1
|
Savva K, Llorca M, Borrell X, Bertran-Solà O, Farré M, Moreno T. Granulated rubber in playgrounds and sports fields: A potential source of atmospheric plastic-related contaminants and plastic additives after runoff events. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135697. [PMID: 39216238 DOI: 10.1016/j.jhazmat.2024.135697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The use of "crumb rubber" coming from recycling materials in outdoor floors like playgrounds has been a frequent practice during the last years. However, these surfaces are object of abrasion and weathering being a potential source of micro and nanoplastics (MNPLs) to the atmosphere and a potential source of human exposure to them. Our main goal has been to expose different crumb rubber materials to summer weathering effects. The released inhalable fractions were sampled for two months with passive samplers and the composition of MNPLs and plastic additives (organic and inorganic) were evaluated. The ecotoxicological effects of leached materials emulating runoff events was evaluated in freshwater micro crustacean Daphnia magna and the green algae Chlorella vulgaris. The analysis of MNPLs showed the presence of polyethylene, polypropylene, polybutadiene, polysiloxanes and polybutylene at concentrations up to 30,426 ng/m3. In the same fraction, we also identified up to 56 plastic additives, including antioxidants, pigments, copolymers, flame retardants, fungicides, lubricants, plasticizers, UV filters and metal ions. Finally, runoff ecotoxicological effects on D. magna and C. vulgaris showed that leached compounds, either from virgin or aged material, would be toxicants for exposed organisms although at concentrations much higher than those expected to be released to the media.
Collapse
Affiliation(s)
- Katerina Savva
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain
| | - Marta Llorca
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain.
| | - Xavier Borrell
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain
| | - Ona Bertran-Solà
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain
| | - Marinella Farré
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain.
| |
Collapse
|
2
|
Vega-Herrera A, Savva K, Lacoma P, Santos LHMLM, Hernández A, Marmelo I, Marques A, Llorca M, Farré M. Bioaccumulation and dietary bioaccessibility of microplastics composition and cocontaminants in Mediterranean mussels. CHEMOSPHERE 2024; 363:142934. [PMID: 39053781 DOI: 10.1016/j.chemosphere.2024.142934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPLs) are contaminants of emerging concern (CECs) ubiquitous in aquatic environments, which can be bioaccumulated along the food chain. In this study, the accumulation of polyethylene (PE), polystyrene (PS) and polyethylene terephthalate (PET) microplastics (MPLs) of sizes below 63 μm was assessed in Mediterranean mussels (Mytilus galloprovincialis spp). Moreover, the potential of mussels to uptake and bioaccumulate other organic contaminants, such as triclosan (TCS) and per- and polyfluoroalkyl substances (PFASs), was evaluated with and without the presence of MPLs. Then, the modulation of MPLs in the human bioaccessibility of co-contaminants was assessed by in vitro assays that simulated the human digestion process. Exposure experiments were carried out in 15 L marine microcosms. The bioaccumulation and bioaccessibility of PE, PS, PET, and co-contaminants were assessed by means of liquid chromatography -size exclusion chromatography-coupled to high-resolution mass spectrometry (LC(SEC)-HRMS). Our outcomes confirm that MPL bioaccumulation in filter-feeding organisms is a function of MPL chemical composition and particle sizes. Finally, despite the lower accumulation and bioaccumulation of PFASs in the presence of MPLs, the bioaccessibility assays revealed that PFASs bioaccessibility was favoured in the presence of MPLs. Since part of the bioaccumulated PFASs are adsorbed onto MPL surfaces by hydrophobic and electrostatic interactions, these interactions easily change with the pH during digestion, and the PFASs bioaccessibility increases.
