1
|
Wang Y, Zhao Y, Jin Y, Wang Y, Xiao G, Baeyens J, Su H. Double detection of mycotoxins based on aptamer induced Fe 3O 4@TiO 2@Ag Core - Shell nanoparticles "turn on" fluorescence resonance energy transfer. Food Chem 2025; 464:141601. [PMID: 39413601 DOI: 10.1016/j.foodchem.2024.141601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Multiple and sensitive mycotoxin detection is an essential early-warning mechanism for safeguarding human health, and preserving the environment. We synthesized a turn-on Fluorescence Resonance Energy Transfer (FRET) aptamer sensor based on the unique fluorescence quenching and substrate recognition characteristics of Ag NTs (energy receptors) and aptamer modified Fe3O4@TiO2 NP (energy donor) to detect multiple toxins using a single diagnostic approach. The addition of aflatoxin B1 (AFB1) and ochratoxin A (OTA) resulted in a change in fluorescence intensity at 510 and 650 nm, which can be employed for simultaneous recognition with detection limits of 0.94 ng·mL-1 (R2 = 0.997) and 0.54 ng·mL-1 (R2 = 0.995). The aptasensors have been successfully applied for the determination of AFB1 and OTA in grain and oil samples with high recovery rates. The approach provides novel possibilities for the development of sensitive and selective aptasensors with potential applications in aptamer-recognized multifunctional biosensing.
Collapse
Affiliation(s)
- Yuxiang Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yilin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yu Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yaoqiang Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Gang Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jan Baeyens
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China; Department of Chemical Engineering, KU Leuven, 2860 Sint-Katelijne-Waver, Belgium
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
2
|
Yan P, Huang J, Wu G, Zhang Y, Mo Z, Xu K, Ling M, Dong S, Xu L, Li H. Construction of a In 2O 3/ultrathin g-C 3N 4 S-scheme heterojunction for sensitive photoelectrochemical aptasensing of diazinon. J Colloid Interface Sci 2025; 679:653-661. [PMID: 39388951 DOI: 10.1016/j.jcis.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
A single semiconductor-based photoelectrochemical (PEC) aptasensor usually faces a challenge of low sensitivity due to poor solar energy utilization and a high photogenerated carrier recombination rate. Herein, an ultra-thin carbon nitride nanosheet-coated In2O3 (In2O3/CNS) S-type heterojunction-based PEC aptasensor has been established to achieve highly sensitive detection of diazinon (DZN) pesticide in water environment. Construction of S-type heterojunction induces a band shift and an electric field effect, enhancing light utilization and accelerating directional transmission of carriers, leading to outstanding PEC performance. The creation of internal electric field at interface ensures stable carrier transport. Additionally, ultrathin CNS structure can effectively shorten the transport path of carriers. The close coating of In2O3 and CNS promotes the transfer of charge. The synergistic effects amplify the sensor's response, ultimately enabling the effective detection of DZN residue over a wide detection range (0.98 ∼ 980.0 pg mL-1), a low detection limit (0.33 pg mL-1, S/N = 3) and excellent accuracy in practical application (RSD < 5 %). This work provides a reference for the construction of a new S-type heterojunction-based PEC sensor.
Collapse
Affiliation(s)
- Pengcheng Yan
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Yongkang Jiaxiao Electric Welding Automation Equipment Co., Ltd, Jinhua 321300, Zhejiang, PR China
| | - Jing Huang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Guanyu Wu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Yu Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Zhao Mo
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Keqiang Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224007, Jiangsu, PR China
| | - Min Ling
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Sihua Dong
- YTO Group Corporation Dongfanghong (Henan) Agricultural Service Technology Co., Ltd., Luoyang 471033, PR China
| | - Li Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| | - Henan Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
3
|
Zhang Z, Wang Y, Chen Q, Tan X, Hu X, An Y, Liu M. Aptamer molecular gate functionalized mesoporous SiO 2@MB controlled-release system for pollutant detection using Ti(Ⅲ) self-doped TiO 2 NTs as active photoanode coupled with electrostatic modulation. Talanta 2024; 277:126409. [PMID: 38897014 DOI: 10.1016/j.talanta.2024.126409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Atrazine (ATZ) is a widely used herbicide that can cause serious harm to organisms and ecosystems. An immobilization-free photoelectrochemical (PEC) aptasensor has been herein developed for ATZ based on aptamer molecular gate functionalized mesoporous SiO2@MB controlled release system. Compared with traditional immobilization-based sensors, immobilization-free sensors (IFSs) avoid the modification of the recognition element on the electrode surface. Mesoporous SiO2 with large surface area and good biocompatibility can be used as nanocontainers to stably encapsulate the signal shuttle molecule methylene blue (MB). The bifunctional aptamer (APT) is used not only as the recognition element for ATZ but also as the signal switch to block or release MB. In the presence of ATZ, the specific recognition between ATZ and APT will cause the detachment of APT from the surface of SiO2, thus the molecular gate will open and release MB. Due to pH modulation, the positively charged MB can reach the surface of the negatively charged Ti(III) self-doped TiO2 NTs (Ti(III)-TiO2 NTs) electrode to act as an electron donor, which increases the photocurrent. The immobilization-free aptasensor has shown ultrasensitive detection of ATZ with a wide linear range from 1.0 pM to 100.0 nM and a low detection limit of 0.1 pM. In addition, the sensor has excellent selectivity, stability and anti-interference ability, and has been used in real water sample analysis successfully. This strategy has provided a new idea for the design of advanced immobilization-free PEC sensors for environmental pollutant detection.
