1
|
Li W, Xu X, Song Y, Fan L, Huang J, Yang L, Liu Y, Xu H. POD-like nanozyme constructed from perspective of charge transfer engineering for biosensing of magnetic separation treated Listeria monocytogenes. Food Chem 2024; 463:141495. [PMID: 39362102 DOI: 10.1016/j.foodchem.2024.141495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/07/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
For foodborne pathogens pose a serious threat to public health, a magnetic separation strategy and a nanozyme-based biosensor are proposed for biosensing of Listeria monocytogenes (L. monocytogenes). In this work, doripenem is selected as a recognized molecule for the modification of magnetic beads to capture L.monocytogenes in food and environmental samples. Furthermore, the POD-like MXene-Hemin-Au is constructed from perspective of charge transfer engineering which provides a vivid example to rational design of nanozymes. Finally, the captured L.monocytogenes is labeled with MXene-Hemin-Au@mAb, forming the sandwich complexes for quantitative determination. The current signals that generated by the complexes exhibit a good linear relationship with a limit of detection of 2.3 × 101 CFU/mL. The biosensor shows a satisfactory applicability in real samples with recoveries of 91.19% to 102.98%. Overall, the biosensor with integrated magnetic separation strategy presents a potential approach for high sensitivity biosensing of foodborne pathogens.
Collapse
Affiliation(s)
- Weiqiang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, PR China
| | - Xiaoyun Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Yang Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Linping Fan
- Departments of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, the 1(st) affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330209, PR China
| | - Jin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Luyu Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Yang Liu
- Departments of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, the 1(st) affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330209, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, PR China.
| |
Collapse
|
2
|
Li W, Liu X, He P, Hu W, Tang K, Wen Y, Zeng Q, Tang H, Lei Y, Liu X. AuNPs-BP-MWCNTs-COOH-based electrochemical immunosensor for the determination of deoxynivalenol in wheat flour. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5231-5238. [PMID: 39007341 DOI: 10.1039/d4ay00683f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Deoxynivalenol (DON) has drawn considerable attention for its obvious pathogenicity and wide use in agro-products, which cause a potential threat to human health. In this work, an electrochemical immunosensor is developed for the highly sensitive and selective detection of DON in wheat flour using AuNPs-BP-MWCNTs-COOH and antibodies. The AuNPs-BP-MWCNTs-COOH nanocomposite was prepared via an in situ reduction reaction and ultrasonic-assisted liquid-phase exfoliation. The nanocomposite exhibits a larger surface area, decent stability, excellent electron transfer capability, good protein binding capability and prominent specificity. The plentiful carboxyl group on the nanocomposite can bind to the amino group of the antibody, and AuNPs have an affinity for the sulfhydryl group of the antibody, which makes it feasible for the nanocomposite to load the antibody. The peak currents are plotted against the logarithm of DON concentration from 0.002 to 80 ng mL-1 with a limit of detection (LOD) of 0.5 pg mL-1. This approach establishes an effective label-free immunosensor platform for the detection of DON with high sensitivity and selectivity in various food and agricultural products.
Collapse
Affiliation(s)
- Weiqiang Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xiaoxue Liu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
- Institute of Functional Materials and Agricultural Applied Chemistry, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Pianpian He
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
- Institute of Functional Materials and Agricultural Applied Chemistry, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Wentao Hu
- Institute of Functional Materials and Agricultural Applied Chemistry, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Kaijie Tang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yangping Wen
- Institute of Functional Materials and Agricultural Applied Chemistry, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Qian Zeng
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
- Institute of Functional Materials and Agricultural Applied Chemistry, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Huiyi Tang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
- Institute of Functional Materials and Agricultural Applied Chemistry, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yaxuan Lei
- Institute of Functional Materials and Agricultural Applied Chemistry, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xin Liu
- Institute of Functional Materials and Agricultural Applied Chemistry, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
3
|
Wang Q, Yang Q. Seizing the Hidden Assassin: Current Detection Strategies for Staphylococcus aureus and Methicillin-Resistant S. aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39031091 DOI: 10.1021/acs.jafc.4c02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Staphylococcus aureus (S. aureus) is a kind of pathogenic bacteria which can lead to food poisoning, hospital, and community infections. S. aureus and methicillin-resistant S. aureus (MRSA) have become headaches for public health worldwide. Therefore, strengthening the detection of S. aureus and MRSA is a critical step to prevent and control its spread and infection. This review summarized multiple detection methods (electrochemical, optical, and other biosensors) for sensitive and efficient detection of nonresistant and resistant S. aureus. First, we have introduced the principle and methods of detection platform for S. aureus and MRSA. We also contrasted various detection strategies. Finally, the current situation and prospect of S. aureus and MRSA detection in the future are explored in depth, and its development direction of detection methods is also predicted. In this review, we found that although biosensors have shown tremendous brilliance in the field of monitoring, they are currently in the experimental stage. It can be certain that we are very close to entering the commercialization stage. The point-of care testing available to nonprofessionals will become a new direction. We firmly believe that the monitoring system will be more perfect and stable and public life will be healthier and safer.