Collapse
Affiliation(s)
- Albert Vega-Herrera
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Katerina Savva
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Pol Lacoma
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Lúcia H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Isa Marmelo
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Lisbon, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - António Marques
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Lisbon, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Marta Llorca
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Marinella Farré
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
3
|
Zhang L, García-Pérez P, Muñoz-Palazon B, Gonzalez-Martinez A, Lucini L, Rodriguez-Sanchez A. A metabolomics perspective on the effect of environmental micro and nanoplastics on living organisms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172915. [PMID: 38719035 DOI: 10.1016/j.scitotenv.2024.172915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
The increasing trend regarding the use of plastics has arisen an exponential concern on the fate of their derived products to the environment. Among these derivatives, microplastics and nanoplastics (MNPs) have been featured for their associated environmental impact due to their low molecular size and high surface area, which has prompted their ubiquitous transference among all environmental interfaces. Due to the heterogenous chemical composition of MNPs, the study of these particles has focused a high number of studies, as a result of the myriad of associated physicochemical properties that contribute to the co-transference of a wide range of contaminants, thus becoming a major challenge for the scientific community. In this sense, both primary and secondary MNPs are well-known to be adscribed to industrial and urbanized areas, from which they are massively released to the environment through a multiscale level, involving the atmosphere, hydrosphere, and lithosphere. Consequently, much research has been conducted on the understanding of the interconnection between those interfaces, that motivate the spread of these contaminants to biological systems, being mostly represented by the biosphere, especially phytosphere and, finally, the anthroposphere. These findings have highlighted the potential hazardous risk for human health through different mechanisms from the environment, requiring a much deeper approach to define the real risk of MNPs exposure. As a result, there is a gap of knowledge regarding the environmental impact of MNPs from a high-throughput perspective. In this review, a metabolomics-based overview on the impact of MNPs to all environmental interfaces was proposed, considering this technology a highly valuable tool to decipher the real impact of MNPs on biological systems, thus opening a novel perspective on the study of these contaminants.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pascual García-Pérez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | | | - Alejandro Gonzalez-Martinez
- Department of Microbiology, Campus Universitario de Fuentenueva s/n, 18071, University of Granada, Spain; Institute of Water Research, Calle Ramon y Cajal 4, 18001, University of Granada, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alejandro Rodriguez-Sanchez
- Department of Microbiology, Campus Universitario de Fuentenueva s/n, 18071, University of Granada, Spain; Institute of Water Research, Calle Ramon y Cajal 4, 18001, University of Granada, Spain
| |
Collapse
|
4
|
Habumugisha T, Zhang Z, Uwizewe C, Yan C, Ndayishimiye JC, Rehman A, Zhang X. Toxicological review of micro- and nano-plastics in aquatic environments: Risks to ecosystems, food web dynamics and human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116426. [PMID: 38718727 DOI: 10.1016/j.ecoenv.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
The increase of micro- and nano-plastics (MNPs) in aquatic environments has become a significant concern due to their potential toxicological effects on ecosystems, food web dynamics, and human health. These plastic particles emerge from a range of sources, such as the breakdown of larger plastic waste, consumer products, and industrial outputs. This review provides a detailed report of the transmission and dangers of MNPs in aquatic ecosystems, environmental behavior, and interactions within aquatic food webs, emphasizing their toxic impact on marine life. It explores the relationship between particle size and toxicity, their distribution in different tissues, and the process of trophic transfer through the food web. MNPs, once consumed, can be found in various organs, including the digestive system, gills, and liver. Their consumption by lower trophic level organisms facilitates their progression up the food chain, potentially leading to bioaccumulation and biomagnification, thereby posing substantial risks to the health, reproduction, and behavior of aquatic species. This work also explores how MNPs, through their persistence and bioaccumulation, pose risks to aquatic biodiversity and disrupt trophic relationships. The review also addresses the implications of MNPs for human health, particularly through the consumption of contaminated seafood, highlighting the direct and indirect pathways through which humans are exposed to these pollutants. Furthermore, the review highlights the recommendations for future research directions, emphasizing the integration of ecological, toxicological, and human health studies to inform risk assessments and develop mitigation strategies to address the global challenge of plastic pollution in aquatic environments.
