1
|
Liu M, Feng Y, Wang M, Sun X, Qi CY, Yang X, Zhang D. Sedum alfredii Hance: A cadmium and zinc hyperaccumulating plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117588. [PMID: 39721422 DOI: 10.1016/j.ecoenv.2024.117588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The hyperaccumulating ecotype Sedum alfredii Hance is one of few Cd hyperaccumulators with Cd contents in leaves and stems up to 9000 mg/kg (dry weight, DW) and 6500 mg/kg (DW) respectively without displaying significant toxicity symptoms as reported in 2004. Numerous studies have been conducted to uncover the mystery of its hypertolerance and hyperaccumulation using high-throughput sequencing, biochemical and molecular techniques, mainly pointing to the root-microorganism interaction, restrained Cd storage in roots, efficient root-shoot translocation, effective cellular detoxification, and phloem-mediated metal remobilization. This also encourages studies on functional genes involved in metal transport, antioxidant, transcription regulation and stress response, providing candidates for genetic modification. Moreover, researchers have focused on the practical application and optimal managements in phytoremediation. Sedum alfredii Hance is of scientific significance as a model plant elucidating hypertolerance and hyperaccumulation traits or decontaminating heavy metals. More efforts are required to deepen the knowledge of Sedum alfredii Hance and provide theoretical guidance for practical phytoremediation.
Collapse
Affiliation(s)
- Mingying Liu
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Ying Feng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Miao Wang
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Xinglin Sun
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Chen Yinfei Qi
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, PR China.
| |
Collapse
|
2
|
Sun L, Gao G, Sun Y, Yang S, Qin Q, Ye J, Xue Y. Appropriate sulfur fertilization in contaminated soil enhanced the cadmium uptake by hyperaccumulator Sedum alfredii Hance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116870. [PMID: 39137467 DOI: 10.1016/j.ecoenv.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
The biogeochemical processes of sulfur and heavy metals in the environment are closely related to each other. We investigated the influence of sulfur addition on hyperaccumulator Sedum alfredii Hance growth, cadmium (Cd) accumulation, soil Cd bioavailability, soil bacterial communities and plant transcriptome responses. The results showed that an appropriate rate of sulfur addition (1.0 or 2.5 g/kg) enhanced the growth of Sedum alfredii Hance plants as well as their accumulation of Cd. A high rate of sulfur addition (5.0 or 10.0 g/kg) causes toxicity to Sedum alfredii Hance plants. The application of an appropriate amount of sulfur to the soil increased the abundance of sulfur-oxidizing bacteria such as Sulfuriferula and Thiobacillus; acid-fast bacillus such as Alicyclobacillus; and cadmium-tolerant bacteria such as Bacillus and Rhodanobacter. This led to a decrease in pH and an increase in bioavailable Cd in the soil. RNA sequencing revealed that the addition of sulfur to soils led to the up regulation of most of the differentially expressed genes (DEGs) involved in "photosynthesis" and "photosynthesis, light reaction" in Sedum alfredii Hance leaves. Moreover, the "plant hormone signal transduction" pathway was significantly enriched with sulfur addition. Sulfur assimilation in Sedum alfredii Hance plants may promote photosynthesis and hormone synthesis, leading to Cd tolerance in these plants. Our study revealed that sulfur fertilization enhanced the efficiency of Cd phytoremediation in Sedum alfredii Hance plants.
Collapse
Affiliation(s)
- Lijuan Sun
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China; Shang Hai Rightway Environmental Protection Technology Co.,Ltd, Shanghai 200131, China
| | - Guangkuo Gao
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yafei Sun
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Shiyan Yang
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Qin Qin
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yong Xue
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China.
| |
Collapse
|
3
|
Su X, Narayanan M, Shi X, Chen X, Li Z, Ma Y. Mitigating heavy metal accumulation in tobacco: Strategies, mechanisms, and global initiatives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172128. [PMID: 38565350 DOI: 10.1016/j.scitotenv.2024.172128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
The threat of heavy metal (HM) pollution looms large over plant growth and human health, with tobacco emerging as a highly vulnerable plant due to its exceptional absorption capacity. The widespread cultivation of tobacco intensifies these concerns, posing increased risks to human health as HMs become more pervasive in tobacco-growing soils globally. The absorption of these metals not only impedes tobacco growth and quality but also amplifies health hazards through smoking. Implementing proactive strategies to minimize HM absorption in tobacco is of paramount importance. Various approaches, encompassing chemical immobilization, transgenic modification, agronomic adjustments, and microbial interventions, have proven effective in curbing HM accumulation and mitigating associated adverse effects. However, a comprehensive review elucidating these control strategies and their mechanisms remains notably absent. This paper seeks to fill this void by examining the deleterious effects of HM exposure on tobacco plants and human health through tobacco consumption. Additionally, it provides a thorough exploration of the mechanisms responsible for reducing HM content in tobacco. The review consolidates and synthesizes recent domestic and international initiatives aimed at mitigating HM content in tobacco, delivering a comprehensive overview of their current status, benefits, and limitations.
