1
|
Zhou J, Zhang L, Wei Y, Wu Q, Mao K, Wang X, Cai J, Li X, Jiang Y. Photothermal Iron-Based Riboflavin Microneedles for the Treatment of Bacterial Keratitis via Ion Therapy and Immunomodulation. Adv Healthc Mater 2024; 13:e2304448. [PMID: 39012057 DOI: 10.1002/adhm.202304448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/23/2024] [Indexed: 07/17/2024]
Abstract
Bacterial biofilm formation protects bacteria from antibiotics and the immune system, excessive inflammation further complicates treatment. Here, iron-based metal-organic framework (MIL-101)-loaded riboflavin nanoparticles are designed for the therapeutic challenge of biofilm infection and hyperinflammation in bacterial keratitis. Specifically, MIL-101 produces a thermal effect under exogenous near-infrared light irradiation, which synergizes with ferroptosis-like bacterial death induced by iron ions to exert an effective biofilm infection eradication effect. On the other hand, the disintegration of MIL-101 sustains the release of riboflavin, which inhibits the pro-inflammatory response of macrophage over-activation by modulating their phenotypic switch. In addition, to solve the problems of short residence time, poor permeability, and low bioavailability of corneal medication, the MR@MN microneedle patch is further prepared by loading nanoparticles into SilMA hydrogel, which ultimately achieves painless, transepithelial, and highly efficient drug delivery. In vivo and ex vivo experiments demonstrate the effectiveness of this approach in eliminating bacterial infection and promoting corneal healing. Therefore, the MRMN patch, acting as an ocular drug delivery system with the ability of rapid corneal healing, promises a cost-effective solution for the treatment of bacterial keratitis, which may also lead to a new approach for treating bacterial keratitis in clinics.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, P. R. China
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Lisha Zhang
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Yaqi Wei
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, P. R. China
| | - Qiang Wu
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, P. R. China
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Kaibo Mao
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, P. R. China
| | - Xiaoli Wang
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, P. R. China
| | - Jinfeng Cai
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, P. R. China
| | - Xia Li
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, P. R. China
| | - Yongxiang Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| |
Collapse
|
2
|
He Y, Wang Q, Liu Y, Zhang Z, Cao Z, Wang S, Ying X, Ma G, Wang X, Liu H. Composite Mineralized Collagen/Polycaprolactone Scaffold-Loaded Microsphere System with Dual Osteogenesis and Antibacterial Functions. Polymers (Basel) 2024; 16:2394. [PMID: 39274026 PMCID: PMC11397082 DOI: 10.3390/polym16172394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
Biomaterials play an important role in treating bone defects. The functional characteristics of scaffolds, such as their structure, mechanical strength, and antibacterial and osteogenesis activities, effectively promote bone regeneration. In this study, mineralized collagen and polycaprolactone were used to prepare loaded porous scaffolds with bilayer-structured microspheres with dual antibacterial and osteogenesis functions. The different drug release mechanisms of PLGA and chitosan in PLGA/CS microspheres caused differences in the drug release models in terms of the duration and rate of Pac-525 and BMP-2 release. The prepared PLGA(BMP-2)/CS(Pac-525)@MC/PCL scaffolds were analyzed in terms of physical characteristics, bioactivity, and antibacterial properties. The scaffolds with a dimensional porous structure showed similar porosity and pore diameter to cancellous bone. The release curve of the microspheres and scaffolds with high encapsulation rates displayed the two-stage release of Pac-525 and BMP-2 over 30 days. It was found that the scaffolds could inhibit S. aureus and E. coli and then promote ALP activity. The PLGA(BMP-2)/CS(Pac-525)@MC/PCL scaffold could be used as a dual delivery system to promote bone regeneration.