Collapse
Affiliation(s)
- Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Zixing Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Constance Uwizewe
- Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao 266100, PR China
| | - Changzhou Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | | | - Abdul Rehman
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
5
|
Xu L, Liu C, Ren Y, Huang Y, Liu Y, Feng S, Zhong X, Fu D, Zhou X, Wang J, Liu Y, Yang M. Nanoplastic toxicity induces metabolic shifts in Populus × euramericana cv. '74/76' revealed by multi-omics analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134148. [PMID: 38565012 DOI: 10.1016/j.jhazmat.2024.134148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
There is increasing global concern regarding the pervasive issue of plastic pollution. We investigated the response of Populus × euramericana cv. '74/76' to nanoplastic toxicity via phenotypic, microanatomical, physiological, transcriptomic, and metabolomic approaches. Polystyrene nanoplastics (PS-NPs) were distributed throughout the test plants after the application of PS-NPs. Nanoplastics principally accumulated in the roots; minimal fractions were translocated to the leaves. In leaves, however, PS-NPs easily penetrated membranes and became concentrated in chloroplasts, causing thylakoid disintegration and chlorophyll degradation. Finally, oxidant damage from the influx of PS-NPs led to diminished photosynthesis, stunted growth, and etiolation and/or wilting. By integrating dual-omics data, we found that plants could counteract mild PS-NP-induced oxidative stress through the antioxidant enzyme system without initiating secondary metabolic defense mechanisms. In contrast, severe PS-NP treatments promoted a shift in metabolic pattern from primary metabolism to secondary metabolic defense mechanisms, an effect that was particularly pronounced during the upregulation of flavonoid biosynthesis. Our findings provide a useful framework from which to further clarify the roles of key biochemical pathways in plant responses to nanoplastic toxicity. Our work also supports the development of effective strategies to mitigate the environmental risks of nanoplastics by biologically immobilizing them in contaminated lands.
Collapse
Affiliation(s)
- Liren Xu
- Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei 071000, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Chong Liu
- Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Yachao Ren
- Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei 071000, China.
| | - Yinran Huang
- Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Yichao Liu
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, Hebei 050061, China.
| | - Shuxiang Feng
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, Hebei 050061, China.
| | - Xinyu Zhong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Donglin Fu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Xiaohong Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Jinmao Wang
- Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei 071000, China.
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Minsheng Yang
- Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei 071000, China.
| |
Collapse
|
6
|
Luo D, Chu X, Wu Y, Wang Z, Liao Z, Ji X, Ju J, Yang B, Chen Z, Dahlgren R, Zhang M, Shang X. Micro- and nano-plastics in the atmosphere: A review of occurrence, properties and human health risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133412. [PMID: 38218034 DOI: 10.1016/j.jhazmat.2023.133412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
The ubiquitous occurrence of micro/nano plastics (MNPs) poses potential threats to ecosystem and human health that have attracted broad concerns in recent decades. Detection of MNPs in several remote regions has implicated atmospheric transport as an important pathway for global dissemination of MNPs and hence as a global health risk. In this review, the latest research progress on (1) sampling and detection; (2) origin and characteristics; and (3) transport and fate of atmospheric MNPs was summarized. Further, the current status of exposure risks and toxicological effects from inhaled atmospheric MNPs on human health is examined. Due to limitations in sampling and identification methodologies, the study of atmospheric nanoplastics is very limited today. The large spatial variation of atmospheric MNP concentrations reported worldwide makes it difficult to compare the overall indoor and outdoor exposure risks. Several in vitro, in vivo, and epidemiological studies demonstrate adverse effects of immune response, apoptosis and oxidative stress caused by MNP inhalation that may induce cardiovascular diseases and reproductive and developmental abnormalities. Given the emerging importance of atmospheric MNPs, the establishment of standardized sampling-pretreatment-detection protocols and comprehensive toxicological studies are critical to advance environmental and health risk assessments of atmospheric MNPs.
