1
|
Shang Z, Zhu T, Xu Y, Meng Q, Liu D, Zhang R, Zhang Z. Rapid and on-site detection of bisulfite via a NIR fluorescent probe: A case study on the emission wavelength of probes with different quinolinium as electron-withdrawing groups. Talanta 2024; 279:126542. [PMID: 39032461 DOI: 10.1016/j.talanta.2024.126542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
The emission of venenous sulfur dioxide (SO2) and its derivatives from industrial applications such as coking, transportation and food processing has caused great concern about public health and environmental quality. Probes that enable sensitivity and specificity to detect SO2 derivatives play a crucial role in its regulations and finally mitigating its environmental and health impacts, but fluorescent probes that can accurately, rapidly and on-site detect SO2 derivatives in foodstuffs and environmental systems rarely reported. Herein, a near-infrared (NIR) fluorescent probe (ZTX) for the ratiometric response of bisulfite (HSO3-) was designed and synthesized by regulating the structure of high-performance HSO3- fluorescent probe SL previously reported by us based on structural analyses, theoretical calculations and related literature reports. The Michael addition reaction between the electronic-deficient C=C bond and HSO3- destroys ZTX's π-conjugation system and blocks its intramolecular charge transfer (ICT) process, resulting in a significant fading of the fuchsia solution and the bluish-purple fluorescence turned light blue fluorescence. Fluorescent imaging of HSO3- in live animals utilizing ZTX has been demonstrated. The quantitative analysis of HSO3- in food samples using ZTXvia a smartphone has been also successfully implemented. Simultaneously, the ZTX-based test strips were utilized to quantificationally determine HSO3- in environmental water samples by a smartphone. Consequently, probe ZTX could provide a new method to understand the physiopathological roles of HSO3-, evaluate food safety and monitor environment, and is promising for broad applications.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Tianxiang Zhu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Yi Xu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China; Key Laboratory of Functional Materials in Universities of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| | - Dingkun Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Zhiqiang Zhang
- Key Laboratory of Functional Materials in Universities of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| |
Collapse
|
2
|
Zhang S, Wang Z, Feng Y, Jiang C, Li H, Yu Z, Xiao Y, Hou R, Wan X, Liu Y. A novel fluorescent and photothermal probe based on nanozyme-mediated cascade reaction for detecting organophosphorus pesticide residues. Talanta 2024; 279:126620. [PMID: 39068829 DOI: 10.1016/j.talanta.2024.126620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
In this study, a nanozyme (ZIF-Co-Cys) with high oxidase-like catalytic activity was prepared, and a ratiometric fluorescent/photothermal dual-mode probe was constructed for organophosphorus pesticides (OPs) detection based on the competitive effect of ZIF-Co-Cys and the enzymatic reaction product of acid phosphatase (ACP) on o-phenylenediamine and the inhibition effect of OPs on ACP activity. Using dimethyl dichloroviny phosphate (DDVP) as the model, both the fluorescence intensity ratio and the temperature change of the probe solution exhibited an excellent correlation with OPs concentration. The detection limits were 1.64 ng/mL and 0.084 ng/mL, respectively. Additionally, the detection of DDVP residues in real samples verified the outstanding anti-interference and accuracy of the probe. This work not only provided a complementary dual-mode method for the accurate and rapid detection of OPs residues in complex samples, but also supplied a new insight into the design of a multi-mode sensing platform based on the cascade reaction of nanozyme.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Zheng Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yingying Feng
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Chuang Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Hui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Zhenyu Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yaqing Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
| | - Yingnan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
3
|
Charles ID, Wang L, Chen Y, Liu B. Albumin host for supramolecular fluorescence recognition. Chem Commun (Camb) 2024; 60:12474-12486. [PMID: 39324212 DOI: 10.1039/d4cc03711a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Synthetic molecular sensors are crucial for real-time monitoring in biological systems and biotechnological applications, where detecting targets amidst potential interferents is essential. This task is particularly challenging in competitive environments that lacking chemically reactive functional groups, common in agricultural, biological, and environmental contexts. Consequently, scientific efforts have focused on developing sensitive and rapid analytical techniques, with fluorescent sensors emerging as prominent tools. Among these, the albumin-based supramolecular fluorescent indicator displacement assay (AS-FIDA) represents a significant advancement. Our research group has extensively contributed to this field, demonstrating the practical utility of various AS-FIDAs. We pioneered the use of albumin (ALB) as a host molecule in these synthetic chemical sensors, marking a notable advancement. AS-FIDA employs ALB as a versatile host molecule with multiple flexible and asymmetrical binding pockets capable of forming complexes with guest dyes, resulting in ALB@dye ensembles tailored for specific analyte recognition. Recent advancements in AS-FIDA have significantly expanded its applications. This review explores recent advances in ALB-based supramolecular sensors and sensor arrays for detecting biologically and environmentally significant molecules, such as pesticides, hormones, biomarkers, reactive species, mycotoxins, drugs, and carcinogens. The versatility of AS-FIDA positions it as a valuable tool in diverse settings, from laboratory research to practical applications in portable devices, smartphone-assisted on-site monitoring, imaging of living cells, and real sample analysis.