Collapse
Affiliation(s)
- Yuzhu He
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Qindong Wang
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yuqi Liu
- School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Zijiao Zhang
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Zheng Cao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoxia Ying
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
3
|
Wang M, Zhu X, Yin Y, Ling G, Zhang P. Porous reticular Co@Fe metal-organic gel: dual-function simulated peroxidase nanozyme for both colorimetric sensing and antibacterial applications. J Mater Chem B 2024; 12:5418-5430. [PMID: 38716837 DOI: 10.1039/d4tb00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Constructing metal-organic gels (MOGs) with enzyme-catalyzed activity and studying their catalytic mechanism are crucial for the development of novel nanozyme materials. In this study, a Co@Fe MOG with excellent peroxidase activity was developed by a simple and mild one-pot process. The results showed that the material exhibited almost a single peroxidase activity under optimal pH conditions, which allowed it to attract and oxidize the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB). Based on the active electron transfer between the metal centers and the organic ligand in the synthetic material, the Co@Fe MOG-H2O2-TMB system was verified to be able to detect H2O2 and citric acid (CA). The catalytic microenvironment formed by the adsorption and the catalytic center accelerated the electron-transfer rate, which expedited the generation of hydroxyl radicals (˙OH, a kind of reactive oxygen species (ROS)) in the presence of H2O2. The persistence and high intensity of ˙OH generation were proven, which would endow Co@Fe MOG with a certain antibacterial ability, promoting the healing of bacteria-infected wounds. In conclusion, this study contributes to the development efforts toward the application systems of nanozymes for marker detection and antibacterial activity.
Collapse
Affiliation(s)
- Meng Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Yannan Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
4
|
Zhang Q, Zhou H, Jiang P, Wu L, Xiao X. Silver nanoparticles facilitate phage-borne resistance gene transfer in planktonic and microplastic-attached bacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133942. [PMID: 38452675 DOI: 10.1016/j.jhazmat.2024.133942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
The spread of bacteriophage-borne antibiotic resistance genes (ARGs) poses a realistic threat to human health. Nanomaterials, as important emerging pollutants, have potential impacts on ARGs dissemination in aquatic environments. However, little is known about its role in transductive transfer of ARGs mediated by bacteriophage in the presence of microplastics. Therefore, this study comprehensively investigated the influence of silver nanoparticles (AgNPs) on the transfer of bacteriophage-encoded ARGs in planktonic Escherichia coli and microplastic-attached biofilm. AgNPs exposure facilitated the phage transduction in planktonic and microplastic-attached bacteria at ambient concentration of 0.1 mg/L. Biological binding mediated by phage-specific recognition, rather than physical aggregation conducted by hydrophilicity and ζ-potential, dominated the bacterial adhesion of AgNPs. The aggregated AgNPs in turn resulted in elevated oxidative stress and membrane destabilization, which promoted the bacteriophage infection to planktonic bacteria. AgNPs exposure could disrupt colanic acid biosynthesis and then reduce the thickness of biofilm on microplastics, contributing to the transfer of phage-encoded ARGs. Moreover, the roughness of microplastics also affected the performance of AgNPs on the transductive transfer of ARGs in biofilms. This study reveals the compound risks of nanomaterials and microplastics in phage-borne ARGs dissemination and highlights the complexity in various environmental scenarios.
Collapse
Affiliation(s)
- Qiurong Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Huixian Zhou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ping Jiang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
5
|
Vignesh A, Amal TC, Sivalingam R, Selvakumar S, Vasanth K. Unraveling the impact of nanopollution on plant metabolism and ecosystem dynamics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108598. [PMID: 38608503 DOI: 10.1016/j.plaphy.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Nanopollution (NPOs), a burgeoning consequence of the widespread use of nanoparticles (NPs) across diverse industrial and consumer domains, has emerged as a critical environmental issue. While extensive research has scrutinized the repercussions of NPs pollution on ecosystems and human health, scant attention has been directed towards unraveling its implications for plant life. This comprehensive review aims to bridge this gap by delving into the nuanced interplay between NPOs and plant metabolism, encompassing both primary and secondary processes. Our exploration encompasses an in-depth analysis of the intricate mechanisms governing the interaction between plants and NPs. This involves a thorough examination of how physicochemical properties such as size, shape, and surface characteristics influence the uptake and translocation of NPs within plant tissues. The impact of NPOs on primary metabolic processes, including photosynthesis, respiration, nutrient uptake, and water transport. Additionally, this study explored the multifaceted alterations in secondary metabolism, shedding light on the synthesis and modulation of secondary metabolites in response to NPs exposure. In assessing the consequences of NPOs for plant life, we scrutinize the potential implications for plant growth, development, and environmental interactions. The intricate relationships revealed in this review underscore the need for a holistic understanding of the plant-NPs dynamics. As NPs become increasingly prevalent in ecosystems, this investigation establishes a fundamental guide that underscores the importance of additional research to shape sustainable environmental management strategies and address the extensive effects of NPs on the development of plant life and environmental interactions.