Collapse
Affiliation(s)
- Dehua Luo
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyun Chu
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yue Wu
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhenfeng Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhonglu Liao
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoliang Ji
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingjuan Ju
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Bin Yang
- Pingyang County Health Inspection Center, Wenzhou 325405, China.
| | - Zheng Chen
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Randy Dahlgren
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California Davis, CA 95616, USA
| | - Minghua Zhang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California Davis, CA 95616, USA
| | - Xu Shang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
7
|
Zhang M, Shi J, Pan H, Zhu J, Wang X, Song L, Deng H. A novel tiRNA-Glu-CTC induces nanoplastics accelerated vascular smooth muscle cell phenotypic switching and vascular injury through mitochondrial damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169515. [PMID: 38154651 DOI: 10.1016/j.scitotenv.2023.169515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Nanoplastics pose several health hazards, especially vascular toxicity. Transfer RNA-derived small RNAs (tsRNAs) are novel noncoding RNAs associated with different pathological processes. However, their biological roles and mechanisms in aberrant vascular smooth muscle cell (VSMC) plasticity and vascular injury are unclear. This study investigated the potent effects of tsRNAs on vascular injury induced by short- and long-term exposure to polystyrene nanoplastics (PS-NPs). Mice were exposed to PS-NPs (100 nm) at different doses (10-100 μg/mL) for 30 or 180 days. High-throughput sequencing was used to analyze tsRNA expression patterns in arterial tissues obtained from an in vivo model. Additionally, quantitative real-time polymerase chain reaction, fluorescent in situ hybridization assays, and dual-luciferase reporter assays were performed to measure the expression and impact of tiRNA-Glu-CTC on VSMCs exposed to PS-NPs. Short-term (≥50 μg/mL, moderate concentration) and long-term (≥10 μg/mL, low concentration) PS-NP exposure induced vascular injury in vivo. Cellular experiments showed that the moderate concentration of PS-NPs induced VSMC phenotypic switching, whereas a high concentration of PS-NPs (100 μg/mL) promoted VSMC apoptosis. PS-NP induced severe mitochondrial damage in VSMCs, including overexpression of reactive oxygen species, accumulation of mutated mtDNA, and dysregulation of genes related to mitochondrial synthesis and division. Compared with the control group, 13 upregulated and 12 downregulated tRNA-derived stress-induced RNAs (tiRNAs) were observed in the long-term PS-NP (50 μg/mL) exposure group. Bioinformatics analysis indicated that differentially expressed tiRNAs targeted genes that were involved in vascular smooth muscle contraction and calcium signaling pathways. Interestingly, tiRNA-Glu-CTC was overexpressed in vivo and in vitro following PS-NP exposure. Functionally, the tiRNA-Glu-CTC inhibitor mitigated VSMC phenotypic switching and mitochondrial damage induced by PS-NP exposure, whereas tiRNA-Glu-CTC mimics had the opposite effect. Mechanistically, tiRNA-Glu-CTC mimics induced VSMC phenotypic switching by downregulating Cacna1f expression. PS-NP exposure promoted VSMC phenotypic switching and vascular injury by targeting the tiRNA-Glu-CTC/Cacna1f axis.