Collapse
Affiliation(s)
- Immanuel David Charles
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Lei Wang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Yu Chen
- School of Chemistry and Environmental Engineering, Key laboratory of Resources Environmental and Green Low Carbon Processes in East Guangdong, Hanshan Normal University, Chaozhou 521041, China.
| | - Bin Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
4
|
Maosong L, Yanxue G, Liang X, Dan L, Luxuan L, Yiming L, Jianglan Q. CdTe@ZnS quantum dots for rapid detection of organophosphorus pesticide in agricultural products. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124451. [PMID: 38761472 DOI: 10.1016/j.saa.2024.124451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Organophosphorus pesticides (OPPs) constitute the most widely employed class of pesticides. However, the prevalent use of OPPs, while advantageous, raises concerns due to their toxicity, posing serious threats to food safety. Chemical sensors utilizing quantum dots (QDs) demonstrate promising applications in rapidly detecting OPPs residues, thereby facilitating efficient inspection of agricultural products. In this study, we employ an aqueous synthesis approach to prepare low toxic CdTe@ZnS QDs with stable fluorescence properties. To mitigate the risk of imprecise measurements stemming from the inherent susceptibility of fluorescence to quenching, we have adopted the principle of fluorescence resonance energy transfer (FRET) for the construction of the turn-on quantum dot sensor. With a detection limit for chlorpyrifos as low as 10 ppb (10 μg/L), the QDs sensor exhibits notable resistance to interference from various pesticides. Application of this system to detect organophosphorothioate pesticides in apples produced results consistent with those obtained from high-performance liquid chromatography (HPLC) detection, affirming the promising application prospects of this sensing system for the rapid detection of OPPs residues.
Collapse
Affiliation(s)
- Lin Maosong
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Guo Yanxue
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Xiang Liang
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Liang Dan
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Li Luxuan
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Li Yiming
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Qu Jianglan
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory of Detection and Control of Spoilage Microorganisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
5
|
Luo T, Huang S, Bai S, Feng B, Huang W, Cheng X, Liu M, Yao H, Zeng W. A novel dual-activatable ultrasensitive chemiluminescent probe for mercury (II) monitoring: From rational design to multiple application. Food Chem 2024; 447:138954. [PMID: 38461716 DOI: 10.1016/j.foodchem.2024.138954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Real-time optical sensing of mercury has been developed rapidly in recent years but remains challenging such as bearing background interference. Herein, a Hg2+ and base dual-activatable ultrasensitive chemiluminescent probe CL-Hg based on benzothiazole-phenoxyl-dioxetane with profits of excitation light-free and minimal interference is presented. The photophysical properties study and sensing performance verified CL-Hg is coupled with unique advantages of long-term detection (more than 400 min), ultrahigh sensitivity (LOD = 0.52 nM), and high specificity to Hg2+, and visualization detection by the paper-based test strips. More importantly, CL-Hg showed the qualitative and quantitative detection capability for Hg2+ with great recyclability in real samples of water, seafood, and beverages, holding great potential for on-site monitoring of Hg2+ levels in the actual samples. To our knowledge, this is the first work achieving the detection of Hg2+ by chemiluminescence. Overall, the Hg2+-activated visualization platform offers a practical method for detecting Hg2+ in various application scenarios.
