1
|
Lotfigolsefidi F, Davoudi M, Sarkhosh M, Bonyadi Z. Removal of microplastics by algal biomass from aqueous solutions: performance, optimization, and modeling. Sci Rep 2025; 15:501. [PMID: 39748020 PMCID: PMC11695633 DOI: 10.1038/s41598-024-84114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Microplastics (MPs) are emerging pollutants that pose significant risks to ecosystems due to their inherent toxicity, capacity to accumulate various pollutants, and potential for synergistic impacts. Given these concerns, the focus of this research is on the critical need for effective MPs removal from aquatic environments. Using BBD method, this study aimed to identify the key parameters affecting the removal of MPs by algal biomass from aqueous solutions. The investigation specifically analyzed the effects of varying initial PS concentrations (100 to 900 mg/L), pH values (4 to 10), reaction durations (20 to 40 min), and C. vulgaris dosages (50 to 400 mg/L). Data analysis indicated that QM best described the experimental findings, leading to the identification of optimal conditions for PS removal: a pH of 7.5, a reaction time of 31.90 min, a C. vulgaris dosage of 274.05 mg/L, and a PS level of 789.37 mg/L. Under these conditions, the study achieved a maximum removal efficiency of 73.01% for PS. These outcomes demonstrate the significant potential of C. vulgaris in efficiently removing PS from water. Furthermore, using algae as a green, eco-friendly alternative to conventional chemical coagulants offers a practical and sustainable approach to addressing MPs pollution in our water systems.
Collapse
Affiliation(s)
- Fatemeh Lotfigolsefidi
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Davoudi
- Department of Environmental Health Engineering, Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sarkhosh
- Department of Environmental Health Engineering, Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Liu SF, Yi ZC, Huang ZQ, Yuan ZD, Yang YC, Zhao Y, He QY, Yang WD, Li HY, Lin CSK, Wang X. Enhanced biodegradation of glyphosate by Chlorella sorokiniana engineered with exogenous purple acid phosphatase. WATER RESEARCH 2024; 268:122737. [PMID: 39531795 DOI: 10.1016/j.watres.2024.122737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Organophosphate pesticides, particularly glyphosate, persist in aquatic environments due to widespread agricultural usage, posing substantial environmental and health risks. This study explores the bioremediation potential of genetically engineered Chlorella sorokiniana, expressing purple acid phosphatase (PAP) from Phaeodactylum tricornutum, for glyphosate biodegradation. The engineered strain (OE line) demonstrated complete glyphosate biodegradation at concentrations below 10 ppm within 4-6 days, surpassing the wild type (WT). Enhanced biodegradation in the OE line was attributed to increased growth and ATP levels due to the release of inorganic phosphate, indicating enhanced metabolic efficiency. Photosynthetic parameters, as well as chlorophyll, and carotenoid contents, were significantly improved, driving higher biomass accumulation. Metabolic shifts toward lipogenesis were observed, supported by the upregulation of triacylglycerol-related genes. Additionally, antioxidant enzyme activities (GPx, SOD, CAT) were elevated in the OE line, mitigating oxidative stress. Importantly, the overexpression of PAP activated and upregulated the level of endogenous CsPAP18, which displayed stable binding with glyphosate and its metabolite aminomethylphosphonic acid, highlighting the synergistic role of PAP and CsPAP18 in glyphosate biodegradation. The OE line effectively treated glyphosate-contaminated real wastewater, confirming the feasibility of engineered strain for environmental remediation. This study provides valuable insights into the potential of engineered microalgae for effective and sustainable wastewater treatment, specifically targeting the removal of organophosphate contaminants in freshwater environments.