Collapse
Affiliation(s)
- Min Zhang
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336 Shanghai, China.
| | - Jun Shi
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Huichao Pan
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336 Shanghai, China
| | - Jie Zhu
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xueting Wang
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336 Shanghai, China
| | - Lei Song
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336 Shanghai, China
| | - Huiping Deng
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Li Y, Zhang C, Tian Z, Cai X, Guan B. Identification and quantification of nanoplastics (20-1000 nm) in a drinking water treatment plant using AFM-IR and Pyr-GC/MS. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132933. [PMID: 37951177 DOI: 10.1016/j.jhazmat.2023.132933] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Nanoplastics, owing to their small particle size, pose a significant threat to creatures, deserving heightened attention. Numerous studies have investigated microplastics pollution and their removal efficiency in drinking water treatment plants, none of which have involved nanoplastics due to lacking a suitable analytical method. This study introduced a feasible method of combing AFM-IR and Pyr-GC/MS to identify and quantify nanoplastics (20-1000 nm) for a preliminary understanding of their fate during drinking water treatment processes. Resolving of chemical functional groups and pyrolysis products from AFM-IR and Pyr-GC/MS data demonstrated the presence of PE and PVC nanoplastics in this drinking water treatment plant. The initial influent abundances of PE and PVC nanoplastics were 0.86 μg/L and 137.31 μg/L, with subsequent increase to 4.49 μg/L and 208.64 μg/L in ozonation contact tank unit. Then a gradual decreasing was observed along water process, achieving 98.4% removal of PE nanoplastics and 44.0% removal of PVC nanoplastics, respectively. Although this drinking water treatment plant has exhibited a certain level of nanoplastics removal efficiency, particular attention should be directed to the oxidation unit, which appears to be a significant source of nanoplastics. This study will lay a foundation for revealing nanoplastics pollution in the environment.
Collapse
Affiliation(s)
- Yu Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA.
| | - Chuanming Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhenyu Tian
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Xueyi Cai
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Baohong Guan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Ye R, Li Z, Xian H, Zhong Y, Liang B, Huang Y, Chen D, Dai M, Tang S, Guo J, Bai R, Feng Y, Chen Z, Yang X, Huang Z. Combined Effects of Polystyrene Nanosphere and Homosolate Exposures on Estrogenic End Points in MCF-7 Cells and Zebrafish. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27011. [PMID: 38381479 PMCID: PMC10880820 DOI: 10.1289/ehp13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Micro- and nanoplastics (MNPs) and homosalate (HMS) are ubiquitous emerging environmental contaminants detected in human samples. Despite the well-established endocrine-disrupting effects (EDEs) of HMS, the interaction between MNPs and HMS and its impact on HMS-induced EDEs remain unclear. OBJECTIVES This study aimed to investigate the influence of MNPs on HMS-induced estrogenic effects and elucidate the underlying mechanisms in vitro and in vivo. METHODS We assessed the impact of polystyrene nanospheres (PNSs; 50 nm , 1.0 mg / L ) on HMS-induced MCF-7 cell proliferation (HMS: 0.01 - 1 μ M , equivalent to 2.62 - 262 μ g / L ) using the E-SCREEN assay and explored potential mechanisms through transcriptomics. Adult zebrafish were exposed to HMS (0.0262 - 262 μ g / L ) with or without PNSs (50 nm , 1.0 mg / L ) for 21 d. EDEs were evaluated through gonadal histopathology, fertility tests, steroid hormone synthesis, and gene expression changes in the hypothalamus-pituitary-gonad-liver (HPGL) axis. RESULTS Coexposure of HMS and PNSs resulted in higher expression of estrogen receptor α (ESR1) and the mRNAs of target genes (pS2, AREG, and PGR), a greater estrogen-responsive element transactivation activity, and synergistic stimulation on MCF-7 cell proliferation. Knockdown of serum and glucocorticoid-regulated kinase 1 (SGK1) rescued the MCF-7 cell proliferation induced by PNSs alone or in combination with HMS. In zebrafish, coexposure showed higher expression of SGK1 and promoted ovary development but inhibited spermatogenesis. In addition, coexposure led to lower egg hatchability, higher embryonic mortality, and greater larval malformation. Coexposure also modulated steroid hormone synthesis genes (cyp17a2, hsd17[Formula: see text]1, esr2b, vtg1, and vtg2), and resulted in higher 17 β -estradiol (E 2 ) release in females. Conversely, males showed lower testosterone, E 2 , and gene expressions of cyp11a1, cyp11a2, cyp17a1, cyp17a2, and hsd17[Formula: see text]1. DISCUSSION PNS exposure exacerbated HMS-induced estrogenic effects via SGK1 up-regulation in MCF-7 cells and disrupting the HPGL axis in zebrafish, with gender-specific patterns. This offers new mechanistic insights and health implications of MNP and contaminant coexposure. https://doi.org/10.1289/EHP13696.