Collapse
Affiliation(s)
- Qi Wang
- College of Food Science and Engineering, Qingdao Agricultural University, no. 700 Changcheng Road, Qingdao 266109, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, no. 700 Changcheng Road, Qingdao 266109, China
| |
Collapse
|
4
|
Cao L, Ren Y, Ling N, Ye Q, Wu Y, Zhao X, Gu Q, Wu S, Zhang Y, Wei X, Ye Y, Wu Q. An ultrasensitive smartphone-assisted bicolor-ratiometric fluorescence sensing platform based on a "noise purifier" for point-of-care testing of pathogenic bacteria in food. Food Chem 2024; 446:138805. [PMID: 38422639 DOI: 10.1016/j.foodchem.2024.138805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Non-specific binding in fluorescence resonance energy transfer (FRET) remains a challenge in foodborne pathogen detection, resulting in interference of high background signals. Herein, we innovatively reported a dual-mode FRET sensor based on a "noise purifier" for the ultrasensitive quantification of Escherichia coli O157:H7 in food. An efficient FRET system was constructed with polymyxin B-modified nitrogen-sulfur co-doped graphene quantum dots (N, S-GQDs@PMB) as donors and aptamer-modified yellow carbon dots (Y-CDs@Apt) as acceptors. Magnetic multi-walled carbon nanotubes (Fe@MWCNTs) were employed as a "noise purifier" to reduce the interference of the fluorescence background. Under the background purification mode, the sensitivity of the dual-mode signals of the FRET sensor has increased by an order of magnitude. Additionally, smartphone-assisted colorimetric analysis enabled point-of-care detection of E. coli O157:H7 in real samples. The developed sensing platform based on a "noise purifier" provides a promising method for ultrasensitive on-site testing of trace pathogenic bacteria in various foodstuffs.
Collapse
Affiliation(s)
- Lulu Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuwei Ren
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuwei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinyu Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Qingping Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
5
|
Zhao J, Wang Z, Yang M, Guo J, Gao Z, Song P, Song YY. Pore-Forming Toxin-Driven Recovery of Peroxidase-Mimicking Activity in Biomass Channels for Label-Free Electrochemical Bacteria Sensing. Anal Chem 2024; 96:7661-7668. [PMID: 38687969 DOI: 10.1021/acs.analchem.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The development of sensitive, selective, and rapid methods to detect bacteria in complex media is essential to ensuring human health. Virulence factors, particularly pore-forming toxins (PFTs) secreted by pathogenic bacteria, play a crucial role in bacterial diseases and serve as indicators of disease severity. In this study, a nanochannel-based label-free electrochemical sensing platform was developed for the detection of specific pathogenic bacteria based on their secreted PFTs. In this design, wood substrate channels were functionalized with a Fe-based metal-organic framework (FeMOF) and then protected with a layer of phosphatidylcholine (PC)-based phospholipid membrane (PM) that serves as a peroxidase mimetic and a channel gatekeeper, respectively. Using Staphylococcus aureus (S. aureus) as the model bacteria, the PC-specific PFTs secreted by S. aureus perforate the PM layer. Now exposed to the FeMOF, uncharged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) molecules in the electrolyte undergo oxidation to cationic products (ABTS•+). The measured transmembrane ionic current indicates the presence of S. aureus and methicillin-resistant S. aureus (MRSA) with a low detection limit of 3 cfu mL-1. Besides excellent specificity, this sensing approach exhibits satisfactory performance for the detection of target bacteria in the complex media of food.
