1
|
Chi F, Zhao S, Yang L, Yang X, Zhao X, Zhao R, Zhu L, Zhan J. Unveiling behaviors of 8:2 fluorotelomer sulfonic acid (8:2 FTSA) in Arabidopsis thaliana: Bioaccumulation, biotransformation and molecular mechanisms of phytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172165. [PMID: 38575024 DOI: 10.1016/j.scitotenv.2024.172165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
8:2 fluorotelomer sulfonic acid (8:2 FTSA) has been commonly detected in the environment, but its behaviors in plants are not sufficiently known. Here, the regular and multi-omics analyses were used to comprehensively investigate the bioaccumulation, biotransformation, and toxicity of 8:2 FTSA in Arabidopsis thaliana. Our results demonstrated that 8:2 FTSA was taken up by A. thaliana roots and translocated to leaves, stems, flowers, and seeds. 8:2 FTSA could be successfully biotransformed to several intermediates and stable perfluorocarboxylic acids (PFCAs) catalyzed by plant enzymes. The plant revealed significant growth inhibition and oxidative damage under 8:2 FTSA exposure. Metabolomics analysis showed that 8:2 FTSA affected the porphyrin and secondary metabolisms, resulting in the promotion of plant photosynthesis and antioxidant capacity. Transcriptomic analysis indicated that differentially expressed genes (DEGs) were related to transformation and transport processes. Integrative transcriptomic and metabolomic analysis revealed that DEGs and differentially expressed metabolites (DEMs) in plants were predominantly enriched in the carbohydrate metabolism, amino acid metabolism, and lipid metabolism pathways, resulting in greater energy consumption, generation of more nonenzymatic antioxidants, alteration of the cellular membrane composition, and inhibition of plant development. This study provides the first insights into the molecular mechanisms of 8:2 FTSA stress response in plants.
Collapse
Affiliation(s)
- Fanghui Chi
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, PR China
| | - Shuyan Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, PR China.
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Xiaojing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, PR China
| | - Xu Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, PR China
| | - Ran Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, PR China
| |
Collapse
|
2
|
Chen P, Zhao N, Wang R, Chen G, Hu Y, Dou Z, Ban C. Hepatotoxicity and lipid metabolism disorders of 8:2 polyfluoroalkyl phosphate diester in zebrafish: In vivo and in silico evidence. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133807. [PMID: 38412642 DOI: 10.1016/j.jhazmat.2024.133807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
8:2 polyfluoroalkyl phosphate diester (8:2 diPAP) has been shown to accumulate in the liver, but whether it induces hepatotoxicity and lipid metabolism disorders remains largely unknown. In this study, zebrafish embryos were exposed to 8:2 diPAP for 7 d. Hepatocellular hypertrophy and karyolysis were noted after exposure to 0.5 ng/L 8:2 diPAP, suggesting suppressed liver development. Compared to the water control, 8:2 diPAP led to significantly higher triglyceride and total cholesterol levels, but markedly lower levels of low-density lipoprotein, implying disturbed lipid homeostasis. The levels of two peroxisome proliferator activated receptor (PPAR) subtypes (pparα and pparγ) involved in hepatotoxicity and lipid metabolism were significantly upregulated by 8:2 diPAP, consistent with their overexpression as determined by immunohistochemistry. In silico results showed that 8:2 diPAP formed hydrogen bonds with PPARα and PPARγ. Among seven machine learning models, Adaptive Boosting performed the best in predicting the binding affinities of PPARα and PPARγ on the test set. The predicted binding affinity of 8:2 diPAP to PPARα (7.12) was higher than that to PPARγ (6.97) by Adaptive Boosting, which matched well with the experimental results. Our results revealed PPAR - mediated adverse effects of 8:2 diPAP on the liver and lipid metabolism of zebrafish larvae.
Collapse
Affiliation(s)
- Pengyu Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China; Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210024, China.
| | - Na Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Ruihan Wang
- Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Geng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxi Hu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Zhichao Dou
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Chenglong Ban
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| |
Collapse
|
3
|
Ye B, Wang J, Zhou L, Yu X, Sui Q. Perfluoroalkyl acid precursors in agricultural soil-plant systems: Occurrence, uptake, and biotransformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168974. [PMID: 38036134 DOI: 10.1016/j.scitotenv.2023.168974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Perfluoroalkyl acid (PFAA) precursors have been used in various consumer and industrial products due to their hydrophobic and oleophobic properties. In recent years, PFAA precursors in agricultural soil-plant systems have received increasing attention as they are susceptible to biotransformation into metabolites with high biotoxicity risks to human health. In this review, we systematically assessed the occurrence of PFAA precursors in agricultural soils, taking into account their sources and biodegradation pathways. In addition, we summarized the findings of the relevant literature on the uptake and biotransformation of PFAA precursors by agricultural plants. The applications of biosolids/composts and pesticides are the main sources of PFAA precursors in agricultural soils. The physicochemical properties of PFAA precursors, soil organic carbon (SOC) contents, and plant species are the key factors influencing plant root uptakes of PFAA precursors from soils. This review revealed, through toxicity assessment, the potential of PFAA precursors to generate metabolites with higher toxicity than the parent precursors. The results of this paper provide a reference for future research on PFAA precursors and their metabolites in soil-plant systems.
Collapse
Affiliation(s)
- Beibei Ye
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaxi Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|