Collapse
Affiliation(s)
- Rongyi Ye
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhiming Li
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongyi Xian
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yizhou Zhong
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Boxuan Liang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuji Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Da Chen
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | | | - Shuqin Tang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Jie Guo
- Hunter Biotechnology, Inc, Hangzhou, China
| | - Ruobing Bai
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Feng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenguo Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenlie Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Oda K, Wlodawer A. Development of Enzyme-Based Approaches for Recycling PET on an Industrial Scale. Biochemistry 2024. [PMID: 38285602 DOI: 10.1021/acs.biochem.3c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Pollution by plastics such as polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyurethane (PUR), polyamide (PA), polystyrene (PS), and poly(ethylene terephthalate) (PET) is now gaining worldwide attention as a critical environmental issue, closely linked to climate change. Among them, PET is particularly prone to hydrolysis, breaking down into its constituents, ethylene glycol (EG) and terephthalate (TPA). Biorecycling or bioupcycling stands out as one of the most promising methods for addressing PET pollution. For dealing with pollution by the macrosize PET, a French company Carbios has developed a pilot-scale plant for biorecycling waste PET beverage bottles into new bottles using derivatives of thermophilic leaf compost cutinase (LCC). However, this system still provides significant challenges in its practical implementation. For the micro- or nanosize PET pollution that poses significant human health risks, including cancer, no industrial-scale approach has been established so far, despite the need to develop such technologies. In this Perspective, we explore the enhancement of the low activity and thermostability of the enzyme PETase to match that of LCC, along with the potential application of microbes and enzymes for the treatment of waste PET as microplastics. Additionally, we discuss the shortcomings of the current biorecycling protocols from a life cycle assessment perspective, covering aspects such as the diversity of PET-hydrolyzing enzymes in nature, the catalytic mechanism for crystallized PET, and more. We also provide an overview of the Ideonella sakaiensis system, highlighting its ability to operate and grow at moderate temperatures, in contrast to high-temperature processes.
Collapse
Affiliation(s)
- Kohei Oda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
11
|
Tatsii D, Bucci S, Bhowmick T, Guettler J, Bakels L, Bagheri G, Stohl A. Shape Matters: Long-Range Transport of Microplastic Fibers in the Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:671-682. [PMID: 38150408 PMCID: PMC10785798 DOI: 10.1021/acs.est.3c08209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
The deposition of airborne microplastic particles, including those exceeding 1000 μm in the longest dimension, has been observed in the most remote places on earth. However, their deposition patterns are difficult to reproduce using current atmospheric transport models. These models usually treat particles as perfect spheres, whereas the real shapes of microplastic particles are often far from spherical. Such particles experience lower settling velocities compared to volume equivalent spheres, leading to longer atmospheric transport. Here, we present novel laboratory experiments on the gravitational settling of microplastic fibers in air and find that their settling velocities are reduced by up to 76% compared to those of the spheres of the same volume. An atmospheric transport model constrained with the experimental data shows that shape-corrected settling velocities significantly increase the horizontal and vertical transport of particles. Our model results show that microplastic fibers of about 1 mm length emitted in populated areas are more likely to reach extremely remote regions of the globe, including the high Arctic, which is not the case for spheres of equivalent volume. We also calculate that fibers with lengths of up to 100 μm settle slowly enough to be lifted high into the stratosphere, where degradation by ultraviolet radiation may release chlorine and bromine, thus potentially damaging the stratospheric ozone layer. These findings suggest that the growing environmental burden and still increasing emissions of plastic pose multiple threats to life on earth.