Collapse
Affiliation(s)
- Si-Fen Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zhong-Chen Yi
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zi-Qiong Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zhen-Dong Yuan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yu-Cheng Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, PR China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, PR China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
3
|
Mamba FB, Mbuli BS, Ramontja J. Synergistic effect of ZnO/Ag 2O@g-C 3N 4 based nanocomposites embedded in carrageenan matrix for dye degradation in water. Heliyon 2024; 10:e31109. [PMID: 38828361 PMCID: PMC11140603 DOI: 10.1016/j.heliyon.2024.e31109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
This research achieved success by synthesizing innovative nanocomposite composed of zinc oxide (ZnO), graphitic carbon nitride (g-C3N4) and silver oxide (Ag2O) nanomaterials incorporated into a carrageenan matrix, thus creating an environmentally friendly and stable support structure. The synthesis process involved hydrothermal and chemical precipitation methods to create photocatalytic g-C3N4, ZnO, and Ag2O nanocomposites. The success is evident through the characterization results, which unveiled distinctive peaks corresponding to Zn-O (590-404 cm-1) and Ag-O (2072 cm-1) stretching in the Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analyses, conclusively confirming the successful synthesis of g-C3N4, ZnO, Ag2O, and their respective nanocomposites. Further validation through a scanning electron microscope coupled with an energy dispersive spectrometer (SEM-EDX) and elemental mapping affirmed the presence of Zn, O, Ag, C, and N. Additionally, transmission electron microscope (TEM) imaging unveiled the nanosheet morphology of g-C3N4, the nanorod structure of ZnO, and the spherical form of Ag2O nanomaterials. ZnO and Ag2O nanomaterials demonstrated a consistent 10-20 nm size range. To underscore their ability to harness visible light, the nanomaterials were excited at 380 nm, emitting visible light emission within the 400-450 nm range. The synthesized nanocomposites showcased outstanding adsorption and photocatalytic properties, achieving efficiency ranging from 80 % to 98 %, attributed to the synergistic interactions between the various components. These findings culminate in a confirmation of the research's success, validating the exceptional potential of these nanocomposites for various applications.
Collapse
Affiliation(s)
- Feziwe B. Mamba
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
- DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, 2028, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Bhekani S. Mbuli
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
- DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, 2028, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, Doornfontein, 2028, South Africa
| | - James Ramontja
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
- DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, 2028, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, Doornfontein, 2028, South Africa
| |
Collapse
|
4
|
Ebsa G, Gizaw B, Admassie M, Degu T, Alemu T. The role and mechanisms of microbes in dichlorodiphenyltrichloroethane (DDT) and its residues bioremediation. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00835. [PMID: 38560709 PMCID: PMC10972831 DOI: 10.1016/j.btre.2024.e00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Environmental contamination with dichlorodiphenyltrichloroethane (DDT) has sever effects on the ecosystem worldwide. DDT is a recalcitrant synthetic chemical with high toxicity and lipophilicity. It is also bioaccumulated in the food chain and causes genotoxic, estrogenic, carcinogenic, and mutagenic effects on aquatic organisms and humans. Microbial remediation mechanism and its enzymes are very important for removing DDT from environment. DDT and its main residues dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD) can biodegrade slowly in soil and water. To enhance this process, a number of strategies are proposed, such as bio-attenuation, biostimulation, bioaugmentation and the manipulation of environmental conditions to enhance the activity of microbial enzymes. The addition of organic matter and flooding of the soil enhance DDT degradation. Microbial candidates for DDT remediation include micro-algae, fungi and bacteria. This review provide brief information and recommendation on microbial DDT remediation and its mechanisms.
Collapse
Affiliation(s)
- Girma Ebsa
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| | - Birhanu Gizaw
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| | - Mesele Admassie
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| | - Tizazu Degu
- Department of Crop Protection, Ethiopian Institute of Agricultural Research, P. O. Box: 2003, Addis Ababa, Ethiopia
| | - Tesfaye Alemu
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Chu KH, Hashim MA, Hayder G. Comment on "Algal mediated intervention for the retrieval of emerging pollutants from aqueous media". JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133370. [PMID: 38219576 DOI: 10.1016/j.jhazmat.2023.133370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
Addressing inaccuracies in review articles is essential to prevent the proliferation of misinformation. This communication is dedicated to rectifying factual errors identified in a recent review article featured in this journal, with a specific emphasis on addressing errors related to the Temkin, Flory-Huggins, Sips, and Baudu isotherm models. By elucidating and clarifying these inaccuracies, we aim to uphold the integrity of scientific discourse and ensure the accurate dissemination of information within the scholarly community.
