1
|
Zhao X, Huang S, Yao Q, He R, Wang H, Xu Z, Xing W, Liu D. ABA-regulated MAPK signaling pathway promotes hormesis in sugar beet under cadmium exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135968. [PMID: 39342845 DOI: 10.1016/j.jhazmat.2024.135968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Sugar beet (Beta vulgaris L.) shows potential as an energy crop for cadmium (Cd) phytoremediation. To elucidate its in vivo response strategy to Cd exposure, seedlings were treated with 1, 3, and 5 mmol/L CdCl2 (Cd-1, Cd-3, and Cd-5) for 6 h, using 0 mmol/L CdCl2 (Cd-0) as the control. The results showed that Cd-3 promoted a unique "hormesis" effect, leading to superior growth performance, increased levels of chlorophyll, soluble protein, and SOD activity, and reduced MDA content in sugar beet, compared to Cd-1, Cd-5, and even Cd-0. GO and KEGG enrichments and PPI networks of transcriptomic analysis revealed that the differentially expressed genes (DEGs) were primarily involved in lipid metabolism, cellular protein catabolism, and photosynthesis. Notably, the MAPK signaling pathway was significantly enriched only under Cd-3, with the up-regulation of ABA-related core gene BvPYL9 and an increase in ABA content after 6 h of Cd exposure. Furthermore, overexpression of BvPYL9 in Arabidopsis thaliana (OE-1 and OE-2) resulted in enhanced growth (fresh weight, dry weight, and root length), as well as higher ABA and soluble protein contents under different Cd treatments. Cd-induced transcriptional responses of BvPYL9 were also evident in OE-1 and OE-2, especially at 10 µmol/L, indicated by qRT-PCR. These findings suggest that ABA-mediated MAPK signaling pathway is activated in response to Cd toxicity, with BvPYL9 being a key factor in the cascade effects for the Cd-induced hormesis in sugar beet.
Collapse
Affiliation(s)
- Xiaoxin Zhao
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Key Laboratory of Beet Genetics and Breeding/College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Shuoqi Huang
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Qi Yao
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Rui He
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hao Wang
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Key Laboratory of Beet Genetics and Breeding/College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Zhaodan Xu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Key Laboratory of Beet Genetics and Breeding/College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Wang Xing
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Key Laboratory of Beet Genetics and Breeding/College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Dali Liu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Key Laboratory of Beet Genetics and Breeding/College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
2
|
Shirin J, Chen Y, Hussain Shah A, Da Y, Zhou G, Sun Q. Micro plastic driving changes in the soil microbes and lettuce growth under the influence of heavy metals contaminated soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1427166. [PMID: 39323532 PMCID: PMC11422782 DOI: 10.3389/fpls.2024.1427166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/27/2024]
Abstract
Microplastics (MPs) have garnered global attention as emerging contaminants due to their adaptability, durability, and robustness in various ecosystems. Still, studies concerning their combination with heavy metals (HMs), their interactions with soil biota, and how they affect soil physiochemical properties and terrestrial plant systems are limited. Our study was set to investigate the combined effect of HMs (cadmium, arsenic, copper, zinc and lead) contaminated soil of Tongling and different sizes (T1 = 106 µm, T2 = 50 µm, and T3 = 13 µm) of polystyrene microplastics on the soil physiochemical attributes, both bacterial and fungal diversity, compositions, AMF (arbuscular mycorrhizal fungi), plant pathogens in the soil, and their effect on Lactuca sativa by conducting a greenhouse experiment. According to our results, the combination of HMs and polystyrene microplastic (PS-MPs), especially the smaller PS-MPs (T3), was more lethal for the lettuce growth, microbes and soil. The toxicity of combined contaminants directly reduced the physio-biochemical attributes of lettuce, altered the lettuce's antioxidant activity and soil health. T3 at the final point led to a significant increase in bacterial and fungal diversity. In contrast, overall bacterial diversity was higher in the rhizosphere, and fungal diversity was higher in the bulk soil. Moreover, the decrease in MPs size played an important role in decreasing AMF and increasing both bacterial and fungal pathogens, especially in the rhizosphere soil. Functional prediction was found to be significantly different in the control treatment, with larger MPs compared to smaller PS-MPs. Environmental factors also played an important role in the alteration of the microbial community. This study also demonstrated that the varied distribution of microbial populations could be an ecological indicator for tracking the environmental health of soil. Overall, our work showed that the combination of HMs and smaller sizes of MPs was more lethal for the soil biota and lettuce and also raised many questions for further studying the ecological risk of PS-MPs and HMs.