Collapse
Affiliation(s)
- Daria Tatsii
- Department
of Meteorology and Geophysics, University
of Vienna, Universitätsring 1, 1010 Vienna, Austria
| | - Silvia Bucci
- Department
of Meteorology and Geophysics, University
of Vienna, Universitätsring 1, 1010 Vienna, Austria
| | - Taraprasad Bhowmick
- Laboratory
for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organisation, Am Faßberg 17, 37077 Göttingen, Germany
- Institute
for the Dynamics of Complex Systems, University
of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Johannes Guettler
- Laboratory
for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organisation, Am Faßberg 17, 37077 Göttingen, Germany
| | - Lucie Bakels
- Department
of Meteorology and Geophysics, University
of Vienna, Universitätsring 1, 1010 Vienna, Austria
| | - Gholamhossein Bagheri
- Laboratory
for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organisation, Am Faßberg 17, 37077 Göttingen, Germany
| | - Andreas Stohl
- Department
of Meteorology and Geophysics, University
of Vienna, Universitätsring 1, 1010 Vienna, Austria
| |
Collapse
|
12
|
Panizzolo M, Martins VH, Ghelli F, Squillacioti G, Bellisario V, Garzaro G, Bosio D, Colombi N, Bono R, Bergamaschi E. Biomarkers of oxidative stress, inflammation, and genotoxicity to assess exposure to micro- and nanoplastics. A literature review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115645. [PMID: 37922781 DOI: 10.1016/j.ecoenv.2023.115645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The increased awareness about possible health effects arising from micro- and nanoplastics (MNPs) pollution is driving a huge amount of studies. Many international efforts are in place to better understand and characterize the hazard of MNPs present in the environment. The literature search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology in two different databases (PubMed and Embase). The selection of articles was carried out blind, screening titles and abstracts according to inclusion and exclusion criteria. In general, these studies rely on the methodology already in use for assessing hazard from nanomaterials and particles of concern. However, only a limited number of studies have so far directly measured human exposure to MNPs and examined the relationship between such exposure and its impact on human health. This review aims to provide an overview of the current state of research on biomarkers of oxidative stress, inflammation, and genotoxicity that have been explored in relation to MNPs exposure, using human, cellular, animal, and plant models. Both in-vitro and in-vivo models suggest an increased level of oxidative stress and inflammation as the main mechanism of action (MOA) leading to adverse effects such as chronic inflammation, immunotoxicity and genotoxicity. With the identification of such biological endpoints, representing critical key initiating events (KIEs) towards adaptive or adverse outcomes, it is possible to identify a panel of surrogate biomarkers to be applied and validated especially in occupational settings, where higher levels of exposure may occur.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Vitor Hugo Martins
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Federica Ghelli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Valeria Bellisario
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Giacomo Garzaro
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Davide Bosio
- Unit of Occupational Medicine, A.O.U Città della Salute e della Scienza di Torino, Turin, Italy
| | - Nicoletta Colombi
- Federated Library of Medicine "F. Rossi", University of Turin, 10126 Turin, Italy
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy.
