1
|
Qualhato G, Cirqueira Dias F, Rocha TL. Hazardous effects of plastic microfibres from facial masks to aquatic animal health: Insights from zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175555. [PMID: 39168327 DOI: 10.1016/j.scitotenv.2024.175555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Facial masks are a source of plastic microfibres (PMFs) in the aquatic environment, an emerging risk factor for aquatic organisms. However, little is known concerning its impact during the early developmental stages of fish. Thus, the current study aimed to evaluate the potential interaction and developmental toxicity of PMFs derived from leachate of surgical masks (SC-Msk) and N-95 facial masks (N95-Msk) using a multi-biomarker approach in developing zebrafish (Danio rerio). PMFs from both facial masks were obtained and characterized by multiple techniques. Zebrafish embryos were exposed to environmentally relevant concentrations of PMFs from both facial masks (1000, 10,000, and 100,000 particle L-1), and the toxicity was analysed in terms of mortality, hatching rate, neurotoxicity, cardiotoxicity, morphological changes, reactive oxygen species (ROS) levels, cell viability, and behavioural impairments. The results showed that both facial masks can release PMFs, but the N95-Msk produced a higher concentration of PMFs than SC-Msk. Both PMFs can interact with zebrafish chorion and don't cause effects on embryo mortality and hatching; however, zebrafish embryos showed cardiotoxic effects, and larvae showed increased agitation, average speed, and distance travelled, indicating the behavioural impairments induced by PMFs derived from facial masks. Overall, results showed the risk of PMFs to the health of freshwater fish, indicating the need for greater attention to the disposal and ecotoxicological effects of facial masks on aquatic organisms.
Collapse
Affiliation(s)
- Gabriel Qualhato
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
2
|
Krebs T, Bauer J, Graff S, Teich L, Sterneberg M, Gebert M, Seibel H, Seeger B, Steinhagen D, Jung-Schroers V, Adamek M. Use of cardiac cell cultures from salmonids to measure the cardiotoxic effect of environmental pollutants. JOURNAL OF FISH DISEASES 2024:e14018. [PMID: 39343838 DOI: 10.1111/jfd.14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
Environmental stressors such as micro- and nanosized plastic particles (MNPs) or crude oil have a detrimental effect on aquatic animals; however, the impact upon the cardiovascular system of fish remains relatively under-researched. This study presents a novel approach for investigating the effect of crude oil and MNPs on the cardiac system of fish. We used salmonid larvae and cardiac cell cultures derived from hearts of salmonid fish and exposed them to environmental stressors. Following exposure to plastic particles or crude oil, the larvae exhibited some variation in contraction rate. In contrast, significant alterations in the contraction rate were observed in all cardiac cell cultures. The greatest differences between the control and treatment groups were observed in cardiac cell cultures derived from older brown trout. Following 7 days of exposure to MNPs or crude oil in Atlantic salmon larval hearts or cardiac cell cultures, there were only minor responses noted in mRNA expression of the selected marker genes. These findings show the use of a novel in vitro technique contributing to the existing body of knowledge on the impact of MNPs and crude oil on the cardiovascular system of salmonids and the associated risk.