Collapse
Affiliation(s)
- Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Shuaige Bai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Wenzhi Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Meihui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Heying Yao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China.
| |
Collapse
|
6
|
Gao YY, He J, Li XH, Li JH, Wu H, Wen T, Li J, Hao GF, Yoon J. Fluorescent chemosensors facilitate the visualization of plant health and their living environment in sustainable agriculture. Chem Soc Rev 2024; 53:6992-7090. [PMID: 38841828 DOI: 10.1039/d3cs00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Globally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility. However, to date, no comprehensive analysis and systematic summary of fluorescent chemosensors used in monitoring the correlation between plant health and their environment have been reported. Thus, herein, we summarize the current fluorescent chemosensors ranging from their design strategies to applications in monitoring plant-environment interaction processes. First, we highlight the types of fluorescent chemosensors with design strategies to resolve the bottlenecks encountered in monitoring the health and living environment of plants. In addition, the applications of fluorescent small-molecule, nano and supramolecular chemosensors in the visualization of the health and living environment of plants are discussed. Finally, the major challenges and perspectives in this field are presented. This work will provide guidance for the design of efficient fluorescent chemosensors to monitor plant health, and then promote sustainable agricultural development.
Collapse
Affiliation(s)
- Yang-Yang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jie He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Xiao-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jian-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Hong Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Ting Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jun Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
7
|
Liu S, Zhang M, Chen Q, Ouyang Q. Multifunctional Metal-Organic Frameworks Driven Three-Dimensional Folded Paper-Based Microfluidic Analysis Device for Chlorpyrifos Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14375-14385. [PMID: 38860923 DOI: 10.1021/acs.jafc.4c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Chlorpyrifos (CPF) residues in food pose a serious threat to ecosystems and human health. Herein, we propose a three-dimensional folded paper-based microfluidic analysis device (3D-μPAD) based on multifunctional metal-organic frameworks, which can achieve rapid quantitative detection of CPF by fluorescence-colorimetric dual-mode readout. Upconversion nanomaterials were first coupled with a bimetal organic framework possessing peroxidase activity to create a fluorescence-quenched nanoprobe. After that, the 3D-μPAD was finished by loading the nanoprobe onto the paper-based detection zone and spraying it with a color-developing solution. With CPF present, the fluorescence intensity of the detection zone gradually recovers, the color changes from colorless to blue. This showed a good linear relationship with the concentration of CPF, and the limits of detection were 0.028 (fluorescence) and 0.043 (colorimetric) ng/mL, respectively. Moreover, the 3D-μPAD was well applied in detecting real samples with no significant difference compared with the high-performance liquid chromatography method. We believe it has huge potential for application in the on-site detection of food hazardous substance residues.
Collapse
Affiliation(s)
- Shuangshuang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mingming Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
- Tea industry Research Institute, Fujian Eight Horses Tea Co., Ltd, Quanzhou 362442, PR China
| |
Collapse
|
8
|
Fang Y, Li Y, Zang X, Chen Y, Wang X, Wang N, Meng X, Cui B. Gold-copper-doped lanthanide luminescent metal-organic backbone induced self-enhanced molecularly imprinted ECL sensors for ultra-sensitive detection of chlorpyrifos. Food Chem 2024; 443:138533. [PMID: 38320376 DOI: 10.1016/j.foodchem.2024.138533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/30/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024]
Abstract
Herein, a self-enhanced molecularly imprinted polymer luminescence (MIP-ECL) sensing platform based on gold-copper doped Tb-MOFs (Au@Cu:Tb-MOFs) was constructed for ultra-sensitive detection of chlorpyrifos (CPF). In this work, Au@Cu:Tb-MOFs as co-reaction promoters greatly improve the ECL emission signal, while Au@Cu:Tb-MOFs were used as cathode emitters. And chlorpyrifos and 4,7-bis(thiophene-2-yl)benzo [c][1,2,5] thiadiazole were electropolymerized on electrode surface to form MIP, where this films with thiophene derivatives could greatly improve ECL signal. Notably, the introduction of MIP as recognition elements enabled specific identification of target analytes, in which molecular docking technique validated target analyte and functional monomers are tightly bound through Pi-alkyl interaction. As the concentration of CPF increases, the ECL signal gradually decreases, showing a good linear relationship in the range of 0.1-106 pg/mL with a low detection limit (LOD) of 0.029 pg/mL. Moreover, actual sample testing experiment of this method displayed a special correlation in organophosphorus detection and development potential in actual sample analysis.