Collapse
Affiliation(s)
- Arumugam Vignesh
- Department of Botany, Nallamuthu Gounder Mahalingam College (Autonomous), Bharathiar University (Affiliated), Pollachi, 642 001, Tamil Nadu, India
| | - Thomas Cheeran Amal
- ICAR - Central Institute for Cotton Research, RS, Coimbatore, 641 003, Tamil Nadu, India
| | | | - Subramaniam Selvakumar
- Department of Biochemistry, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Krishnan Vasanth
- Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
6
|
Omran BA, Tseng BS, Baek KH. Nanocomposites against Pseudomonas aeruginosa biofilms: Recent advances, challenges, and future prospects. Microbiol Res 2024; 282:127656. [PMID: 38432017 DOI: 10.1016/j.micres.2024.127656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes life-threatening and persistent infections in immunocompromised patients. It is the culprit behind a variety of hospital-acquired infections owing to its multiple tolerance mechanisms against antibiotics and disinfectants. Biofilms are sessile microbial aggregates that are formed as a result of the cooperation and competition between microbial cells encased in a self-produced matrix comprised of extracellular polymeric constituents that trigger surface adhesion and microbial aggregation. Bacteria in biofilms exhibit unique features that are quite different from planktonic bacteria, such as high resistance to antibacterial agents and host immunity. Biofilms of P. aeruginosa are difficult to eradicate due to intrinsic, acquired, and adaptive resistance mechanisms. Consequently, innovative approaches to combat biofilms are the focus of the current research. Nanocomposites, composed of two or more different types of nanoparticles, have diverse therapeutic applications owing to their unique physicochemical properties. They are emerging multifunctional nanoformulations that combine the desired features of the different elements to obtain the highest functionality. This review assesses the recent advances of nanocomposites, including metal-, metal oxide-, polymer-, carbon-, hydrogel/cryogel-, and metal organic framework-based nanocomposites for the eradication of P. aeruginosa biofilms. The characteristics and virulence mechanisms of P. aeruginosa biofilms, as well as their devastating impact and economic burden are discussed. Future research addressing the potential use of nanocomposites as innovative anti-biofilm agents is emphasized. Utilization of nanocomposites safely and effectively should be further strengthened to confirm the safety aspects of their application.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), PO 11727, Nasr City, Cairo, Egypt
| | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
7
|
Fang Q, Pan X. A systematic review of antibiotic resistance driven by metal-based nanoparticles: Mechanisms and a call for risk mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170080. [PMID: 38220012 DOI: 10.1016/j.scitotenv.2024.170080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Elevations in antibiotic resistance genes (ARGs) are due not only to the antibiotic burden, but also to numerous environmental pressures (e.g., pesticides, metal ions, or psychotropic pharmaceuticals), which have led to an international public health emergency. Metal-based nanoparticles (MNPs) poison bacteria while propelling nanoresistance at ambient or sub-lethal concentrations, acting as a wide spectrum germicidal agent. Awareness of MNPs driven antibiotic resistance has created a surge of investigation into the molecule mechanisms of evolving and spreading environmental antibiotic resistome. Co-occurrence of MNPs resistance and antibiotic resistance emerge in environmental pathogens and benign microbes may entail a crucial outcome for human health. In this review we expound on the systematic mechanism of ARGs proliferation under the stress of MNPs, including reactive oxygen species (ROS) induced mutation, horizontal gene transfer (HGT) relevant genes regulation, nano-property, quorum sensing, and biofilm formation and highlighting on the momentous contribution of nanoparticle released ion. As antibiotic resistance pattern alteration is closely knit with the mediate activation of nanoparticle in water, soil, manure, or sludge habitats, we have proposed a virulence and evolution based antibiotic resistance risk assessment strategy for MNP contaminated areas and discussed practicable approaches that call for risk management in critical environmental compartments.
