1
|
Yue F, Zhao X, Chen X, Li Y, Huang Y, Zhao D, Xu J, Jia L, Zhao T. A dual-channel sensing platform for the cross-interference-free detection of tetracycline and copper ion. Talanta 2024; 279:126617. [PMID: 39084037 DOI: 10.1016/j.talanta.2024.126617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Tetracycline (TC) and copper ion (Cu2+), as important additives in animal feed, play a crucial role in disease prevention and growth regulation. However, the abuse leads to concentration accumulation, which seriously threatens human health and the ecological environment. There is an urgent need to develop a detection method to achieve fast and synchronous detection of these pollutants without cross-interference. Here, a carbon dots-doped lanthanide-based fluorescent nanosensor (CDs@Tb-MOFs@SiO2-NH2-Eu) was synthesized, which can detect TC in the 380 nm channel by "antenna effect" and internal filtering effects (IFE), and identify Cu2+ in the 320 nm channel. The sensor was highly sensitive to TC within 0-4 μM with a detection limit as low as 3.64 nM, and Cu2+ could be detected within 0-40 μM with a detection limit of 38 nM. A portable dual-channel visual fluorescence sensor was obtained by loading the probes onto test paper and cotton swabs in food samples, which indicates the practicability of this sensing strategy.
Collapse
Affiliation(s)
- Fengzhi Yue
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Xiaolei Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Xiangzhen Chen
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Yongxin Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Yuanyuan Huang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Dan Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| | - Tongqian Zhao
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| |
Collapse
|
2
|
Li J, Sun Y, Li Z, Yang R, Qu L. TBAPy-based metal-organic frameworks with phosphate-induced fluorescence for detecting gossypol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125188. [PMID: 39374560 DOI: 10.1016/j.saa.2024.125188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024]
Abstract
How to achieve good dispersion of MOFs (metal-organic frameworks) is the key to its application in many fields. In our work, a novel MOF nanocomposite TBAPy-Yb was synthesized by solvothermal approach with TBAPy [1,3,6,8-tetrakis(p-benzoic acid)pyrene)] as the organic ligand and lanthanide metal ions as the metal ion source. Due to the coordination between phosphate and TBAPy-Yb, TBAPy-Yb had excellent dispersion in phosphate buffer and induced strong fluorescence emission in 435 nm. Gsp (gossypol) could regularly and instantly quench the induced fluorescence of TBAPy-Yb in the range of 10.0 to 70.0 μM and cause an obvious color change from blue to colorless. The detection limit was as low as 4.57 μM. The possible interferences in cottonseed oil did not influence the detection. The proposed method was effectively applied toanalyzeGsp oil with a recovery rate ranging from 94.20 % to 104.90 %. Furthermore, a portable and smart sensing platform was developed based on probe fixation and mobile phones.
Collapse
Affiliation(s)
- Jiaxing Li
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/ Institute of Cotton Research of CAAS, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanqiang Sun
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/ Institute of Cotton Research of CAAS, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Li
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/ Institute of Cotton Research of CAAS, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou 450001, China
| | - Ran Yang
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/ Institute of Cotton Research of CAAS, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan Province Food Inspection Research Institute, Zhengzhou 450001, China.
| | - Lingbo Qu
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/ Institute of Cotton Research of CAAS, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan Province Food Inspection Research Institute, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Yu X, Pavlov DI, Ryadun AA, Kovalenko KA, Guselnikova TY, Benassi E, Potapov AS, Fedin VP. Experimental and Theoretical Elucidation of the Luminescence Quenching Mechanism in Highly Efficient Hg 2+ and Sulfadiazine Sensing by Ln-MOF. Angew Chem Int Ed Engl 2024; 63:e202410509. [PMID: 38946458 DOI: 10.1002/anie.202410509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Heavy metal ions and antibiotic contamination have become a major environmental concern worldwide. The development of efficient recognition strategies of these pollutants at ultra-low concentrations in aqueous solutions as well as the elucidation of the intrinsic sensing mechanism are challenging tasks. In this work, unique luminescent Ln-MOF materials (NIIC-3-Ln) were assembled by rational ligand design. Among them, NIIC-3-Tb demonstrated highly selective luminescence quenching response toward Hg2+ and sulfadiazine (SDI) at subnanomolar concentrations in less than 7 s. In addition, a Hg2+ sensing mechanism through chelation was proposed on the basis of single-crystal X-ray diffraction analysis and Hg2+ adsorption study. The interaction mechanism of NIIC-3-Tb with SDI was revealed using a newly developed approach involving a (TD-)DFT based quantification of the charge transfer of a MOF-analyte supramolecular complex model in the ground and excited states. Effect of ultrasonic treatment on the surface morphology important for MOF sensing performance was revealed by gas adsorption experiments. The presented results indicate that NIIC-3-Ln is not only an advanced sensing material for the efficient detection of Hg2+ and SDI at ultra-low concentrations, but also opens up a new approach to study the sensing mechanism at the molecular level at ultra-low concentrations.