Collapse
Affiliation(s)
- Xinyi Su
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Mathiyazhagan Narayanan
- Department of Research and Innovation, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhenlun Li
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
4
|
Wang C, Chang J, Tian L, Sun Y, Wang E, Yao Z, Ye L, Zhang H, Pang Y, Tian C. A Synthetic Microbiome Based on Dominant Microbes in Wild Rice Rhizosphere to Promote Sulfur Utilization. RICE (NEW YORK, N.Y.) 2024; 17:18. [PMID: 38429614 PMCID: PMC10907558 DOI: 10.1186/s12284-024-00695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
Sulfur (S) is one of the main components of important biomolecules, which has been paid more attention in the anaerobic environment of rice cultivation. In this study, 12 accessions of rice materials, belonging to two Asian rice domestication systems and one African rice domestication system, were used by shotgun metagenomics sequencing to compare the structure and function involved in S cycle of rhizosphere microbiome between wild and cultivated rice. The sulfur cycle functional genes abundances were significantly different between wild and cultivated rice rhizosphere in the processes of sulfate reduction and other sulfur compounds conversion, implicating that wild rice had a stronger mutually-beneficial relationship with rhizosphere microbiome, enhancing sulfur utilization. To assess the effects of sulfate reduction synthetic microbiomes, Comamonadaceae and Rhodospirillaceae, two families containing the genes of two key steps in the dissimilatory sulfate reduction, aprA and dsrA respectively, were isolated from wild rice rhizosphere. Compared with the control group, the dissimilatory sulfate reduction in cultivated rice rhizosphere was significantly improved in the inoculated with different proportions groups. It confirmed that the synthetic microbiome can promote the S-cycling in rice, and suggested that may be feasible to construct the synthetic microbiome step by step based on functional genes to achieve the target functional pathway. In summary, this study reveals the response of rice rhizosphere microbial community structure and function to domestication, and provides a new idea for the construction of synthetic microbiome.
Collapse
Affiliation(s)
- Changji Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjing Chang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Lei Tian
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yu Sun
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Enze Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongmu Yao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo Ye
- College of Life Science, Jilin Agricultural University, Jilin, Changchun, China
| | - Hengfei Zhang
- College of Life Science, Jilin Agricultural University, Jilin, Changchun, China
| | - Yingnan Pang
- College of Life Science, Jilin Agricultural University, Jilin, Changchun, China
| | - Chunjie Tian
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- College of Resources and Environment, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Shi A, Xu J, Guo Y, Rensing C, Chang J, Zhang T, Zhang L, Xing S, Ni W, Yang W. Jasmonic acid's impact on Sedum alfredii growth and cadmium tolerance: A physiological and transcriptomic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169939. [PMID: 38211868 DOI: 10.1016/j.scitotenv.2024.169939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Soil cadmium (Cd) pollution is escalating, necessitating effective remediation strategies. This study investigated the effects of exogenous jasmonic acid (JA) on Sedum alfredii Hance under Cd stress, aiming to enhance its phytoextraction efficiency. Initially, experiments were conducted to assess the impact of various concentrations of JA added to environments with Cd concentrations of 100, 300, and 500 μmol/L. The results determined that a concentration of 1 μmol/L JA was optimal. This concentration effectively mitigated the level of ROS products by enhancing the activity of antioxidant enzymes. Additionally, JA fostered Cd absorption and accumulation, while markedly improving plant biomass and photosynthetic performance. In further experiments, treatment with 1 μmol/L JA under 300 μmol/L Cd stress was performed and transcriptomic analysis unveiled a series of differentially expressed genes (DEGs) instrumental in the JA-mediated Cd stress response. These DEGs encompass not only pathways of JA biosynthesis and signaling but also genes encoding functions that influence antioxidant systems and photosynthesis, alongside genes pertinent to cell wall synthesis, and metal chelation and transport. This study highlights that JA treatment significantly enhances S. alfredii's Cd tolerance and accumulation, offering a promising strategy for plant remediation and deepening our understanding of plant responses to heavy metal stress.
Collapse
Affiliation(s)
- An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junlong Xu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingmin Guo
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinqing Chang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Taoxiang Zhang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liming Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou 310058, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Steven B, Hassani MA, LaReau JC, Wang Y, White JC. Nanoscale sulfur alters the bacterial and eukaryotic communities of the tomato rhizosphere and their interactions with a fungal pathogen. NANOIMPACT 2024; 33:100495. [PMID: 38246247 DOI: 10.1016/j.impact.2024.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Nanoformulations of sulfur have demonstrated the potential to enhance plant growth and reduce disease incidence when plants are confronted with pathogens. However, the impact of nanoscale sulfur on microbial communities in close contact with the plant root, known as the rhizosphere, remain poorly characterized. In this study, we investigate the impact of three formulations of sulfur; bulk sulfur, uncoated (pristine) sulfur nanoparticles, and stearic acid coated sulfur nanoparticles, on the rhizosphere of tomato plants. Tomato plants were additionally challenged by the pathogenic fungus Fusarium oxysporum f. sp. Lycopersici. Employing bacterial 16S rRNA gene sequencing, along with recently in-house designed peptide nucleic acid clamps to facilitate the recovery of microeukaryote sequences, we performed a comprehensive survey of rhizosphere microbial populations. We found the largest influence on the composition of the rhizosphere microbiome was the presence of the fungal pathogen. However, sulfur amendments also drove state changes in the rhizosphere populations; for example, enriching the relative abundance of the plant-beneficial sulfur-oxidizing bacterium Thiobacillus. Notably, when investigating the response of the rhizosphere community to the different sulfur amendments, there was a strong interaction between the fungal pathogen and sulfur treatments. This resulted in different bacterial and eukaryotic taxa being enriched in association with the different forms of sulfur, which was dependent on the presence of the pathogen. These data point to nano formulations of sulfur exerting unique shifts in the rhizosphere community compared to bulk sulfur, particularly in association with a plant pathogen, and have implications for the sustainable use of nanoscale strategies in sustainable agriculture.
Collapse
Affiliation(s)
- Blaire Steven
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, CT, USA.
| | - M Amine Hassani
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jacquelyn C LaReau
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Yi Wang
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jason C White
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| |
Collapse
|