Collapse
Affiliation(s)
- Qunkai Fang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Qi Y, Chen Q, Cai X, Liu L, Jiang Y, Zhu X, Huang Z, Wu K, Luo H, Ouyang Q. Self-Assembled Amphiphilic Chitosan Nanomicelles: Synthesis, Characterization and Antibacterial Activity. Biomolecules 2023; 13:1595. [PMID: 38002276 PMCID: PMC10669896 DOI: 10.3390/biom13111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Although amphiphilic chitosan has been widely studied as a drug carrier for drug delivery, fewer studies have been conducted on the antimicrobial activity of amphiphilic chitosan. In this study, we successfully synthesized deoxycholic acid-modified chitosan (CS-DA) by grafting deoxycholic acid (DA) onto chitosan C2-NH2, followed by grafting succinic anhydride, to prepare a novel amphiphilic chitosan (CS-DA-SA). The substitution degree was 23.93% for deoxycholic acid and 29.25% for succinic anhydride. Both CS-DA and CS-DA-SA showed good blood compatibility. Notably, the synthesized CS-DA-SA can self-assemble to form nanomicelles at low concentrations in an aqueous environment. The results of CS, CS-DA, and CS-DA-SA against Escherichia coli and Staphylococcus aureus showed that CS-DA and CS-DA-SA exhibited stronger antimicrobial effects than CS. CS-DA-SA may exert its antimicrobial effect by disrupting cell membranes or forming a membrane on the cell surface. Overall, the novel CS-DA-SA biomaterials have a promising future in antibacterial therapy.
Collapse
Affiliation(s)
- Yi Qi
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Qizhou Chen
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
| | - Xiaofen Cai
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
| | - Lifen Liu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
| | - Yuwei Jiang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
| | - Xufeng Zhu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Zhicheng Huang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
| | - Kefeng Wu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Hui Luo
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Qianqian Ouyang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China; (Y.Q.); (Q.C.); (X.C.); (L.L.); (Y.J.); (X.Z.); (Z.H.); (H.L.)
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
9
|
Zhang J, Tang W, Zhang X, Song Z, Tong T. An Overview of Stimuli-Responsive Intelligent Antibacterial Nanomaterials. Pharmaceutics 2023; 15:2113. [PMID: 37631327 PMCID: PMC10458108 DOI: 10.3390/pharmaceutics15082113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Drug-resistant bacteria and infectious diseases associated with biofilms pose a significant global health threat. The integration and advancement of nanotechnology in antibacterial research offer a promising avenue to combat bacterial resistance. Nanomaterials possess numerous advantages, such as customizable designs, adjustable shapes and sizes, and the ability to synergistically utilize multiple active components, allowing for precise targeting based on specific microenvironmental variations. They serve as a promising alternative to antibiotics with diverse medical applications. Here, we discuss the formation of bacterial resistance and antibacterial strategies, and focuses on utilizing the distinctive physicochemical properties of nanomaterials to achieve inherent antibacterial effects by investigating the mechanisms of bacterial resistance. Additionally, we discuss the advancements in developing intelligent nanoscale antibacterial agents that exhibit responsiveness to both endogenous and exogenous responsive stimuli. These nanomaterials hold potential for enhanced antibacterial efficacy by utilizing stimuli such as pH, temperature, light, or ultrasound. Finally, we provide a comprehensive outlook on the existing challenges and future clinical prospects, offering valuable insights for the development of safer and more effective antibacterial nanomaterials.
Collapse
Affiliation(s)
- Jinqiao Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (J.Z.); (X.Z.)
| | - Wantao Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
| | - Xinyi Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (J.Z.); (X.Z.)
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Tong
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (J.Z.); (X.Z.)
| |
Collapse
|