Collapse
Affiliation(s)
- Jazbia Shirin
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Yongjing Chen
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Azhar Hussain Shah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Yanmei Da
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Guowei Zhou
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Qingye Sun
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| |
Collapse
|
3
|
Umair Hassan M, Huang G, Haider FU, Khan TA, Noor MA, Luo F, Zhou Q, Yang B, Ul Haq MI, Iqbal MM. Application of Zinc Oxide Nanoparticles to Mitigate Cadmium Toxicity: Mechanisms and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2024; 13:1706. [PMID: 38931138 PMCID: PMC11207998 DOI: 10.3390/plants13121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Cadmium (Cd), as the most prevalent heavy metal contaminant poses serious risks to plants, humans, and the environment. The ubiquity of this toxic metal is continuously increasing due to the rapid discharge of industrial and mining effluents and the excessive use of chemical fertilizers. Nanoparticles (NPs) have emerged as a novel strategy to alleviate Cd toxicity. Zinc oxide nanoparticles (ZnO-NPs) have become the most important NPs used to mitigate the toxicity of abiotic stresses and improve crop productivity. The plants quickly absorb Cd, which subsequently disrupts plant physiological and biochemical processes and increases the production of reactive oxygen species (ROS), which causes the oxidation of cellular structures and significant growth losses. Besides this, Cd toxicity also disrupts leaf osmotic pressure, nutrient uptake, membrane stability, chlorophyll synthesis, and enzyme activities, leading to a serious reduction in growth and biomass productivity. Though plants possess an excellent defense mechanism to counteract Cd toxicity, this is not enough to counter higher concentrations of Cd toxicity. Applying Zn-NPs has proven to have significant potential in mitigating the toxic effects of Cd. ZnO-NPs improve chlorophyll synthesis, photosynthetic efficiency, membrane stability, nutrient uptake, and gene expression, which can help to counter toxic effects of Cd stress. Additionally, ZnO-NPs also help to reduce Cd absorption and accumulation in plants, and the complex relationship between ZnO-NPs, osmolytes, hormones, and secondary metabolites plays an important role in Cd tolerance. Thus, this review concentrates on exploring the diverse mechanisms by which ZnO nanoparticles can alleviate Cd toxicity in plants. In the end, this review has identified various research gaps that need addressing to ensure the promising future of ZnO-NPs in mitigating Cd toxicity. The findings of this review contribute to gaining a deeper understanding of the role of ZnO-NPs in combating Cd toxicity to promote safer and sustainable crop production by remediating Cd-polluted soils. This also allows for the development of eco-friendly approaches to remediate Cd-polluted soils to improve soil fertility and environmental quality.
Collapse
Affiliation(s)
- Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | | | - Tahir Abbas Khan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | - Mehmood Ali Noor
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | - Fang Luo
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | - Quan Zhou
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | - Binjuan Yang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (T.A.K.); (M.A.N.); (F.L.); (Q.Z.); (B.Y.)
| | | | - Muhammad Mahmood Iqbal
- Agronomy (Forage Production) Section, Ayub Agricultural Research Institute, Faisalabad 38040, Pakistan;
| |
Collapse
|
4
|
Luo Y, Wang Z, Zhang YD, Zhang JQ, Zeng QP, Zhang ZL, Tian D, Li C, Peng CL, Ye K, Chen YM, Huang FY, Wang YP, Ma XY, Chen L. Vertical migration behavior simulation and prediction of Pb and Cd in co-contaminated soil around Pb-Zn smelting slag site. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133990. [PMID: 38460261 DOI: 10.1016/j.jhazmat.2024.133990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Heavy metal migration in soil poses a serious threat to the soil and groundwater. Understanding the migration pattern of heavy metals (HMs) under different factors could provide a more reasonable position for pollution evaluation and targetoriented treatment of soil heavy metal. In this study, the migration behavior of Pb and Cd in co-contaminated soil under different pH and ionic strength (NaCl concentration) was simulated using convective dispersion equation (CDE). We predicted the migration trends of Pb and Cd in soils after 5, 10, and 20 years via PHREEQC. The results showed that the migration time of Cd in the soil column experiment was about 60 days faster than that of Pb, and the migration trend was much steeper. The CDE was proved to describe the migration behavior of Pb and Cd (R2 > 0.75) in soil. The predicted results showed that Cd migrated to 15-20 cm of soil within 7 years and Pb stayed mainly in the top 0-6 cm of soil within 5 years as the duration of irrigation increased. Overall, our study is expected to provide new insight into the migration of heavy metal in soil ecosystems and guidance for reducing risk of heavy metal in the environment.