Collapse
Affiliation(s)
- Yishan Fang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Yanping Li
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xufeng Zang
- College of Science, Huzhou University, Zhejiang, Huzhou 313000, China
| | - Yingxue Chen
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xinran Wang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Na Wang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiangying Meng
- School of Medical Laboratory, Weifang Medical University, Weifang 261053, China.
| | - Bo Cui
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
9
|
Xu Z, Deng W, Li N, Lv T, Wang L, Chen X, Li M, Zhang W, Liu B, Peng X. Harnessing a simple ratiometric fluorescent probe for albumin recognition and beyond. Chem Commun (Camb) 2024; 60:6304-6307. [PMID: 38818574 DOI: 10.1039/d4cc01813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A commercially available naphthalene fluorophore serves as a ratiometric indicator for albumin, showcasing its applications in albumin-based supramolecular recognition.
Collapse
Affiliation(s)
- Zhongyong Xu
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Weihua Deng
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Na Li
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Lei Wang
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Xiaoqiang Chen
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Mingle Li
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Wenxing Zhang
- Advanced Materials and Devices Laboratory, School of Materials Science and Engineering, Hanshan Normal University, Guangdong, 521041, China.
| | - Bin Liu
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Xiaojun Peng
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
10
|
Wang S, Wang Y, Ning Y, Wang W, Liu Q. Multicolor emissive carbon dot-based fluorometric analysis platform for rapid quantification and discrimination of nitroimidazole antibiotic residues. Talanta 2024; 271:125679. [PMID: 38245958 DOI: 10.1016/j.talanta.2024.125679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
The development of efficient, rapid, portable, and accurate analysis of veterinary drug residues in food matrices is in great demand for food safety assessment. Here, we have developed a smartphone-integrated platform for fluorometric quantification of metronidazole (MNZ) residues and constructed a sensor array for discrimination of different nitroimidazole antibiotics (NIIMs). Multicolor CDs (B-CDs, C-CDs, Y-CDs, and R-CD) were prepared and showed different fluorescence response to MNZ. The fluorescence of C-CDs was quenched Because of the inner filter effect (IFE) between the C-CDs and MNZ, while that of R-CDs was enhanced due to the passivation of surface defects by MNZ. Based on the response pattern, the fluorometric quantification of MNZ based on the fluorescence images of C-CD + R-CD system (R/G values) was achieved with a low detection limit of 0.45 μM. By designing a smartphone-integrated platform, the analysis can be completed within 20 min. In addition, a fluorescence sensor array based C-CDs and R-CDs was also developed. The unique fingerprint of each NIIMs was obtained by linear discriminant analysis (LDA) of the response patterns, indicating an effective discrimination of five NIIMs. Moreover, the platform was used for quantification of MNZ in food samples and the recoveries were within 84.0-106.3 % with relative standard deviations 1.2-10.2 %. Therefore, the proposed method shows great potential as a universal platform for rapid detection of veterinary drug residues.