Collapse
Affiliation(s)
- Torben Krebs
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Julia Bauer
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sarah Graff
- Working Group Fish Health and Welfare, Section Aquaculture and Aquatic Resources, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Lübeck, Germany
| | - Lukas Teich
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Markus Sterneberg
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marina Gebert
- Working Group Fish Health and Welfare, Section Aquaculture and Aquatic Resources, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Lübeck, Germany
| | - Henrike Seibel
- Working Group Fish Health and Welfare, Section Aquaculture and Aquatic Resources, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Lübeck, Germany
| | - Bettina Seeger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
3
|
Tian L, Zhang Y, Chen J, Liu X, Nie H, Li K, Liu H, Lai W, Shi Y, Xi Z, Lin B. Effects of nanoplastic exposure during pregnancy and lactation on neurodevelopment of rat offspring. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134800. [PMID: 38850955 DOI: 10.1016/j.jhazmat.2024.134800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Microplastics have emerged as a prominent global environmental contaminant, and they have been found in both human placenta and breast milk. However, the potential effects and mechanisms of maternal exposure to microplastics at various gestational stages on offspring neurodevelopment remain poorly understood. This investigation delves into the potential neurodevelopmental ramifications of maternal exposure to polystyrene nanoplastics (PS-NPs) during distinct phases of pregnancy and lactation. Targeted metabolomics shows that co-exposure during both pregnancy and lactation primarily engendered alterations in monoamine neurotransmitters within the cortex and amino acid neurotransmitters within the hippocampus. After prenatal exposure to PS-NPs, fetal rats showed appreciably diminished cortical thickness and heightened cortical cell proliferation. However, this exposure did not affect the neurodifferentiation of radial glial cells and intermediate progenitor cells. In addition, offspring are accompanied by disordered neocortical migration, typified by escalated superficial layer neurons proliferation and reduced deep layer neurons populations. Moreover, the hippocampal synapses showed significantly widened synaptic clefts and diminished postsynaptic density. Consequently, PS-NPs culminated in deficits in anxiolytic-like behaviors and spatial memory in adolescent offspring, aligning with concurrent neurotransmitter and synaptic alterations. In conclusion, this study elucidates the sensitive windows of early-life nanoplastic exposure and the consequential impact on offspring neurodevelopment.
Collapse
Affiliation(s)
- Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yaping Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Public Health and Management, Binzhou Medical University, Yantai 264003, China
| | - Jiang Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Public Health, North China University of Science and Technology, Tangshan 063200, China
| | - Xuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huipeng Nie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
4
|
Huang W, Mo J, Li J, Wu K. Exploring developmental toxicity of microplastics and nanoplastics (MNPS): Insights from investigations using zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173012. [PMID: 38719038 DOI: 10.1016/j.scitotenv.2024.173012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Microplastics and nanoplastics (MNPs) have received increasing attention due to their high detection rates in human matrices and adverse health implications. However, the toxicity of MNPs on embryo/fetal development following maternal exposure remains largely unexplored. Zebrafish, sharing genetic similarities with human, boast a shorter life cycle, rapid embryonic development, and the availability of many transgenic strains, is a suitable model for environmental toxicology studies. This review comprehensively explores the existing research on the impacts of MNPs on zebrafish embryo development. MNPs exposure induces a wide array of toxic effects, encompassing neurodevelopmental toxicity, immunotoxicity, gastrointestinal effects, microbiota dysbiosis, cardiac dysfunctions, vascular toxicity, and metabolic imbalances. Moreover, MNPs disrupt the balance between reactive oxygen species (ROS) production and antioxidant capacity, culminating in oxidative damage and apoptosis. This study also offers insight into the current omics- and multi-omics based approaches in MNPs research, which greatly expedite the discovery of biochemical or metabolic pathways, and molecular mechanisms underlying MNPs exposure. Additionally, this review proposes a preliminary adverse outcome pathway framework to predict developmental toxicity caused by MNPs. It provides a comprehensive overview of pathways, facilitating a clearer understanding of the exposure and toxicity of MNPs, from molecular effects to adverse outcomes. The compiled data in this review provide a better understanding for MNPs effects on early life development, with the goal of increasing awareness about the risks posed to pregnant women by MNPs exposure and its potential impact on the health of their future generations.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, People's Republic of China.