Collapse
Affiliation(s)
- Xiaolin Yu
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Dmitry I Pavlov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Alexey A Ryadun
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Konstantin A Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Tatiana Y Guselnikova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Enrico Benassi
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia
- Present address: Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Giuseppe Campi 213/B, 41125, Modena, Italy
| | - Andrei S Potapov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Vladimir P Fedin
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| |
Collapse
|
4
|
Zhang W, Zhao Y, Sun J, Peng D, Li X, Lv Y, Li J, Su Z. Fluorescent Sensors Based on Lanthanide-Based Metal-Organic Frameworks via Devices and pH Response. Inorg Chem 2024; 63:15527-15536. [PMID: 39105732 DOI: 10.1021/acs.inorgchem.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In light of the escalating industrial and environmental pollution, there is a pressing need for the development of novel materials capable of swiftly detecting pollutants. Here, we report the synthesis of five lanthanide metal-organic frameworks sharing a common structure, prepared via a hydrothermal method and denoted as [Ln2(H2DHBDC)2(phen)(H2O)6]n (where CUST-888 corresponds to Tb, CUST-889 corresponds to Eu, CUST-890 corresponds to Gd, CUST-891 corresponds to Dy, and CUST-892 corresponds to Nd). Notably, CUST-888 and CUST-889 exhibit discernible visual alterations in response to acidic and alkaline conditions. To assess their practical utility, luminescent test strips and light-emitting diode lights based on CUST-888 and CUST-889 were devised, enabling the visual detection of luminescence color changes induced by Hg2+, Cr2O72-, tetracycline, and 2,4,6-trinitrophenol. Furthermore, highlighters derived from CUST-888 and CUST-889 were designed, showcasing robust stability, adjustable color, and substantial potential for application in the realm of anticounterfeiting.
Collapse
Affiliation(s)
- Wenxi Zhang
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Yihe Zhao
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Jing Sun
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Dianxiang Peng
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Xiao Li
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Yanjie Lv
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Jiao Li
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zhongmin Su
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| |
Collapse
|
5
|
Jin Q, Hou Y, Zhu D, Yu Y, Ren Y. Oxolinic Acid Generated Green Fluorescence Based on a Terbium-Functionalized Covalent Organic Framework. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13596-13602. [PMID: 38888331 DOI: 10.1021/acs.langmuir.4c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Oxolinic acid (OXO), a classic environmental contaminant, has a terrible detrimental effect on human health. The exploration of efficient strategies to detect and detecting OXO has remarkable significance. Herein, we reported a novel terbium(III)-functionalized covalent organic framework (Bpy-DhBt-COF@Tb3+) by fixing Tb3+ on the bipyridine-connecting COF (Bpy-DhBt-COF) as a turn-on fluorescent switch toward OXO for the first time. In this platform, Tb3+ acts as the specific recognition units for OXO and the response signal, while Bpy-DhBt-COF acts as the safehaven for Tb3+. Once introducing OXO to Bpy-DhBt-COF@Tb3+, OXO can instead water molecules coordinate with Tb3+ and sensitize Tb3+ instantly, thereby producing a significant fluorescence signal. Profiting from the excellent porosity of Bpy-DhBt-COF@Tb3+, it can obtain optimal response toward OXO only within 10 s with an ultrasensitive detection limit of 12.5 nM. Furthermore, Bpy-DhBt-COF@Tb3+ displayed outstanding selectivity toward OXO than other general quinolones. Based on these, a Tb3+-based COF was explored for the first time for the turn-on fluorescence detection of an OXO with rapid response, high sensitivity, and outstanding selectivity. In this work, we not only exhibit the attractive performance of Tb3+-functionalized COF to detect OXO but also propose a prospect strategy for creating other fluorescent sensors for multiple targets.