Collapse
Affiliation(s)
- Ziwei Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yanru Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qichen Chen
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaojiang Tan
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yarui An
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Meichuan Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
4
|
Song R, Wang R, Zhang C, Li G, Zou L. Photocurrent polarity switching photoelectrochemical aptasensor for oxytetracycline based on BiOBr/Ag 2S/PDA//CuO: CuO-induced II-type to dual Z-scheme system. Anal Chim Acta 2024; 1317:342920. [PMID: 39030014 DOI: 10.1016/j.aca.2024.342920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND As a broad-spectrum tetracycline antibiotic, Oxytetracycline (OTC) was widely used in a variety of applications. But, the overuse of OTC had led to the detection of it in food, water and soil, which could present significance risk to human health and cause damage to ecosystem. It was of great significance to develop sensitive detection methods for OTC. Herein, an environmentally friendly photoelectrochemical (PEC) aptasensor was constructed for the sensitive detection of OTC based on CuO-induced BiOBr/Ag2S/PDA (Polydopamine) photocurrent polarity reversal. RESULTS BiOBr/Ag2S/PDA composites modified electrode not only produced stable initial anodic photocurrent but also provided attachment sites for the aptamer S1 of OTC by the strong adhesion of PDA. On the other hand, CuO loaded OTC aptamer S2 (Cu-S2) was got through Cu-S bonds. After the target OTC was identified on the electrode surface, CuO was introduced to the surface of ITO/BiOBr/Ag2S/PDA through the specific binding of OTC to S2. This identification process formed dual Z-type heterojunctions and resulted in a remarkable reversal of photocurrent polarity from anodic to cathodic. Under optimization conditions, the PEC aptasensor showed a wide linear range (50 fM ∼ 100 nM), low detection limit (1.9 fM), excellent selectivity, stability and reproducibility for the detection of OTC. Moreover, it was successfully used for the analysis of OTC in real samples of tap water, milk and honey, and had the potential for practical application. SIGNIFICANCE This work developed an environmentally friendly photocurrent-polarity-switching PEC aptasensor with excellent selectivity, reproducibility, stability, low LOD and wide linear range for OTC detection. This sensitive system, which was including BiOBr, Ag2S, PDA and CuO were low toxicity, not only reduced the risk of traditional toxic semiconductors to operators and the environment, but can also be used for the detection of real samples, broadening the wider range of applications for BiOBr, Ag2S, PDA and CuO.
Collapse
Affiliation(s)
- Rumeng Song
- College of Chemistry, Green Catalysis Center, Zhengzhou University, PR China
| | - Ruoyu Wang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, PR China
| | - Chi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, PR China
| | - Gaiping Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, PR China
| | - Lina Zou
- College of Chemistry, Green Catalysis Center, Zhengzhou University, PR China.
| |
Collapse
|
5
|
Gao B, Zhao X, Yang L, Yan L, Lin T, Si J. Enhanced Optical Limiting of Gold Nanoparticles/Porous Carbon Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3079. [PMID: 38998163 PMCID: PMC11242767 DOI: 10.3390/ma17133079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
With the wide application of laser weapons, the requirements of laser protection technology are becoming more and more strict. Therefore, it is important to find ideal optical limiting (OL) materials to protect human eyes and detectors. In this work, the nonlinear optical responses of gold nanoparticles/porous carbon (Au NPs/PC) nanocomposites prepared by the reduction method were studied using the nanosecond Z-scan technique. Compared with porous carbon, the Au NPs/PC nanocomposites show a lower damage threshold, a bigger optical limiting index and a wider absorption spectrum. The interaction between gold nanoparticles and porous carbon enhances the nonlinear scattering effect of suspended bubbles. These results indicate that Au NPs composites have potential applications in the protection of human eyes and detectors.