Collapse
Affiliation(s)
- Shaojie Wang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Yongbo Wang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Yuanna Ning
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Wencai Wang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Qiming Liu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| |
Collapse
|
11
|
Zhao Y, Guo Y, Xu Z, Lv T, Wang L, Li M, Chen X, Liu B, Peng X. Ratiometric determination of etomidate based on an albumin-based indicator displacement assay (IDA). Chem Commun (Camb) 2024; 60:4691-4694. [PMID: 38592772 DOI: 10.1039/d4cc01154f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The first fluorescent sensor based on the indicator displacement assay (IDA) for on-site determination of etomidate.
Collapse
Affiliation(s)
- Yutian Zhao
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Yanan Guo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, P. R. China
| | - Zhongyong Xu
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Lei Wang
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Mingle Li
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Xiaoqiang Chen
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Bin Liu
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Xiaojun Peng
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
12
|
Cheng Y, Liu Y, Li J, Li Y, Lei D, Li D, Dou X. Solvation effect enabled visualized discrimination of multiple metal ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2301-2310. [PMID: 38529837 DOI: 10.1039/d4ay00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Highly efficient detection of environmental residual potentially toxic species is of concern worldwide as their presence in an excessive amount would greatly endanger the health of human beings as well as environmental sustainability. The solvation effect is a critical factor to be considered for understanding chemical reaction progress as well as the photophysical behaviors of substances and thus is promising for visualized detection of metal ions. Herein, by applying 5-amino-1,10-phenanthroline (APT) as the optical probe, a sensing strategy was proposed based on the solvation effect modulated complexation of APT towards different metal ions to achieve the visualized discrimination of four critical ions (Cu(II), Zn(II), Cd(II), and Al(III)). How the crucial intrinsic properties of the solvent (e.g., polarity, solvent free energy, and electrostatic potential) influenced the complexation and the product emission was clarified, and the detection performances were systematically evaluated with detection limits as low as the nM level and good recognition selectivity. Furthermore, a portable sensing chip was developed with potential for highly efficient analysis in complicated scenes; thus, this strategy offers a new insight into determining multiple metal ions or other critical substances upon solvation manipulation.
Collapse
Affiliation(s)
- Yang Cheng
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Liu
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Jiguang Li
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Yudong Li
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Da Lei
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Dezhong Li
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Xincun Dou
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Jin Z, Sheng W, Sun M, Bai D, Ren L, Wang S, Wang Z, Tang X, Ya T. Preparation of a capsaicinoids broad spectrum antibody and its application in non-enzyme immunoassay based on DMSNs@PDA@Pt. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133670. [PMID: 38309155 DOI: 10.1016/j.jhazmat.2024.133670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Capsaicinoids (CPCs) is a special ingredient with pungent smell in condiments, which can also be used as an exogenetic marker for kitchen waste oil. Development of immunoassay for CPCs remains a challenging due to relatively difficult preparation of the broad-spectrum antibody (Ab). In this work, a broad-spectrum polyclonal antibody (pAb) which can simultaneously recognize capsaicin (CPC), dihydrocapsaicin (DCPC), nordihydrocapsaicin (NDCPC), and N-vanillylnonanamide (N-V) is produced, and a non-enzyme immunoassay (NISA) based on this Ab, dendritic mesoporous silica nanomaterials (DMSNs), polydopamine (PDA), and high catalytic efficiency of Pt nanoparticles to prepare signal probe (DMSNs@PDA@Pt) is established. Here, the limit of detection (LOD) of NISA for CPC is as low as 0.04 μg L-1. It is worth mentioning that the LOD of the proposed NISA is at least 23 times lower than that of traditional enzyme-linked immunosorbent assay (ELISA) based on horseradish peroxidase (HRP). Moreover, the proposed NISA is applied to detect CPCs in edible oil samples, the result has good consistency with that of ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The proposed NISA based on DMSN@PDA@Pt and broad-spectrum Ab is an ideal tool for highly effective screening CPCs for kitchen waste oil abuse surveillance.