Collapse
Affiliation(s)
- Qianqian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Yuzhen Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dandan Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Yanxin Yu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Yanbiao Ren
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| |
Collapse
|
6
|
Pavlov DI, Yu X, Ryadun AA, Samsonenko DG, Dorovatovskii PV, Lazarenko VA, Sun N, Sun Y, Fedin VP, Potapov AS. Multiresponsive luminescent metal-organic framework for cooking oil adulteration detection and gallium(III) sensing. Food Chem 2024; 445:138747. [PMID: 38387317 DOI: 10.1016/j.foodchem.2024.138747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
A new 3D metal-organic framework {[Cd16(tr2btd)10(dcdps)16(H2O)3(EtOH)]∙15DMF}n (MOF 1, tr2btd = 4,7-di(1,2,4-triazol-1-yl)benzo-2,1,3-thiadiazole, H2dcdps = 4,4'-sulfonyldibenzoic acid) was obtained and its luminescent properties were studied. MOF 1 exhibited bright blue-green luminescence with a high quantum yield of 74 % and luminescence quenching response to a toxic natural polyphenol gossypol and luminescence enhancement response to some trivalent metal cations (Fe3+, Cr3+, Al3+ and Ga3+). The limit of gossypol detection was 0.20 µM and the determination was not interfered by the components of the cottonseed oil. The limit of detection of gallium(III) was 1.1 µM. It was demonstrated that MOF 1 may be used for distinguishing between the genuine sunflower oil and oil adulterated by crude cottonseed oil through qualitative luminescent and quantitative visual gossypol determination.
Collapse
Affiliation(s)
- Dmitry I Pavlov
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Xiaolin Yu
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Alexey A Ryadun
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia
| | - Denis G Samsonenko
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia
| | - Pavel V Dorovatovskii
- National Research Centre "Kurchatov Institute", Kurchatov Square 1, Moscow 123182, Russia
| | - Vladimir A Lazarenko
- National Research Centre "Kurchatov Institute", Kurchatov Square 1, Moscow 123182, Russia
| | - Na Sun
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yaguang Sun
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Vladimir P Fedin
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Andrei S Potapov
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
7
|
Biswas A, Maitra U. Paper-based sensing of phytotoxicant gossypol in aqueous media through turn-on visible-light emitting lanthanide-luminescence. Chem Commun (Camb) 2024; 60:6765-6768. [PMID: 38864347 DOI: 10.1039/d4cc01750a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Gossypol, a phytotoxicant in cotton-seed oil, has been found to sensitize Tb(III)-luminescence in a supramolecular hydrogel. Based on this observation, a paper-based sensor has been developed to detect gossypol with a limit of detection (LOD) of 2.9 nM. This is the first report of water-based detection with the highest sensitivity involving turn-on time-gated luminescence. This method was also able to sense gossypol in commercial crude cotton-seed oil.
Collapse
Affiliation(s)
- Ananya Biswas
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Uday Maitra
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
8
|
Li W, Zhang J, Fan L, Zhao Y, Sun C, Li W, Chang Z. Construction of a novel Eu-MOF material based on different detection mechanisms and its application in sensing pollutants aniline, F - and Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124223. [PMID: 38574609 DOI: 10.1016/j.saa.2024.124223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Aniline is an organic pollutant with carcinogenicity and teratogenicity, while F- and Hg2+ are toxic ions that are easily soluble in water. When they are released to the environment, they will pose a threat to human health. Designing a material that can simultaneously detect three types of pollutants is of great significance. In this paper, a novel rare earth metal organic framework material (Eu-MOF) with three-dimensional structure based on 1-methylimidazole-4,5-dicarboxylic acid was synthesized for the first time through solvent thermal method. It has excellent luminescent performance and can be used as a multifunctional fluorescent probe to detect aniline, F-, and Hg2+ based on photoinduced electron transfer, energy competitive absorption, and ion exchange mechanisms, with detection limits of 1.79 × 10-8, 8.13 × 10-8, and 8.83 × 10-7 M, respectively. It is worth noting that Eu-MOF can detect F- and Hg2+ in real water samples, such as lake water and green tea water, with favorable recovery rates.