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| |
Collapse
|
13
|
Goßmann I, Mattsson K, Hassellöv M, Crazzolara C, Held A, Robinson TB, Wurl O, Scholz-Böttcher BM. Unraveling the Marine Microplastic Cycle: The First Simultaneous Data Set for Air, Sea Surface Microlayer, and Underlying Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16541-16551. [PMID: 37853526 PMCID: PMC10620994 DOI: 10.1021/acs.est.3c05002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Microplastics (MP) including tire wear particles (TWP) are ubiquitous. However, their mass loads, transport, and vertical behavior in water bodies and overlying air are never studied simultaneously before. Particularly, the sea surface microlayer (SML), a ubiquitous, predominantly organic, and gelatinous film (<1 mm), is interesting since it may favor MP enrichment. In this study, a remote-controlled research catamaran simultaneously sampled air, SML, and underlying water (ULW) in Swedish fjords of variable anthropogenic impacts (urban, industrial, and rural) to fill these knowledge gaps in the marine-atmospheric MP cycle. Polymer clusters and TWP were identified and quantified with pyrolysis-gas chromatography-mass spectrometry. Air samples contained clusters of polyethylene terephthalate, polycarbonate, and polystyrene (max 50 ng MP m-3). In water samples (max. 10.8 μg MP L-1), mainly TWP and clusters of poly(methyl methacrylate) and polyethylene terephthalate occurred. Here, TWP prevailed in the SML, while the poly(methyl methacrylate) cluster dominated the ULW. However, no general MP enrichment was observed in the SML. Elevated anthropogenic influences in urban and industrial compared to the rural fjord areas were reflected by enhanced MP levels in these areas. Vertical MP movement behavior and distribution were not only linked to polymer characteristics but also to polymer sources and environmental conditions.
Collapse
Affiliation(s)
- Isabel Goßmann
- Institute
for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, P.O. Box 2503, Oldenburg 26111, Germany
- Center
for Marine Sensors, Institute for Chemistry and Biology of the Marine
Environment (ICBM), Carl von Ossietzky University
of Oldenburg, Wilhelmshaven 26382, Germany
| | - Karin Mattsson
- Department
of Marine Sciences, University
of Gothenburg, Kristineberg 566, Fiskebäckskil 45178, Sweden
| | - Martin Hassellöv
- Department
of Marine Sciences, University
of Gothenburg, Kristineberg 566, Fiskebäckskil 45178, Sweden
| | - Claudio Crazzolara
- Chair
of Environmental Chemistry and Air Research, Technische Universität Berlin, Berlin 10623, Germany
| | - Andreas Held
- Chair
of Environmental Chemistry and Air Research, Technische Universität Berlin, Berlin 10623, Germany
| | - Tiera-Brandy Robinson
- GEOMAR
Helmholtz Center for Ocean Research Kiel, Wischhofstraße 1-3, Kiel 24148, Germany
| | - Oliver Wurl
- Center
for Marine Sensors, Institute for Chemistry and Biology of the Marine
Environment (ICBM), Carl von Ossietzky University
of Oldenburg, Wilhelmshaven 26382, Germany
| | - Barbara M. Scholz-Böttcher
- Institute
for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, P.O. Box 2503, Oldenburg 26111, Germany
| |
Collapse
|
14
|
Dube E, Okuthe GE. Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6667. [PMID: 37681807 PMCID: PMC10488176 DOI: 10.3390/ijerph20176667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Plastics, due to their varied properties, find use in different sectors such as agriculture, packaging, pharmaceuticals, textiles, and construction, to mention a few. Excessive use of plastics results in a lot of plastic waste buildup. Poorly managed plastic waste (as shown by heaps of plastic waste on dumpsites, in free spaces, along roads, and in marine systems) and the plastic in landfills, are just a fraction of the plastic waste in the environment. A complete picture should include the micro and nano-plastics (MNPs) in the hydrosphere, biosphere, lithosphere, and atmosphere, as the current extreme weather conditions (which are effects of climate change), wear and tear, and other factors promote MNP formation. MNPs pose a threat to the environment more than their pristine counterparts. This review highlights the entry and occurrence of primary and secondary MNPs in the soil, water and air, together with their aging. Furthermore, the uptake and internalization, by plants, animals, and humans are discussed, together with their toxicity effects. Finally, the future perspective and conclusion are given. The material utilized in this work was acquired from published articles and the internet using keywords such as plastic waste, degradation, microplastic, aging, internalization, and toxicity.
Collapse
Affiliation(s)
- Edith Dube
- Department of Biological & Environmental Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | | |
Collapse
|