1
|
Wei Z, Jin Q, Liu W, Liu T, He K, Jin Z, Chen M, Jiang Y, Qian Y, Hong H, Zhang D, Liu Q, Yang Z, Li Q. Gliotoxin elicits immunotoxicity in the early innate immune system of ducks. Poult Sci 2024; 103:103717. [PMID: 38643746 PMCID: PMC11039318 DOI: 10.1016/j.psj.2024.103717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/17/2024] [Accepted: 03/31/2024] [Indexed: 04/23/2024] Open
Abstract
Gliotoxin (GT) belongs to the epipolythiodioxopiperazine (ETP) family, which is considered a crucial virulence determinant among the secondary metabolites produced by Aspergillus fumigatus. The metabolites are commonly found in food and feed, contributing to the invasion and immune escape of Aspergillus fumigatus, thereby posing a significant threat to the health of livestock, poultry, and humans. Heterophil extracellular traps (HETs), a novel form of innate immune defense, have been documented in the chicken's innate immune systems for capturing and eliminating invading microbes. However, the effects and mechanisms of GT on the production of duck HETs in vitro remain unknown. In this study, we first confirmed the presence of HETs in duck innate immune systems and further investigated the molecular mechanism underlying GT-induced HETs release. Our results demonstrate that GT can trigger typical release of HETs in duck. The structures of GT-induced HETs structures were characterized by DNA decoration, citrullinated histones 3, and elastase. Furthermore, NADPH oxidase, glycolysis, ERK1/2 and p38 signaling pathway were found to regulate GT-induced HETs. In summary, our findings reveal that gliotoxin activates HETs release in the early innate immune system of duck while providing new insights into the immunotoxicity of GT towards ducks.
Collapse
Affiliation(s)
- Zhengkai Wei
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China.
| | - Qinqin Jin
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Wei Liu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Tingting Liu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Kaifeng He
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China
| | - Zha Jin
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Meiyi Chen
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Yuqian Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Yuxiao Qian
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Hongrong Hong
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Dezhi Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China
| | - Quan Liu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Qianyong Li
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China
| |
Collapse
|
2
|
Kawahara A, Kanno K, Yonezawa S, Otani Y, Kobayashi T, Tazuma S, Ito M. Depletion of hepatic stellate cells inhibits hepatic steatosis in mice. J Gastroenterol Hepatol 2022; 37:1946-1954. [PMID: 35933582 DOI: 10.1111/jgh.15974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Hepatic stellate cells (HSCs), the main source of extracellular matrix in hepatic fibrogenesis, produce various cytokines, growth factors, and morphogenetic proteins. Among these, several factors are known to promote hepatocyte lipid accumulation, suggesting that HSCs can be efficient therapeutic targets for non-alcoholic steatohepatitis (NASH). This study aimed to investigate the effects of HSC depletion on the development of hepatic steatosis and fibrosis in a murine NASH model. METHODS C57BL/6 mice were treated with gliotoxin (GTX), an apoptosis inducer of activated HSCs under the feeding of a choline-deficient l-amino acid-defined high-fat diet for 4 weeks. For in vitro study, Hc3716 cells, immortalized human hepatocytes, were treated with fatty acids in the presence or absence of LX2, immortalized HSCs. RESULTS Choline-deficient l-amino acid-defined high-fat diet increased pronounced hepatic steatosis, which was attenuated by GTX treatment, together with a reduction in the number of activated HSCs. This change was associated with the downregulation of the peroxisome proliferator-activated receptor gamma (PPARγ) and its downstream genes, including adipocyte protein 2, cluster of differentiation 36 (CD36), and fatty acid transport protein 1, all of which increase the fatty acid uptake into hepatocytes. As expected, GTX treatment improved hepatic fibrosis. Co-culture of hepatocytes with HSCs enhanced intracellular lipid accumulation, together with the upregulation of PPARγ and CD36 protein expressions. CONCLUSIONS In addition to the improvement in hepatic fibrogenesis, depletion of HSCs had a favorable effect on hepatic lipid metabolism in a mouse NASH model, suggesting that HSCs are potentially efficient targets for the treatment of NASH.