Collapse
Affiliation(s)
- Ying Luo
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China.
| | - Yong-De Zhang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China.
| | - Jia-Qian Zhang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Qiu-Ping Zeng
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Zhen-Long Zhang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Duan Tian
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Chao Li
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Chao-Liang Peng
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Kai Ye
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Yi-Ming Chen
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Feng-Yu Huang
- School of Environment and Resources, Xichang University, Xichang, Sichuan 615000, China
| | - Yu-Ping Wang
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan 644000, China
| | - Xiao-Ya Ma
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
5
|
Chen L, Chang N, Qiu T, Wang N, Cui Q, Zhao S, Huang F, Chen H, Zeng Y, Dong F, Fang L. Meta-analysis of impacts of microplastics on plant heavy metal(loid) accumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123787. [PMID: 38548159 DOI: 10.1016/j.envpol.2024.123787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
The co-occurrence of microplastics (MPs) and heavy metal(loid)s (HMs) has attracted growing scientific interest because of their wide distribution and environmental toxicity. Nevertheless, the interactions between MPs and HMs in soil-plant systems remain unclear. We conducted a meta-analysis with 3226 observations from 87 independent studies to quantify the impact of MPs addition on the plant biomass and HMS accumulation. Co-occurrence of MPs and HMs (except for As) induced synergistic toxicity to plant growth. MPs promoted their uptake in the shoot by 11.0% for Cd, 30.0% for Pb, and 47.1% for Cu, respectively. In contrast, MPs caused a significant decrease (22.6%, 17.9-26.9%) in the shoot As accumulation. The type and dose of MPs were correlated with the accumulation of HMs. MPs increased available concentrations of Cd, Pb, and Cu, but decreased available As concentration in soils. Meanwhile, MPs addition significantly lowered soil pH. These findings may provide explanations for MPs-mediated effects on influencing the accumulation of HMs in plants. Using a machine learning approach, we revealed that soil pH and total HMs concentration are the major contributors affecting their accumulation in shoot. Overall, our study indicated that MPs may increase the environmental risks of HMs in agroecosystems, especially metal cations.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Na Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Qingliang Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Shuling Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Fengyu Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Hansong Chen
- College of Xingzhi, Zhejiang Normal University, Jinhua, 321000, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Faqin Dong
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
6
|
Liu B, Zhao S, Qiu T, Cui Q, Yang Y, Li L, Chen J, Huang M, Zhan A, Fang L. Interaction of microplastics with heavy metals in soil: Mechanisms, influencing factors and biological effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170281. [PMID: 38272091 DOI: 10.1016/j.scitotenv.2024.170281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Microplastics (MPs) and heavy metals (HMs) in soil contamination are considered an emerging global problem that poses environmental and health risks. However, their interaction and potential biological effects remain unclear. Here, we reviewed the interaction of MPs with HMs in soil, including its mechanisms, influencing factors and biological effects. Specifically, the interactions between HMs and MPs mainly involve sorption and desorption. The type, aging, concentration, size of MPs, and the physicochemical properties of HMs and soil have significant impacts on the interaction. In particular, MP aging affects specific surface areas and functional groups. Due to the small size and resistance to decomposition characteristics of MPs, they are easily transported through the food chain and exhibit combined biological effects with HMs on soil organisms, thus accumulating in the human body. To comprehensively understand the effect of MPs and HMs in soil, we propose combining traditional experiments with emerging technologies and encouraging more coordinated efforts.
Collapse
Affiliation(s)
- Baiyan Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Huang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
| | - Ai Zhan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China.
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China.
| |
Collapse
|
7
|
Huang F, Li Z, Yang X, Liu H, Chen L, Chang N, He H, Zeng Y, Qiu T, Fang L. Silicon reduces toxicity and accumulation of arsenic and cadmium in cereal crops: A meta-analysis, mechanism, and perspective study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170663. [PMID: 38311087 DOI: 10.1016/j.scitotenv.2024.170663] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Arsenic (As) and cadmium (Cd) are two toxic metal(loid)s that pose significant risks to food security and human health. Silicon (Si) has attracted substantial attention because of its positive effects on alleviating the toxicity and accumulation of As and Cd in crops. However, our current knowledge of the comprehensive effects and detailed mechanisms of Si amendment is limited. In this study, a global meta-analysis of 248 original articles with over 7000 paired observations was conducted to evaluate Si-mediated effects on growth and As and Cd accumulation in rice (Oryza sativa L.), wheat (Triticum aestivum L.), and maize (Zea mays L.). Si application increases the biomass of these crops under As and/or Cd contamination. Si amendment also decreased shoot As and Cd accumulation by 24.1 % (20.6 to 27.5 %) and 31.9 % (29.0 to 31.9 %), respectively. Furthermore, the Si amendment reduced the human health risks posed by As (2.6 %) and Cd (12.9 %) in crop grains. Si-induced inhibition of Cd accumulation is associated with decreased Cd bioavailability and the downregulation of gene expression. The regulation of gene expression by Si addition was the driving factor limiting shoot As accumulation. Overall, our analysis demonstrated that Si amendment has great potential to reduce the toxicity and accumulation of As and/or Cd in crops, providing a scientific basis for promoting food safety globally.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zimin Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|