Collapse
Affiliation(s)
- Junjian Zhao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Zirui Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Mei Yang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Junli Guo
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, China
| | - Zhida Gao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Pei Song
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Yan-Yan Song
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| |
Collapse
|
6
|
Wang W, Yin Y, Gunasekaran S. Gold nanoparticles-doped MXene heterostructure for ultrasensitive electrochemical detection of fumonisin B1 and ampicillin. Mikrochim Acta 2024; 191:294. [PMID: 38698253 DOI: 10.1007/s00604-024-06369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Early transition metal carbides (MXene) hybridized by precious metals open a door for innovative electrochemical biosensing device design. Herein, we present a facile one-pot synthesis of gold nanoparticles (AuNPs)-doped two-dimensional (2D) titanium carbide MXene nanoflakes (Ti3C2Tx/Au). Ti3C2Tx MXene exhibits high electrical conductivity and yields synergistic signal amplification in conjunction with AuNPs leading to excellent electrochemical performance. Thus Ti3C2Tx/Au hybrid nanostructure can be used as an electrode platform for the electrochemical analysis of various targets. We used screen-printed electrodes modified with the Ti3C2Tx/Au electrode and functionalized with different biorecognition elements to detect and quantify an antibiotic, ampicillin (AMP), and a mycotoxin, fumonisin B1 (FB1). The ultralow limits of detection of 2.284 pM and 1.617 pg.mL-1, which we achieved respectively for AMP and FB1 are far lower than their corresponding maximum residue limits of 2.8 nM in milk and 2 to 4 mg kg-1 in corn products for human consumption set by the United States Food and Drug Administration. Additionally, the linear range of detection and quantification of AMP and FB1 were, respectively, 10 pM to 500 nM and 10 pg mL-1 to 1 µg mL-1. The unique structure and excellent electrochemical performance of Ti3C2Tx/Au nanocomposite suggest that it is highly suitable for anchoring biorecognition entities such as antibodies and oligonucleotides for monitoring various deleterious contaminants in agri-food products.
Collapse
Affiliation(s)
- Weizheng Wang
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, USA
| | - Yaoqi Yin
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, USA
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, USA.
| |
Collapse
|
7
|
Melo RLF, Neto FS, Dari DN, Fernandes BCC, Freire TM, Fechine PBA, Soares JM, Dos Santos JCS. A comprehensive review on enzyme-based biosensors: Advanced analysis and emerging applications in nanomaterial-enzyme linkage. Int J Biol Macromol 2024; 264:130817. [PMID: 38479669 DOI: 10.1016/j.ijbiomac.2024.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Biosensors with nanomaterials and enzymes detect and quantify specific targets in samples, converting recognition into measurable signals. The study explores the intrinsic synergy between these elements for detecting and quantifying particular targets in biological and environmental samples, with results demonstrated through bibliometric analysis and a comprehensive review of enzyme-based biosensors. Using WoS, 57,331 articles were analyzed and refined to 880. Key journals, countries, institutions, and relevant authors were identified. The main areas highlighted the multidisciplinary nature of the field, and critical keywords identified five thematic clusters, revealing the primary nanoparticles used (CNTs, graphene, AuNPs), major application fields, basic application themes, and niche topics such as sensitive detection, peroxidase activity, and quantum dot utilization. The biosensor overview covered nanomaterials and their primary applications, addressing recent advances and inherent challenges. Patent analysis emphasized the U.S. leadership in the industrial sector, contrasting with China's academic prominence. Future studies should focus on enhancing biosensor portability and analysis speed, with challenges encompassing efficient integration with recent technologies and improving stability and reproducibility in the nanomaterial-enzyme interaction.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, CEP 60440-554 Fortaleza, CE, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, CEP 60455-760 Fortaleza, CE, Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró CEP 59625-900, RN, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró CEP 59610-090, RN, Brazil.