Collapse
Affiliation(s)
- Akihiro Kawahara
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Keishi Kanno
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Sayaka Yonezawa
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuichiro Otani
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomoki Kobayashi
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Susumu Tazuma
- JA Onomichi General Hospital, Onomichi, Hiroshima, Japan
| | - Masanori Ito
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
3
|
Ye W, Li S, Liu S, Kong Y, Zhang W, Liu S, Liu T, Zhang W. Characterization of novel gliotoxin biosynthesis-related genes from deep-sea-derived fungus Geosmithia pallida FS140. Biochimie 2021; 191:1-10. [PMID: 34364944 DOI: 10.1016/j.biochi.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 11/15/2022]
Abstract
Gliotoxins are epipolythiodioxopiperazine toxins produced by the filamentous fungi, which show great potential in the treatment of liver and lung cancer because of its cytotoxicity. In this study, three novel genes related to gliotoxin biosynthesis, gliT, gliM and gliK encoding thioredoxin reductase, O-methyltransferase and gamma-glutamyl cyclotransferase, respectively, from the deep-sea-derived fungus Geosmithia pallida were cloned from G. pallida and expressed in Escherichia coli. The recombinant GliT, GliM and GliK proteins were expressed and purified by Ni affinity column, which was demonstrated by SDS-PAGE and Western blot analysis. The inclusion bodies of GliT were renatured and the corresponding enzymatic properties of the two enzymes were further investigated. Using DTNB as a substrate, GliT showed the highest enzymatic activity of 11041 mU/L at pH 7.0, and the optimal reaction temperature was 40 °C. Using EGCG as a substrate, GliM showed the highest enzymatic activity of 239.19 mU/mg at pH 7.0, the optimum temperature was 35 °C. GliK from G. pallida was firstly reported to show bi-function of glutymal cyclotransferase and acetyltransfearse actvity with highest enzymatic activity of 615.5 U/mg in this study. The results suggested the important enzymatic function of GliT, GliM and GliK in the gliotoxin biosynthesis in G. pallida, which would lay a foundation for the mechanism elucidation of the gliotoxin biosynthesis in G. pallida and the exploitation of novel gliotoxin derivaties.
Collapse
Affiliation(s)
- Wei Ye
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Saini Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Shuai Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Yali Kong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Weiyang Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Shan Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Taomei Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Weimin Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China.
| |
Collapse
|
4
|
Abstract
The fungal metabolite sporidesmin is responsible for the hepatogenous photosensitising disease facial eczema in livestock. Toxicity is due to a sulfur-bridged epidithiodioxopiperazine ring that has wide biological reactivity. The ways in which the toxin causes hepatobiliary and other tissue damage have not been established. Hypotheses include direct interaction with cellular thiols including protein cysteine residues or production of reactive oxygen species resulting in oxidative stress. Comparison with the cellular effects of the structurally related compound gliotoxin suggests additional mechanisms including interaction with cell adhesion complexes and possible downstream consequences for regulated necrosis as a response to tissue injury. Revision of hypotheses of how sporidesmin affects cells has the potential to generate new strategies for control of facial eczema including through identification of proteins and genes that are associated with resistance to the disease.
Collapse
Affiliation(s)
- T W Jordan
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
5
|
Gliotoxin Aggravates Experimental Autoimmune Encephalomyelitis by Triggering Neuroinflammation. Toxins (Basel) 2019; 11:toxins11080443. [PMID: 31357414 PMCID: PMC6722733 DOI: 10.3390/toxins11080443] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022] Open
Abstract
Gliotoxin (GTX) is the major and the most potent mycotoxin that is secreted by Aspergillus fumigatus, which is capable of injuring and killing microglial cells, astrocytes, and oligodendrocytes. During the last years, studies with patients and experimental models of multiple sclerosis (MS), which is an autoimmune disease of the central nervous system (CNS), suggested that fungal infections are among the possible initiators or aggravators of this pathology. The deleterious effect can occur through a direct interaction of the fungus with the CNS or by the toxin release from a non-neurological site. In the present work, we investigated the effect of GTX on experimental autoimmune encephalomyelitis (EAE) development. Female C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein and then intraperitoneally injected with three doses of GTX (1 mg/kg b.w., each) on days 4, 7, and 10. GTX aggravated clinical symptoms of the disease in a dose-dependent way and this outcome was concomitant with an increased neuroinflammation. CNS analyses revealed that GTX locally increased the relative expression of inflammatory genes and the cytokine production. Our results indicate that GTX administered in a non-neuronal site was able to increase neuroinflammation in EAE. Other mycotoxins could also be deleterious to many neurological diseases by similar mechanisms.