Collapse
Affiliation(s)
- Khim Hoong Chu
- Institute of Energy Infrastructure, Universiti Tenaga Nasional (UNITEN), Kajang 43000, Selangor Darul Ehsan, Malaysia; Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Mohd Ali Hashim
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Gasim Hayder
- Institute of Energy Infrastructure, Universiti Tenaga Nasional (UNITEN), Kajang 43000, Selangor Darul Ehsan, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), Kajang 43000, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
6
|
Kumar A, Nighojkar A, Varma P, Prakash NJ, Kandasubramanian B, Zimmermann K, Dixit F. Response to Comment on "Algal mediated intervention for the retrieval of emerging pollutants from aqueous media" J Hazard Mater 455 (2023) 131568. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133467. [PMID: 38262315 DOI: 10.1016/j.jhazmat.2024.133467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Affiliation(s)
- Alok Kumar
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Amrita Nighojkar
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Payal Varma
- Microbiology Department, Sinhgad College of Science, Pune 411041, Maharashtra, India
| | - Niranjana Jaya Prakash
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India.
| | - Karl Zimmermann
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Fuhar Dixit
- Department of Civil and Environmental Engineering, University of California, Berkeley, USA
| |
Collapse
|
7
|
Thanigaivel S, Vinayagam S, Gnanasekaran L, Suresh R, Soto-Moscoso M, Chen WH. Environmental fate of aquatic pollutants and their mitigation by phycoremediation for the clean and sustainable environment: A review. ENVIRONMENTAL RESEARCH 2024; 240:117460. [PMID: 37866533 DOI: 10.1016/j.envres.2023.117460] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Emerging pollutants such as natural and manufactured chemicals, insecticides, pesticides, surfactants, and other biological agents such as personal care products, cosmetics, pharmaceuticals, and many industrial discharges hamper the aquatic environment. Nanomaterials and microplastics, among the categories of pollutants, can directly interfere with the marine ecosystem and translate into deleterious effects for humans and animals. They are either uncontrolled or poorly governed. Due to their known or suspected effects on human and environmental health, some chemicals are currently causing concern. The aquatic ecology is at risk from these toxins, which have spread worldwide. This review assesses the prevalence of emerging and hazardous pollutants that have effects on aquatic ecosystems and contaminated water bodies and their toxicity to non-target organisms. Microalgae are found to be a suitable source to remediate the above-mentioned risks. Microalgae based mitigation techniques are currently emerging approaches for all such contaminants, including the other categories that are discussed above. These studies describe the mechanism of phycoremediation, provide outrage factors that may significantly affect the efficiency of contaminants removal, and discuss the future directions and challenges of microalgal mediated remediations.
Collapse
Affiliation(s)
- S Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Saranya Vinayagam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - R Suresh
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India; Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | | | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| |
Collapse
|
8
|
Aguilar-Aguilar A, de León-Martínez LD, Forgionny A, Acelas Soto NY, Mendoza SR, Zárate-Guzmán AI. A systematic review on the current situation of emerging pollutants in Mexico: A perspective on policies, regulation, detection, and elimination in water and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167426. [PMID: 37774864 DOI: 10.1016/j.scitotenv.2023.167426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Emerging pollutants (EPs) emerged as a group of new compounds whose presence in the environment has been widely detected in Mexico. In this country, different concentrations of pharmaceutical compounds, pesticides, dyes, and microplastics have been reported, which vary depending on the region and the analyzed matrix (i.e., wastewater, surface water, groundwater). The evidence of the EPs' presence focuses on the detection of them, but there is a gap in information regarding is biomonitoring and their effects in health in Mexico. The presence of these pollutants in the country associated with lack of proper regulations in the discharge and disposal of EPs. Therefore, this review aims to provide a comprehensive view of the current environmental status, policies, and frameworks regarding Mexico's situation. The review also highlights the lack of information about biomonitoring since EPs are present in water even after their treatment, leading to a critical situation, which is high exposure to humans and animals. Although, technologies to efficiently eliminate EPs are available, their application has been reported only at a laboratory scale thus far. Here, an overview of health and environmental impacts and a summary of the research works reported in Mexico from 2014 to 2023 were presented. This review concludes with a concrete point of view and perspective on the status of the EPs' research in Mexico as an alert for government entities about the necessity of measures to control the EPs disposal and treatment.
Collapse
Affiliation(s)
- Angélica Aguilar-Aguilar
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | | | - Angélica Forgionny
- Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 55450, Colombia
| | - Nancy Y Acelas Soto
- Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 55450, Colombia
| | - Sergio Rosales Mendoza
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 201, San Luis Potosí 78210, Mexico
| | - Ana I Zárate-Guzmán
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico.
| |
Collapse
|