Collapse
Affiliation(s)
- Zixin Jin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wei Sheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Meiyi Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Dongmei Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lishuai Ren
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Ziwuzhen Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xinshuang Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tingting Ya
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
14
|
Miao YS, Wang JY, Zhuang RR, Huo XK, Yi ZC, Sun XN, Yu ZL, Tian XG, Ning J, Feng L, Ma XC, Lv X. A high-affinity fluorescent probe for human uridine-disphosphate glucuronosyltransferase 1A9 function monitoring under environmental pollutant exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133439. [PMID: 38218035 DOI: 10.1016/j.jhazmat.2024.133439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Uridine-disphosphate glucuronosyltransferase 1A9 (UGT1A9), an important detoxification and inactivation enzyme for toxicants, regulates the exposure level of environmental pollutants in the human body and induces various toxicological consequences. However, an effective tool for high-throughput monitoring of UGT1A9 function under exposure to environmental pollutants is still lacking. In this study, 1,3-dichloro-7-hydroxy-9,9-dimethylacridin-2(9H)-one (DDAO) was found to exhibit excellent specificity and high affinity towards human UGT1A9. Remarkable changes in absorption and fluorescence signals after reacting with UGT1A9 were observed, due to the intramolecular charge transfer (ICT) mechanism. Importantly, DDAO was successfully applied to monitor the biological functions of UGT1A9 in response to environmental pollutant exposure not only in microsome samples, but also in living cells by using a high-throughput screening method. Meanwhile, the identified pollutants that disturb UGT1A9 functions were found to significantly influence the exposure level and retention time of bisphenol S/bisphenol A in living cells. Furthermore, the molecular mechanism underlying the inhibition of UGT1A9 by these pollutant-derived disruptors was elucidated by molecular docking and molecular dynamics simulations. Collectively, a fluorescent probe to characterize the responses of UGT1A9 towards environmental pollutants was developed, which was beneficial for elucidating the health hazards of environmental pollutants from a new perspective.
Collapse
Affiliation(s)
- Yi-Sheng Miao
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jia-Yue Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Rui-Rui Zhuang
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiao-Kui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Zi-Chang Yi
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiao-Nan Sun
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhen-Long Yu
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiang-Ge Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Jing Ning
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China.
| | - Xiao-Chi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Xia Lv
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
15
|
Zhang M, Zhang S, Guo X, Xun Z, Wang L, Liu Y, Mou W, Qin T, Xu Z, Wang L, Chen X, Liu B, Peng X. Fast, portable, selective, and ratiometric determination of ochratoxin A (OTA) by a fluorescent supramolecular sensor. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133104. [PMID: 38071774 DOI: 10.1016/j.jhazmat.2023.133104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 02/08/2024]
Abstract
Ochratoxin A (OTA), a mycotoxin found in various food items, possesses significant health risks due to its carcinogenic and toxic properties. Thus, detecting OTA is crucial to ensure food safety. Among the reported analytical methods, there has yet to be one that achieves fast, selective, and portable detection of OTA. In this study, we explore a novel supramolecular sensor, DOCE@ALB, utilizing human serum albumin as the host and a flavonoid fluorescent indicator as the guest. On the basis of indicator displacement assay, this sensor boasts an ultra-fast response time of just 5 s, high sensitivity with a limit of detection at 0.39 ppb, exceptional selectivity, and a noticeable ratiometric fluorescence response to OTA. This discernible color change and portability of the sensor make it suitable for on-site OTA detection in real food samples, including flour, beer, and wine, simply using a smartphone. In comparison to previously reported methods, our approach has showcased notable advantages in both response time and portability, addressing a critical need for food safety and regulatory compliance.