Collapse
|
6
|
Takahashi T, Yoshioka M, Uchinami H, Nakagawa Y, Otsuka N, Motoyama S, Yamamoto Y. Hepatic Stellate Cells Play a Functional Role in Exacerbating Ischemia-Reperfusion Injury in Rat Liver. Eur Surg Res 2019; 60:74-85. [PMID: 31132769 DOI: 10.1159/000499750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 03/20/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE The involvement of hepatic stellate cells (HSCs) with ischemia-reperfusion (I/R) injury in rat liver was examined using gliotoxin, which is known to induce HSC apoptosis. METHODS Male Sprague-Dawley rats were used. HSC was represented by a glial fibrillary acidic protein (GFAP)-positive cell. Liver ischemia was produced by cross-clamping the hepatoduodenal ligament. The degree of I/R injury was evaluated by a release of aminotransferases. Sinusoidal diameter and sinusoidal perfusion rates were examined using intravital fluorescence microscopy. RESULTS Gliotoxin significantly decreased the number of GFAP-positive cells 48 h after dosing (2.50 ± 0.19% [mean ± SD] in the nontreated group vs. 1.91 ± 0.46% in the gliotoxin-treated group). Liver damage was significantly suppressed by the pretreatment with gliotoxin. Sinusoidal diameters in zone 3 were wider in the gliotoxin group (10.25 ± 0.35 µm) than in the nontreated group (8.21 ± 0.50 µm). The sinusoidal perfusion rate was maintained as well in the gliotoxin group as in normal livers, even after I/R. CONCLUSIONS Pretreatment with gliotoxin significantly reduced the number of HSCs in the liver and further suppressed liver injury following I/R. It is strongly suggested that HSCs play a functional role in exacerbating the degree of I/R injury of the liver.
Collapse
Affiliation(s)
- Tomokazu Takahashi
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Masato Yoshioka
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan,
| | - Hiroshi Uchinami
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yasuhiko Nakagawa
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Naohiko Otsuka
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Satoru Motoyama
- Department of Comprehensive Cancer Control, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuzo Yamamoto
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
7
|
Role of hepatic stellate cell (HSC)-derived cytokines in hepatic inflammation and immunity. Cytokine 2018; 124:154542. [PMID: 30241896 DOI: 10.1016/j.cyto.2018.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/01/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Abstract
In their quiescent state, Hepatic stellate cells (HSCs), are present in the sub-endothelial space of Disse and have minimal interaction with immune cells. However, upon activation following injury, HSCs directly or indirectly interact with various immune cells that enter the space of Disse and thereby regulate diverse hepatic function and immune physiology. Other than the normal physiological functions of HSCs such as hepatic homeostasis, maturation and differentiation, they also participate in hepatic inflammation by releasing a battery of inflammatory cytokines and chemokines and interacting with other liver cells. Here, we have reviewed the role of HSC in the pathogenesis of liver inflammation and some infectious diseases in order to understand how the interplay between immune cells and HSCs regulates the overall outcome and disease pathology.
Collapse
|
8
|
Bossou YM, Serssar Y, Allou A, Vitry S, Momas I, Seta N, Menotti J, Achard S. Impact of Mycotoxins Secreted by Aspergillus Molds on the Inflammatory Response of Human Corneal Epithelial Cells. Toxins (Basel) 2017. [PMID: 28640227 PMCID: PMC5535144 DOI: 10.3390/toxins9070197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exposure to molds and mycotoxins not only contributes to the onset of respiratory disease, it also affects the ocular surface. Very few published studies concern the evaluation of the effect of mycotoxin exposure on ocular cells. The present study investigates the effects of aflatoxin B1 (AFB1) and gliotoxin, two mycotoxins secreted by Aspergillus molds, on the biological activity of the human corneal epithelial (HCE) cells. After 24, 48, and 72 h of exposure, cellular viability and inflammatory response were assessed. Both endpoint cell viability colorimetric assays and continuous cell impedance measurements, providing noninvasive real-time assessment of the effect on cells, were performed. Cytokine gene expression and interleukin-8 release were quantified. Gliotoxin appeared more cytotoxic than AFB1 but, at the same time, led to a lower increase of the inflammatory response reflecting its immunosuppressive properties. Real-time cell impedance measurement showed a distinct profile of cytotoxicity for both mycotoxins. HCE cells appeared to be a well-suited in vitro model to study ocular surface reactivity following biological contaminant exposure. Low, but persistent inflammation, caused by environmental factors, such as fungal toxins, leads to irritation and sensitization, and could be responsible for allergic manifestations which, in turn, could lead to mucosal hyper-reactivity.
Collapse
Affiliation(s)
- Yélian Marc Bossou
- Environmental Epidemiology Unit, Paris-Descartes University, Sorbonne Paris Cité, EA 4064, 75006 Paris, France.
| | - Youssra Serssar
- Environmental Epidemiology Unit, Paris-Descartes University, Sorbonne Paris Cité, EA 4064, 75006 Paris, France.
| | - Amel Allou
- Environmental Epidemiology Unit, Paris-Descartes University, Sorbonne Paris Cité, EA 4064, 75006 Paris, France.
| | - Sandrine Vitry
- Viral Neuroimmunology Unit, Pasteur Institute, 75015 Paris, France.
| | - Isabelle Momas
- Environmental Epidemiology Unit, Paris-Descartes University, Sorbonne Paris Cité, EA 4064, 75006 Paris, France.
| | - Nathalie Seta
- Environmental Epidemiology Unit, Paris-Descartes University, Sorbonne Paris Cité, EA 4064, 75006 Paris, France.