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil.
| |
Collapse
|
8
|
Ma S, Zhao W, Liu X, Li Y, Ma P, Zhang K, Zhang Q. A novel microfluidic chip integrating with microcolumn array electrodes for rapid and ultrasensitive detection of alpha-fetoprotein. Anal Chim Acta 2024; 1291:342240. [PMID: 38280786 DOI: 10.1016/j.aca.2024.342240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Cancer posed a serious threat to human health, and early diagnosis of cancer biomarker was extremely important for the treatment and control of cancer. Electrochemistry-based assays were low-cost, responsive and easy to operate, but there were some challenges in terms of accuracy, detection limit, efficiency and portability. The combination of microfluidic devices and electrochemical methods was expected to construct a high-performance sensing platform, but long-time antigen-antibody incubation was still required. Therefore, a novel microfluidic chip needs to be developed, which has the advantages of good portability, short incubation time, high accuracy, low detection limit and great application to point-of-care testing. RESULTS A microfluidic sensor based on microcolumn array electrodes was developed, in which microcolumns could create local mixed flow to reduce the incubation time of target molecules and enhance their interaction with the sensing interface. Besides, three dimensional Mxene fibers-gold nanoparticles (3D MF-Au) was modified on the microcolumn array electrodes to increase active sites and provide more electrolyte shuttle holes. The electrolyte turbulence caused by the microcolumn array electrodes could heighten the contact between the target molecules and sensing interface and accelerate the transfer of redox pairs, thus reducing the incubation time of the target molecules and improving the electrochemical responses in synergy with the 3D MF-Au. Herein, the detection of AFP was chosen as a model, and the microfluidic sensor possessed superior performance for analysis of AFP in the range of 0.1 pg mL-1 - 200 ng mL-1 with a low detection limit (LOD) of 0.0648 pg mL-1. SIGNIFICANCE This microfluidic chip integrating with microcolumn array electrodes has been successfully implemented to detect AFP in human serum, and the results were consistent with that of electrochemical chemiluminescence method. The microfluidic chip provided a new strategy of portability, shortening incubation time and enhancing electrical signals for antigen detection of real samples, which showed great utilization potentiality in point-of-care testing.
Collapse
Affiliation(s)
- Shangshang Ma
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou, 221100, China; Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Wei Zhao
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou, 221100, China.
| | - Xutang Liu
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou, 221100, China
| | - Yifan Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Ping Ma
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Keying Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Qing Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China.
| |
Collapse
|
9
|
Lee IC, Li YCE, Thomas JL, Lee MH, Lin HY. Recent advances using MXenes in biomedical applications. MATERIALS HORIZONS 2024; 11:876-902. [PMID: 38175543 DOI: 10.1039/d3mh01588b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An MXene is a novel two-dimensional transition metal carbide or nitride, with a typical formula of Mn+1XnTx (M = transition metals, X = carbon or nitrogen, and T = functional groups). MXenes have found wide application in biomedicine and biosensing, owing to their high biocompatibility, abundant reactive surface groups, good conductivity, and photothermal properties. Applications include photo- and electrochemical sensors, energy storage, and electronics. This review will highlight recent applications of MXene and MXene-derived materials in drug delivery, tissue engineering, antimicrobial activity, and biosensors (optical and electrochemical). We further elaborate on recent developments in utilizing MXenes for photothermal cancer therapy, and we explore multimodal treatments, including the integration of chemotherapeutic agents or magnetic nanoparticles for enhanced therapeutic efficacy. The high surface area and reactivity of MXenes provide an interface to respond to the changes in the environment, allowing MXene-based drug carriers to respond to changes in pH, reactive oxygen species (ROS), and electrical signals for controlled release applications. Furthermore, the conductivity of MXene enables it to provide electrical stimulation for cultured cells and endows it with photocatalytic capabilities that can be used in antibiotic applications. Wearable and in situ sensors incorporating MXenes are also included. Major challenges and future development directions of MXenes in biomedical applications are also discussed. The remarkable properties of MXenes will undoubtedly lead to their increasing use in the applications discussed here, as well as many others.
Collapse
Affiliation(s)
- I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung, 40724, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, 700, Kaohsiung University Rd., Nan-Tzu District, Kaohsiung 81148, Taiwan.