Collapse
Affiliation(s)
- Mingyuan Zhang
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| | - Shiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518060, China
| | - Xindong Guo
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City, Key Laboratory of Detection Technology for Food Safety, Guangzhou 511447, China
| | - Zhiqing Xun
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City, Key Laboratory of Detection Technology for Food Safety, Guangzhou 511447, China
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yamin Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Weijie Mou
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| | - Tianyi Qin
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Zhongyong Xu
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| | - Lei Wang
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| | - Xiaoqiang Chen
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China.
| | - Xiaojun Peng
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
16
|
Shang Z, Wu M, Meng Q, Jiao Y, Zhang Z, Zhang R. A near-infrared fluorescent probe for rapid and on-site detection of sulfur dioxide derivative in biological, food and environmental systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133165. [PMID: 38061127 DOI: 10.1016/j.jhazmat.2023.133165] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024]
Abstract
Emission of toxic gaseous sulfur dioxide (SO2) and its derivative bisulfite (HSO3-) from various industrial applications, like food processing, transportation, and the coking process, has raised substantial concerns regarding environmental quality and public health. The probes for specific and sensitive detection of SO2 derivatives plays an essential role in their regulation, and ultimately mitigating their environmental and health implications, but the one that can detect SO2 derivatives onsite by end users remains limited. Herein, we report a new near-infrared fluorescence probe (SL) for rapid and onsite detection of SO2 derivative, HSO3- in industrial wastewater, food samples and for sensing its interaction with biological organisms. The SL is developed through coupling of quinolinium and coumarin moiety through an electron deficit CC bond that can specifically react with HSO3- via a Michael addition. By recording the blue shift of absorption and emission spectra, SL can sensitively detect HSO3- (limit of detection, 38 nM) in aqueous solution within 40 s SL is biocompatible, can be used for evaluating toxicity of SO2 derivatives in living organisms. The preparation of SL-stained test paper allows the colorimetric/fluorometric analysis for quantification of HSO3- onsite in food, river and coking wastewater samples using a smartphone. The successful development of SL not only provides a new tool to investigate HSO3- in biological, food and environmental systems, but also potentially promotes the application of fluorescence technique for rapid and onsite analysis of real-world samples by end users.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China; Key Laboratory of Functional Materials in Universities of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China.
| | - Yang Jiao
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
17
|
Lu G, Yu S, Duan L, Meng S, Ding S, Dong T. New 1,8-naphthalimide-based colorimetric fluorescent probe for specific detection of hydrazine and its multi-functional applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123450. [PMID: 37776836 DOI: 10.1016/j.saa.2023.123450] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Detection of hydrazine is particularly important given its toxicity and extensive application in various industries. In the present paper, a colorimetric fluorescent probe NI-CIN based on 1,8-naphthalimide derivative was rationally designed and simply synthesized for specific detection of hydrazine based on the intramolecular charge transfer (ICT) mechanism. Upon the addition of hydrazine, a significant fluorescence enhancement at 556 nm could be observed within 4 min with a distinct color change from colorless to bright yellow, readily observed by naked eye. Except for HRMS and 1H NMR, density functional theory (DFT) calculations were also performed to support the sensing mechanism. In addition, eco-friendly paper test strips were easily prepared by NI-CIN for selective and real-time detection of hydrazine under aqueous and vapor phases. Furthermore, NI-CIN shows many potential applications for detecting hydrazine in real water and soil samples along with bio-imaging in HepG-2 cells and zebrafish.
Collapse
Affiliation(s)
- Guifen Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Siyuan Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Luyao Duan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Suci Meng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China; Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Sihan Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ting Dong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
18
|
Zhang M, Zhang S, Xu Z, Lv T, Liu X, Wang L, Liu B. Fluorescence determination of the total amount of tetracyclines by a flavonol-based supramolecular sensor. Talanta 2024; 266:124982. [PMID: 37499358 DOI: 10.1016/j.talanta.2023.124982] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Tetracyclines (TCs) are a group of broad-spectrum antibiotics against multiplying microorganisms yet with several adverse effects on humans. Since all types of TCs have the similar chemical skeleton and mechanism of action, quantification of total amount of TCs in the environment was of particular importance. To date, dozens of fluorescent probes have been reported for TCs detection, but only very few of them enabled detection of total TCs. In this study, we report a novel supramolecular sensor constructed by human serum albumin as the recognition moiety and a flavonol fluorophore as the indicator. Under the 370 nm UV excitation, this sensor exhibits the rapid response (5 s), acceptable sensitivity (limit of detection ∼ 0.58 μM), long dynamic detection range (0-20 μM), prominent specificity, and excellent anti-interference properties for analysis of total TCs. The mechanism was carefully validated using 1H NMR, fluorescence titration experiments, molecular docking, and mass spectrometry. We expect this work can inspire more sensor design for TCs quantification.