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, People's Republic of China
| | - Jiejie Li
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, People's Republic of China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, People's Republic of China
| |
Collapse
|
5
|
Li H, Liu H, Bi L, Liu Y, Jin L, Peng R. Immunotoxicity of microplastics in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109619. [PMID: 38735599 DOI: 10.1016/j.fsi.2024.109619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Plastic waste degrades slowly in aquatic environments, transforming into microplastics (MPs) and nanoplastics (NPs), which are subsequently ingested by fish and other aquatic organisms, causing both physical blockages and chemical toxicity. The fish immune system serves as a crucial defense against viruses and pollutants present in water. It is imperative to comprehend the detrimental effects of MPs on the fish immune system and conduct further research on immunological assessments. In this paper, the immune response and immunotoxicity of MPs and its combination with environmental pollutants on fish were reviewed. MPs not only inflict physical harm on the natural defense barriers like fish gills and vital immune organs such as the liver and intestinal tract but also penetrate cells, disrupting intracellular signaling pathways, altering the levels of immune cytokines and gene expression, perturbing immune homeostasis, and ultimately compromising specific immunity. Initially, fish exposed to MPs recruit a significant number of macrophages and T cells while activating lysosomes. Over time, this exposure leads to apoptosis of immune cells, a decline in lysosomal degradation capacity, lysosomal activity, and complement levels. MPs possess a small specific surface area and can efficiently bind with heavy metals, organic pollutants, and viruses, enhancing immune responses. Hence, there is a need for comprehensive studies on the shape, size, additives released from MPs, along with their immunotoxic effects and mechanisms in conjunction with other pollutants and viruses. These studies aim to solidify existing knowledge and delineate future research directions concerning the immunotoxicity of MPs on fish, which has implications for human health.
Collapse
Affiliation(s)
- Huiqi Li
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huanpeng Liu
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Lv J, He Q, Yan Z, Xie Y, Wu Y, Li A, Zhang Y, Li J, Huang Z. Inhibitory Impact of Prenatal Exposure to Nano-Polystyrene Particles on the MAP2K6/p38 MAPK Axis Inducing Embryonic Developmental Abnormalities in Mice. TOXICS 2024; 12:370. [PMID: 38787149 PMCID: PMC11125576 DOI: 10.3390/toxics12050370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Nanoplastics, created by the fragmentation of larger plastic debris, are a serious pollutant posing substantial environmental and health risks. Here, we developed a polystyrene nanoparticle (PS-NP) exposure model during mice pregnancy to explore their effects on embryonic development. We found that exposure to 30 nm PS-NPs during pregnancy resulted in reduced mice placental weight and abnormal embryonic development. Subsequently, our transcriptomic dissection unveiled differential expression in 102 genes under PS-NP exposure and the p38 MAPK pathway emerged as being significantly altered in KEGG pathway mapping. Our findings also included a reduction in the thickness of the trophoblastic layer in the placenta, diminished cell invasion capabilities, and an over-abundance of immature red cells in the blood vessels of the mice. In addition, we validated our findings through the human trophoblastic cell line, HTR-8/SVneo (HTR). PS-NPs induced a drop in the vitality and migration capacities of HTR cells and suppressed the p38 MAPK signaling pathway. This research highlights the embryotoxic effects of nanoplastics on mice, while the verification results from the HTR cells suggest that there could also be certain impacts on the human trophoblast layer, indicating a need for further exploration in this area.
Collapse
Affiliation(s)
- Junyi Lv
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Qing He
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Zixiang Yan
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Yuan Xie
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Yao Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Anqi Li
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Yuqing Zhang
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China;
| | - Jing Li
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Zhenyao Huang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| |
Collapse
|
7
|
Lee SE, Yoon HK, Kim DY, Jeong TS, Park YS. An Emerging Role of Micro- and Nanoplastics in Vascular Diseases. Life (Basel) 2024; 14:255. [PMID: 38398764 PMCID: PMC10890539 DOI: 10.3390/life14020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Vascular diseases are the leading causes of death worldwide, and they are attributable to multiple pathologies, such as atherosclerosis, diabetes, and chronic obstructive pulmonary disease. Exposure to various environmental contaminants is associated with the development of various diseases, including vascular diseases. Among environmental contaminants, micro- and nanoplastics have gained attention as global environmental risk factors that threaten human health. Recently, extensive research has been conducted on the effects of micro- and nanoplastics on various human diseases, including vascular diseases. In this review, we highlight the effects of micro- and nanoplastics on vascular diseases.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Kyung Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.Y.); (D.Y.K.); (T.S.J.)
| | - Do Yun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.Y.); (D.Y.K.); (T.S.J.)
| | - Taek Seung Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.Y.); (D.Y.K.); (T.S.J.)
| | - Yong Seek Park
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|