16S rRNA gene sequencing analysis revealed that exposure to LpH caused significant alterations in the diversity and composition of the crayfish intestinal microbiota at the phylum and genus levels. At the genus level, 14 genera including Bacilloplasma, Citrobacter, Shewanella, Vibrio, RsaHf231, Erysipelatoclostridium, Anaerorhabdus, Dysgonomonas, Flavobacterium, Tyzzerella, Brachymonas, Muribaculaceae, Propionivibrio, and Comamonas, exhibited significant differences in their relative abundances. The LC-MS analysis revealed 859 differentially expressed metabolites in crayfish intestines in response to LpH, including 363 and 496 upregulated and downregulated metabolites, respectively. These identified metabolites exhibited significant enrichment in 24 Kyoto Encyclopedia of Genes and Genomes pathways (p < 0.05), including seven and 17 upregulated and downregulated pathways, respectively. These pathways are mainly associated with energy and amino acid metabolism. Correlation analysis revealed a strong correlation between the metabolites and intestinal microbiota of crayfish during LpH treatment. These findings suggest that LpH may induce significant oxidative stress, intestinal tissue damage, disruption of intestinal microbiota homeostasis, and alterations in the metabolism in crayfish. These findings provide valuable insights into how the microbial and metabolic processes of crayfish intestines respond to LpH stress.
Collapse
Affiliation(s)
- Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Pengfei Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zaihang Yu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Lianlian Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xueyan Ding
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China
| | - He Lv
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - ShaoKui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Qiang Sheng
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Fan Zhou
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China.
| | - Hua Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China; Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; Huzhou Key Laboratory of Medical and Environmental Application Technologies, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| |
Collapse
|
4
|
Zhao P, Yang S, Zheng Y, Zhang L, Li Y, Li J, Wang W, Wang Z. Polylactic acid microplastics have stronger positive effects on the qualitative traits of rice (Oryza sativa L.) than polyethylene microplastics: Evidence from a simulated field experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170334. [PMID: 38301794 DOI: 10.1016/j.scitotenv.2024.170334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
Soil pollution by microplastics (MPs) from different types of agricultural films has received substantial attention due to its potential effects on crop quality. To date, the effects of different types of MPs on rice grain quality and their underlying molecular mechanisms have not been clarified. In this study, we examined the effects of polyethylene MPs (PE-MPs) and biodegradable polylactic acid MPs (PLA-MPs) on rice grain quality at the environmental level (0.5 %) and evaluated the molecular mechanism through transcriptome analysis. PE- and PLA-MPs increased the number of rice grains per plant by 19.83 % and 24.66 %, respectively, and decreased the rice empty-shell rate by 55.89 % and 26.53 %, respectively. However, PLA-MPs increased the 1000-seed weight by 11.37 %, whereas PE-MPs had no obvious impact in this respect. Furthermore, MP exposure, especially that of PE-MPs, affected the content of mineral elements, fatty acids, and amino acids of rice grains by disturbing the expression of genes related to these functions and metabolism. Our findings provide insights into the response of rice grains to the stress caused by different MPs.
Collapse
Affiliation(s)
- Pengfei Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Siyu Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Yaoying Zheng
- Institute of Nuclear Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Yongli Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Wei Wang
- Institute of Nuclear Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China.
| |
Collapse
|
5
|
Mao T, Gan J, Yuan K, He L, Yu Y, Liu Z, Zhou Y, Wu G. Effects of Aminomethylphosphonic Acid on the Transcriptome and Metabolome of Red Swamp Crayfish, Procambarus clarkii. Int J Mol Sci 2024; 25:943. [PMID: 38256017 PMCID: PMC10816000 DOI: 10.3390/ijms25020943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Red swamp crayfish, Procambarus clarkii (P. clarkii), is an important model crustacean organism used in many types of research. However, the effects of different doses of aminomethylphosphonic acid (AMAP) on the transcriptome and metabolites of P. clarkii have not been explored. Thus, this study investigated the molecular and metabolic mechanisms activated at the different exposure dosages of AMAP in P. clarkii to provide new insights into the strategies of P. clarkii in response to the high concentrations of AMAP in the environment. In the present study, the P. clarkii were divided into three groups (control group; low-dosage AMAP exposure; high-dosage AMAP exposure), and hepatopancreatic tissue samples were dependently taken from the three groups. The response mechanisms at the different dosages of AMAP were investigated based on the transcriptome and metabolome data of P. clarkii. Differentially expressed genes and differentially abundant metabolites were identified in the distinct AMAP dosage exposure groups. The genes related to ribosome cell components were significantly up-regulated, suggesting that ribosomes play an essential role in responding to AMAP stress. The metabolite taurine, involved in the taurine and hypotaurine metabolism pathway, was significantly down-regulated. P. clarkii may provide feedback to counteract different dosages of AMAP via the upregulation of ribosome-related genes and multiple metabolic pathways. These key genes and metabolites play an important role in the response to AMAP stress to better prepare for survival in high AMAP concentrations.
Collapse
Affiliation(s)
- Tao Mao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.M.); (Z.L.)