| |
Collapse
|
10
|
Li M, Liu S, Guo S, Liang D, Li M, Zhu Y, Zhao L, Lee JH, Zhao G, Ma Y, Liu Y. Selective purification and rapid quantitative detection of spores using a "stepped" magnetic flow device. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:284-292. [PMID: 38113049 DOI: 10.1039/d3ay01956j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A study on the inactivation and germination mechanism of spores is very important in the application of spores, as such high-purity spores are the basis of related research. However, spores and vegetative cells of bacteria often coexist, and it is difficult to separate them. In this study, a magnetic flow device for the purification of spores in the culture medium system was developed based on a "stepped" structure with a magnetic force that could absorb vegetative cells with magnetic nanoparticles. The operation process was as follows: first, vancomycin functionalized nanoparticles were used to prepare Van-Fe3O4 NPs, which were then combined with vegetative cells to form a magnetic conjugate. Subsequently, the magnetic conjugate (vegetative cells) flowed through the "stepped" magnetic flow device and was adsorbed. Meanwhile, the spores moved through the channel and were collected. The achieved purity of the collected spores was more than 95%. Further, the number of the obtained spores was quickly quantified using Raman spectroscopy. The entire purification and quantitative process can be completed within 30 min and the limit of detection was 5 CFU mL-1. This study showed outstanding spore purification ability and provided a new method for purification and rapid quantitative detection of spores.
Collapse
Affiliation(s)
- Mengya Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Shijie Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Shiliang Guo
- Henan Shuanghui Investment & Development Co., Ltd., Luohe, 462000, P. R. China
| | - Dong Liang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Yaodi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Lijun Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Yangyang Ma
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Yanxia Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| |
Collapse
|
11
|
Sun X, Shan Y, Jian M, Wang Z. A Multichannel Fluorescence Isothermal Amplification Device with Integrated Internet of Medical Things for Rapid Sensing of Pathogens through Deep Learning. Anal Chem 2023; 95:15146-15152. [PMID: 37733965 DOI: 10.1021/acs.analchem.3c02973] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The landscape of diagnostic assessments has experienced a paradigm shift driven by the advent of isothermal amplification techniques on point-of-care testing (POCT). The development of compact, portable isothermal amplification devices further emphasizes their transformative influence on diagnostic approaches. However, in prioritizing portability, these devices may exhibit limitations in functionality, rendering them less effective in addressing urgent public health emergencies during sudden pathogen outbreaks. In this paper, an efficient isothermal fluorescence amplification device has been fabricated for the rapid detection of pathogens during public health crises. The device features multichannel capability for simultaneous detection of various targets, integrates with the Internet of Medical Things (IoMT) for remote control and data uploading, and includes a deep learning-based batch processing system for rapid (9.4 ms) and accurate discrimination of pathogen type with excellent accuracy. The device has been successfully employed to simultaneously detect Staphylococcus aureus (SA) and methicillin-resistant Staphylococcus aureus (MRSA) with limits of detection (LODs) of 18 CFU/mL (SA) and 20 CFU/mL (MRSA) within 35 min by multiplex RPA assay and CRISPR/Cas12a-mediated nucleic acid detection assay.
Collapse
Affiliation(s)
- Xudong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yongjie Shan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
12
|
Xiao F, Li W, Wang Z, Xu Q, Song Y, Huang J, Bai X, Xu H. Smartphone-assisted biosensor based on broom-like bacteria-specific magnetic enrichment platform for colorimetric detection of Listeria monocytogenes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132250. [PMID: 37567141 DOI: 10.1016/j.jhazmat.2023.132250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
Pathogenic bacteria contamination poses a major threat to human health. The detection of low-abundance bacteria in complex samples has always been a knotty problem, and high-sensitivity bacterial detection remains challenging. In this work, a novel magnetic platform with high enrichment efficiency for L. monocytogenes was developed. The magnetic platform was designed by branched polyglutamic acid-mediated indirect coupling of cefepime on magnetic nanoparticles (Cefe-PGA-MNPs), and the specific enrichment of low-abundance L. monocytogenes in real samples was achieved by an external magnet, with a capture efficiency over 90%. A controllable and highly active platinum-palladium nanozyme was synthesized and further introduced in the magnetic nanoplatform for the construction of enzymatic colorimetric biosensor. The total detection time for L. monocytogenes was within 100 min. The colorimetric signals generated by labelled nanozyme were corresponding to different concentrations of L. monocytogenes, with a limit of detection (LOD) of 3.1 × 101 CFU/mL, and high reliability and accuracy (with a recovery rate ranging from 96.5% to 116.4%) in the test of real samples. The concept of the developed method is applicable to various fields of biosensing that rely on magnetic separation platforms.
Collapse
Affiliation(s)
- Fangbin Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Weiqiang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Zhixing Wang
- Zhejiang Rural Commercial Digital Technology Co., Ltd., Hangzhou 310016, PR China
| | - Qian Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Yang Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Jin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Xuekun Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|