Collapse
Affiliation(s)
- Wenqing Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingyue Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Linhan Fan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yun Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Changyan Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Wenjun Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhidong Chang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
9
|
Zhang Z, Deng D, Xu X, Zhang J, Yan S, Guo Z, Dong H, Chen Z, Su Z. Stretchable Tb-Tb Distance Regulates the Piezofluorochromic Behavior of Chiral Tb(III)-MOF upon Compression. JACS AU 2024; 4:2050-2057. [PMID: 38818063 PMCID: PMC11134353 DOI: 10.1021/jacsau.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
Luminescent chiral Tb-MOF microcrystals with the Tb2(COO)4 subunit indicated strong green mechano-luminescence under compression. Furthermore, piezofluorochromic behavior in the diamond anvil cell was observed, with the intensity tendency of decreasing-increasing-decreasing and a shortened lifetime upon compression, due to the reversible stretchable Tb-Tb interactions. The Tb-Tb distance upon compression was refined through in situ high-pressure X-ray absorption spectra, which was consistent with the tendency of the piezofluorochromic intensity. In situ high-pressure UV-vis absorption spectra, Fourier transform infrared spectra, and powder X-ray diffraction demonstrated the full recovery of Tb-MOF after over 10 GPa compressions due to the semiflexible ligand. This work not only provided an ultrastable Tb-MOF but also illustrated the relationship of the piezofluorochromic behavior with the detailed structural transformation for the first time.
Collapse
Affiliation(s)
- Ziyou Zhang
- Jiangsu
Collaborative Innovation Center of Biomedical Functional Materials,
Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry
and Materials Science, Nanjing Normal University, Nanjing 210046, China
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Dongping Deng
- Jiangsu
Collaborative Innovation Center of Biomedical Functional Materials,
Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry
and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Xiaoqian Xu
- Jiangsu
Collaborative Innovation Center of Biomedical Functional Materials,
Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry
and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Jiangwei Zhang
- College
of Chemistry and Chemical Engineering, Inner
Mongolia University, Hohhot 010021, China
| | - Shuai Yan
- Shanghai
Synchrotron Radiation Facility, Institute
of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zhiying Guo
- Beijing
Synchrotron Radiation Facility, Institute
of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hongliang Dong
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Zhiqiang Chen
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Zhi Su
- Jiangsu
Collaborative Innovation Center of Biomedical Functional Materials,
Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry
and Materials Science, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
10
|
Yu X, Ryadun AA, Pavlov DI, Guselnikova TY, Potapov AS, Fedin VP. Highly Luminescent Lanthanide Metal-Organic Frameworks with Tunable Color for Nanomolar Detection of Iron(III), Ofloxacin and Gossypol and Anti-counterfeiting Applications. Angew Chem Int Ed Engl 2023; 62:e202306680. [PMID: 37414736 DOI: 10.1002/anie.202306680] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
Solvothermal reaction of 5,5'-(pyridine-2,6-diylbis(oxy))diisophthalic acid (H4 L) with europium(III) or terbium(III) nitrates in acetonitrile-water (1 : 1) at 120 °C gave rise to isostructural 2D coordination polymers, [Ln(HL)(H2 O)3 ]∞ (NIIC-1-Eu and NIIC-1-Tb), the layers of which are composed by eight-coordinated lanthanide(III) ions interconnected by triply deprotonated ligands HL3- . The layers are packed in the crystal without any specific intermolecular interactions between them, allowing the facile preparation of stable water suspensions, in which NIIC-1-Tb exhibited top-performing sensing properties through luminescence quenching effect with exceptionally low detection limits towards Fe3+ (LOD 8.62 nM), ofloxacin (OFX) antibiotic (LOD 3.91 nM) and cotton phytotoxicant gossypol (LOD 2.27 nM). In addition to low detection limit and high selectivity, NIIC-1-Tb features fast sensing response (within 60-90 seconds), making it superior to other MOF-based sensors for metal cations and organic toxicants. The photoluminescence quantum yield of NIIC-1-Tb was 93 %, one of the highest among lanthanide MOFs. Mixed-metal coordination polymers NIIC-1-Eux Tb1-x demonstrated efficient photoluminescence, the color of which could be modulated by the excitation wavelength and time delay for emission monitoring (within 1 millisecond). Furthermore, an original 2D QR-coding scheme was designed for anti-counterfeiting labeling of goods based on unique and tunable emission spectra of NIIC-1-Ln coordination polymers.
Collapse
Affiliation(s)
- Xiaolin Yu
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Alexey A Ryadun
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Dmitry I Pavlov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Tatiana Y Guselnikova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Andrei S Potapov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Vladimir P Fedin
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| |
Collapse
|