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.G.); (K.Y.); (L.H.); (Y.Y.)
| | - Jinhua Gan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.G.); (K.Y.); (L.H.); (Y.Y.)
| | - Keping Yuan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.G.); (K.Y.); (L.H.); (Y.Y.)
| | - Li He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.G.); (K.Y.); (L.H.); (Y.Y.)
| | - Yali Yu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.G.); (K.Y.); (L.H.); (Y.Y.)
| | - Ziduo Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.M.); (Z.L.)
| | - Yuntao Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.G.); (K.Y.); (L.H.); (Y.Y.)
| | - Gaobing Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.M.); (Z.L.)
| |
Collapse
|
6
|
Jiang X, Li T, Hai X, Zheng X, Wang Z, Lyu F. Integrated behavior and transcriptomic analysis provide valuable insights into the response mechanisms of Dastarcus helophoroides Fairmaire to light exposure. Front Physiol 2023; 14:1250836. [PMID: 38107477 PMCID: PMC10722319 DOI: 10.3389/fphys.2023.1250836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023] Open
Abstract
Light traps have been widely used to monitor and manage pest populations, but natural enemies are also influenced. The Dastarcus helophoroides Fairmaire is an important species of natural enemy for longhorn beetles. However, the molecular mechanism of D. helophoroides in response to light exposure is still scarce. Here, integrated behavioral, comparative transcriptome and weighted gene co-expression network analyses were applied to investigate gene expression profiles in the head of D. helophoroides at different light exposure time. The results showed that the phototactic response rates of adults were 1.67%-22.5% and females and males displayed a negative phototaxis under different light exposure [6.31 × 1018 (photos/m2/s)]; the trapping rates of female and male were influenced significantly by light exposure time, diel rhythm, and light wavelength in the behavioral data. Furthermore, transcriptome data showed that a total of 1,052 significantly differentially expressed genes (DEGs) were identified under different light exposure times relative to dark adaptation. Bioinformatics analyses revealed that the "ECM-receptor interaction," "focal adhesion," "PI3K-Akt signaling," and "lysosome" pathways were significantly downregulated with increasing light exposure time. Furthermore, nine DEGs were identified as hub genes using WGCNA analysis. The results revealed molecular mechanism in negative phototactic behavior response of D. helophoroides under the light exposure with relative high intensity, and provided valuable insights into the underlying molecular response mechanism of nocturnal beetles to light stress.
Collapse
Affiliation(s)
- Xianglan Jiang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Tengfei Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaoxia Hai
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiang Zheng
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding, Hebei, China
| | - Zhigang Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Fei Lyu
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
7
|
Lei X, Hao Z, Wang H, Tang Z, Zhang Z, Yuan J. Identification of core genes, critical signaling pathways, and potential drugs for countering BPA-induced hippocampal neurotoxicity in male mice. Food Chem Toxicol 2023; 182:114195. [PMID: 37992956 DOI: 10.1016/j.fct.2023.114195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Although the neurotoxicity of the common chemical bisphenol A (BPA) to the mouse hippocampus has been often reported, the mechanism underlying BPA-induced depression-like behavior in mice remains unclear. We evaluated BPA's role in inducing depressive-like behavior by exposing male mice to different BPA concentrations (0, 0.01, 0.1, and 1 μg/mL) and using the forced swimming test (FST) and tail suspension test (TST). We aimed to identify critical gene and anti-BPA-neurotoxicity compounds using RNA sequencing combined with bioinformatics analysis. Our results showed that 1 μg/mL BPA exposure increased mouse immobility during the FST and TST. Based on BPA-induced hippocampal transcriptome changes, we identified NADH: ubiquinone oxidoreductase subunit AB1 (Ndufab1) as a critical and potential therapeutic target gene, and Ndufab1 mRNA and protein levels were downregulated in the BPA-exposed groups. Furthermore, molecular docking identified phenelzine as a compound that could counteract BPA-related neurotoxicity. Conclusively, our analyses confirmed that BPA triggers depressive behavior in male mice by downregulating Ndufab1 expression and suggested that phenelzine might reduce BPA-induced neurotoxicity.
Collapse
Affiliation(s)
- Xuepei Lei
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhoujie Hao
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Huimin Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhongwei Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhuo Zhang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jianqin Yuan
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Shanxi Key Laboratory of Ecological Animal Sciences and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
8
|
Zhou F, Qi M, Li J, Huang Y, Chen X, Liu W, Yao G, Meng Q, Zheng T, Wang Z, Ding X. Comparative Transcriptomic Analysis of Largemouth Bass ( Micropterus salmoides) Livers Reveals Response Mechanisms to High Temperatures. Genes (Basel) 2023; 14:2096. [PMID: 38003039 PMCID: PMC10671503 DOI: 10.3390/genes14112096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
High temperatures are considered one of the most significant limitations to subtropical fishery production. Largemouth bass (Micropterus salmoides) is an economically important freshwater species grown in subtropical areas, which are extremely sensitive to heat stress (HS). However, comprehensive transcriptomic data for the livers of largemouth bass in response to HS are still lacking. In this study, a comparative transcriptomic analysis was performed to investigate the gene expression profiles of the livers of largemouth bass under HS treatment. As a result, 6114 significantly differentially expressed genes (DEGs), which included 2645 up-regulated and 3469 down-regulated genes, were identified in response to HS. Bioinformatics analyses demonstrated that the 'ECM-receptor interaction' pathway was one of the most dramatically changed pathways in response to HS, and eight DEGs assigned to this pathway were taken as hub genes. Furthermore, the expression of these eight hub genes was determined by quantitative reverse transcription PCR, and all of them showed a significant change at the transcriptional level, suggesting a crucial role of the 'ECM-receptor interaction' pathway in the response of largemouth bass to HS. These findings may improve our understanding of the molecular mechanisms underlying the response of largemouth bass to HS.
Collapse
Affiliation(s)
- Fan Zhou
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| | - Ming Qi
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China;
| | - Yuanfei Huang
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| | - Xiaoming Chen
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| | - Wei Liu
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| | - Gaohua Yao
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| | - Qinghui Meng
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| | - Tianlun Zheng
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China;
| | - Xueyan Ding
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China; (F.Z.); (M.Q.); (Y.H.); (X.C.); (W.L.); (G.Y.); (Q.M.); (T.Z.)
| |
Collapse
|