Collapse
Affiliation(s)
- Mingyuan Zhang
- State Key Laboratory of Fine Chemicals, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, 518060, China
| | - Zhongyong Xu
- State Key Laboratory of Fine Chemicals, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW, 2006, Australia
| | - Xinhe Liu
- State Key Laboratory of Fine Chemicals, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bin Liu
- State Key Laboratory of Fine Chemicals, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
19
|
Tsong JL, Khor SM. Modern analytical and bioanalytical technologies and concepts for smart and precision farming. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37376849 DOI: 10.1039/d3ay00647f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Unpredictable natural disasters, disease outbreaks, climate change, pollution, and war constantly threaten food crop production. Smart and precision farming encourages using information or data obtained by using advanced technology (sensors, AI, and IoT) to improve decision-making in agriculture and achieve high productivity. For instance, weather prediction, nutrient information, pollutant assessment, and pathogen determination can be made with the help of new analytical and bioanalytical methods, demonstrating the potential for societal impact such as environmental, agricultural, and food science. As a rising technology, biosensors can be a potential tool to promote smart and precision farming in developing and underdeveloped countries. This review emphasizes the role of on-field, in vivo, and wearable biosensors in smart and precision farming, especially those biosensing systems that have proven with suitably complex and analytically challenging samples. The development of various agricultural biosensors in the past five years that fulfill market requirements such as portability, low cost, long-term stability, user-friendliness, rapidity, and on-site monitoring will be reviewed. The challenges and prospects for developing IoT and AI-integrated biosensors to increase crop yield and advance sustainable agriculture will be discussed. Using biosensors in smart and precision farming would ensure food security and revenue for farming communities.
Collapse
Affiliation(s)
- Jia Ling Tsong
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Luo K, Zhou L, Xie C, Yang Q, Tan L, Lin Q. High-fidelity fluorescent probes for visualizing the inhibitory behavior of selenium on cadmium uptake in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131748. [PMID: 37267647 DOI: 10.1016/j.jhazmat.2023.131748] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
Cadmium (Cd), a widespread and highly toxic environmental contaminant, has seriously impacted the growth of rice and the quality of its products. Hence, it is crucial to monitor and employ robust means to reduce Cd levels in rice, and selenium (Se) has been proven to chelate cadmium ion (Cd2+) in rice with rational use. Herein, for the first time, the reported selenocysteine (Sec) probe NN-Sec and the newly designed Cd2+ probe SCP were chosen as visualization tools to monitor Sec-inhibited Cd2+ uptake in rice. Specifically, reduced fluorescence of rice precultured with Cd2+ was observed by SCP after Se application, while similarly decreased fluorescence of rice pretreated with Se was observed by NN-Sec after Cd2+ addition. The diminished fluorescence indicated the formation of Cd-Se complexes reduced the Cd2+ content in rice. Additionally, it was Cd2+ and Se that entered the rice causing the fluorescence generation, as demonstrated by inductively coupled plasma mass spectrometry (ICP-MS). To conclude, the two probes successfully visualized Se inhibited Cd2+ uptake in rice, which could provide a robust tool for supporting the development of novel organic fertilizers and reagents to reduce Cd2+ content in rice and the environment.
Collapse
Affiliation(s)
- Kun Luo
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing,National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology Changsha, Hunan 410004, China
| | - Liyi Zhou
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing,National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology Changsha, Hunan 410004, China.
| | - Can Xie
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing,National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology Changsha, Hunan 410004, China
| | - Qiaomei Yang
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing,National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology Changsha, Hunan 410004, China
| | - Libin Tan
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing,National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology Changsha, Hunan 410004, China
| | - Qinlu Lin
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing,National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology Changsha, Hunan 410004, China.
| |
Collapse
|