1
|
Chen X, Lu X, Zhao R, Su G, Meng J, Li Q, Hua Y, Shi B. Occurrence and risks of PPCPs of a typical mountainous region: Implications for sustainable urban water systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175714. [PMID: 39181247 DOI: 10.1016/j.scitotenv.2024.175714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Urban wastewater treatment plants (WWTPs) and drinking water treatment plants (DWTPs) play vital roles in the urban water cycle, ensuring access to safe drinking water and maintaining aquatic ecosystems. This study comprehensively assessed the occurrence and risks of pharmaceuticals and personal care products (PPCPs) in urban WWTPs and DWTPs. Our findings revealed widespread PPCPs presence, with concentrations ranging from <1 ng/L to several thousand ng/L. Significant regional disparities in occurrence and composition were observed linked to population types and economic structures. Furthermore, strong correlations were observed between DWTPs and WWTPs indicating consistent transport and transformation patterns of PPCPs within the urban water cycle. Approximately two-thirds of PPCPs were degraded post-WWTP treatment, with about one-tenth persisting in drinking water following surface water dilution and purification processes. Thus, we suggested that controlling the total concentration of the five priority PPCPs in the effluent from the WWTP to <1100 ng/L have potential to reduce the environmental and health risk of PPCPs. Additionally, this research identified influential water quality parameters, such as pH, dissolved oxygen, and temperature, through redundancy analysis. This research underscores the importance of establishing emission standards to mitigate PPCP-related risks and supports sustainable urban water system advancement.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Xiaofei Lu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Renxin Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Guijin Su
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yukang Hua
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Kavianpour B, Piadeh F, Gheibi M, Ardakanian A, Behzadian K, Campos LC. Applications of artificial intelligence for chemical analysis and monitoring of pharmaceutical and personal care products in water and wastewater: A review. CHEMOSPHERE 2024; 368:143692. [PMID: 39515544 DOI: 10.1016/j.chemosphere.2024.143692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Specifying and interpreting the occurrence of emerging pollutants is essential for assessing treatment processes and plants, conducting wastewater-based epidemiology, and advancing environmental toxicology research. In recent years, artificial intelligence (AI) has been increasingly applied to enhance chemical analysis and monitoring of contaminants in environmental water and wastewater. However, their specific roles targeting pharmaceuticals and personal care products (PPCPs) have not been reviewed sufficiently. This review aims to narrow the gap by highlighting, scoping, and discussing the incorporation of AI during the detection and quantification of PPCPs when utilising chemical analysis equipment and interpreting their monitoring data for the first time. In the chemical analysis of PPCPs, AI-assisted prediction of chromatographic retention times and collision cross-sections (CCS) in suspect and non-target screenings using high-resolution mass spectrometry (HRMS) enhances detection confidence, reduces analysis time, and lowers costs. AI also aids in interpreting spectroscopic analysis results. However, this approach still cannot be applied in all matrices, as it offers lower sensitivity than liquid chromatography coupled with tandem or HRMS. For the interpretation of monitoring of PPCPs, unsupervised AI methods have recently presented the capacity to survey regional or national community health and socioeconomic factors. Nevertheless, as a challenge, long-term monitoring data sources are not given in the literature, and more comparative AI studies are needed for both chemical analysis and monitoring. Finally, AI assistance anticipates more frequent applications of CCS prediction to enhance detection confidence and the use of AI methods in data processing for wastewater-based epidemiology and community health surveillance.
Collapse
Affiliation(s)
- Babak Kavianpour
- School of Computing and Engineering, University of West London, St Mary's Rd, London W5 5RF, UK
| | - Farzad Piadeh
- School of Computing and Engineering, University of West London, St Mary's Rd, London W5 5RF, UK; Centre for Engineering Research, School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Mohammad Gheibi
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 46117, Liberec, Czech Republic
| | - Atiyeh Ardakanian
- School of Computing and Engineering, University of West London, St Mary's Rd, London W5 5RF, UK
| | - Kourosh Behzadian
- School of Computing and Engineering, University of West London, St Mary's Rd, London W5 5RF, UK; Centre for Urban Sustainability and Resilience, Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E6BT, UK.
| | - Luiza C Campos
- Centre for Urban Sustainability and Resilience, Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E6BT, UK
| |
Collapse
|
3
|
Li Z, Li J, Hu Y, Yan Y, Tang S, Ma R, Li L. Evaluation of pharmaceutical consumption between urban and suburban catchments in China by wastewater-based epidemiology. ENVIRONMENTAL RESEARCH 2024; 250:118544. [PMID: 38408630 DOI: 10.1016/j.envres.2024.118544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Wastewater-based epidemiology (WBE) is amply used for estimating human consumption of chemicals, yet information on regional variation of pharmaceuticals and their environmental fate are scarce. Thus, this study aims to estimate the consumption of three cardiovascular, four non-steroidal anti-inflammatory pharmaceuticals (NSAIDs), and four psychoactive pharmaceuticals between urban and suburban catchments in China by WBE, and to explore their removal efficiencies and ecological risks. Eleven analytes were detected in both influent and effluent samples. The estimated consumptions ranged from
Collapse
Affiliation(s)
- Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jincheng Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yongxia Hu
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yile Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|