Collapse
Affiliation(s)
- Bo Gao
- Department of Electronic Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Xuhui Zhao
- Department of Electronic Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Lijiao Yang
- Department of Electronic Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Lihe Yan
- Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Tao Lin
- Department of Electronic Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Jinhai Si
- Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| |
Collapse
|
6
|
Zhang N, Guo S, Wang Y, Zhu C, Hu P, Yang H. Three-dimensional polymer phenylethnylcopper/nitrogen doped graphene aerogel electrode coupled with Fe 3O 4 NPs nanozyme: Toward sensitive and robust photoelectrochemical detection of glyphosate in agricultural matrix. Anal Chim Acta 2024; 1308:342647. [PMID: 38740456 DOI: 10.1016/j.aca.2024.342647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Presently, glyphosate (Gly) is the most extensively used herbicide globally, Nevertheless, its excessive usage has increased its accumulation in off-target locations, and aroused concerns for food and environmental safety. Commonly used detection methods, such as high-performance liquid chromatography and gas chromatography, have limitations due to expensive instruments, complex pre-processing steps, and inadequate sensitivity. Therefore, a facile, sensitive, and reliable Gly detection method should be developed. RESULTS A photoelectrochemical (PEC) sensor consisting of a three-dimensional polymer phenylethnylcopper/nitrogen-doped graphene aerogel (PPhECu/3DNGA) electrode coupled with Fe3O4 NPs nanozyme was constructed for sensitive detection of Gly. The microscopic 3D network of electrodes offered fast transfer routes for photo-generated electrons and a large surface area for nanozyme loading, allowing high signal output and analytical sensitivity. Furthermore, the use of peroxidase-mimicking Fe3O4 NPs instead of natural enzyme improved the stability of the sensor against ambient temperature changes. Based on the inhibitory effect of Gly on the catalytic activity Fe3O4 NPs, the protocol achieved Gly detection in the range of 5 × 10-10 to 1 × 10-4 mol L-1. Additionally, feasibility of the detection was confirmed in real agricultural matrix including tea, maize seedlings, maize seeds and soil. SIGNIFICANCE This work achieved facile, sensitive and reliable analysis towards Gly, and it was expected to inspire the design and utilization of 3D architectures in monitoring agricultural chemicals in food and environmental matrix.
Collapse
Affiliation(s)
- Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangming Guo
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaxiling Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunyuan Zhu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China
| | - Peiwen Hu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Song J, Chen Y, Li L, Tan M, Su W. Recent Progress in Photoelectrochemical Sensing of Pesticides in Food and Environmental Samples: Photoactive Materials and Signaling Mechanisms. Molecules 2024; 29:560. [PMID: 38338305 PMCID: PMC10856573 DOI: 10.3390/molecules29030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Pesticides have become an integral part of modern agricultural practices, but their widespread use poses a significant threat to human health. As such, there is a pressing need to develop effective methods for detecting pesticides in food and environmental samples. Traditional chromatography methods and common rapid detection methods cannot satisfy accuracy, portability, long storage time, and solution stability at the same time. In recent years, photoelectrochemical (PEC) sensing technology has gained attention as a promising approach for detecting various pesticides due to its salient advantages, including high sensitivity, low cost, simple operation, fast response, and easy miniaturization, thus becoming a competitive candidate for real-time and on-site monitoring of pesticide levels. This review provides an overview of the recent advancements in PEC methods for pesticide detection and their applications in ensuring food and environmental safety, with a focus on the categories of photoactive materials, from single semiconductor to semiconductor-semiconductor heterojunction, and signaling mechanisms of PEC sensing platforms, including oxidation of pesticides, steric hindrance, generation/decrease in sacrificial agents, and introduction/release of photoactive materials. Additionally, this review will offer insights into future prospects and confrontations, thereby contributing novel perspectives to this evolving domain.
Collapse
Affiliation(s)
- Jie Song
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao 266400, China;
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Yuqi Chen
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Ling Li
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Wentao Su
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| |
Collapse
|