- Laboratory of Biochemistry, Bichat University Hospital, AP-HP, 75018 Paris, France.
| | - Jean Menotti
- Environmental Epidemiology Unit, Paris-Descartes University, Sorbonne Paris Cité, EA 4064, 75006 Paris, France.
- Laboratory of Parasitology-Mycology, Saint-Louis University Hospital, AP-HP and Paris-Diderot University, Sorbonne Paris Cité, 75010 Paris, France.
| | - Sophie Achard
- Environmental Epidemiology Unit, Paris-Descartes University, Sorbonne Paris Cité, EA 4064, 75006 Paris, France.
| |
Collapse
|
9
|
Duan P, Hu C, Butler HJ, Quan C, Chen W, Huang W, Tang S, Zhou W, Yuan M, Shi Y, Martin FL, Yang K. 4-Nonylphenol induces disruption of spermatogenesis associated with oxidative stress-related apoptosis by targeting p53-Bcl-2/Bax-Fas/FasL signaling. ENVIRONMENTAL TOXICOLOGY 2017; 32:739-753. [PMID: 27087316 DOI: 10.1002/tox.22274] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
4-Nonylphenol (NP) is a ubiquitous environmental chemical with estrogenic activity. Our aim was to test the hypothesis that pubertal exposure to NP leads to testicular dysfunction. Herein, 24 7-week-old rats were randomly divided into four groups and treated with NP (0, 25, 50, or 100 mg/kg body weight every 2 days for 20 consecutive days) by intraperitoneal injection. Compared to untreated controls, the parameters of sperm activation rate, curvilinear velocity, average path velocity, and swimming velocity were significantly lower at doses of 100 mg/kg, while sperm morphological abnormalities were higher, indicating functional disruption and reduced fertilization potential. High exposure to NP (100 mg/kg) resulted in disordered arrangement of spermatoblasts and reduction of spermatocytes in seminiferous tubules, while tissues exhibited a marked decline in testicular fructose content and serum FSH, LH, and testosterone levels. Oxidative stress was induced by NP (50 or 100 mg/kg) as evidenced by elevated MDA, decreased SOD and GSH-Px, and inhibited antioxidant gene expression (CAT, GPx, SOD1, and CYP1B1). In addition, NP treatment decreased proportions of Ki-67-positive cells and increased apoptosis in a dose-dependent manner. Rats treated with 100 mg/kg NP exhibited significantly increased mRNA expression of caspase-1, -2, -9, and -11, decreased caspase-8 and PCNA1 mRNA expression, downregulation of Bcl-2/Bax ratios and upregulation of Fas, FasL, and p53 at the protein and mRNA levels. Taken together, NP-induced apoptosis, hormonal deficiencies, and depletion of fructose potentially impairs spermatogenesis and sperm function. p53-independent Fas/FasL-Bax/Bcl-2 pathways may be involved in NP-induced oxidative stress-related apoptosis. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 739-753, 2017.
Collapse
Affiliation(s)
- Peng Duan
- MOE (Ministry of Education) Key Lab of Environment and Health, Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunhui Hu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Holly J Butler
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ, United Kingdom
| | - Chao Quan
- MOE (Ministry of Education) Key Lab of Environment and Health, Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Chen
- MOE (Ministry of Education) Key Lab of Environment and Health, Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenting Huang
- MOE (Ministry of Education) Key Lab of Environment and Health, Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sha Tang
- MOE (Ministry of Education) Key Lab of Environment and Health, Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Zhou
- MOE (Ministry of Education) Key Lab of Environment and Health, Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng Yuan
- MOE (Ministry of Education) Key Lab of Environment and Health, Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuqin Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430030, China
| | - Francis L Martin
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ, United Kingdom
| | - Kedi Yang
- MOE (Ministry of Education) Key Lab of Environment and Health, Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
10
|
Ahn J, Son MK, Jung KH, Kim K, Kim GJ, Lee SH, Hong SS, Park SG. Aminoacyl-tRNA synthetase interacting multi-functional protein 1 attenuates liver fibrosis by inhibiting TGFβ signaling. Int J Oncol 2015; 48:747-55. [PMID: 26692190 DOI: 10.3892/ijo.2015.3303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/07/2015] [Indexed: 11/05/2022] Open
Abstract
The aminoacyl-tRNA synthetase interacting multi-functional protein 1 (AIMP1) participates in a variety of cellular processes, including translation, cell proliferation, inflammation and wound healing. Previously, we showed that the N-terminal peptide of AIMP1 (6-46 aa) induced ERK phosphorylation. Liver fibrosis is characterized by excessive deposition of extracellular matrix, which is induced by TGFβ signaling, and activated ERK is known to induce the phosphorylation of SMAD, thereby inhibiting TGFβ signaling. We assessed whether the AIMP1 peptide can inhibit collagen synthesis in hepatic stellate cells (HSCs) by activating ERK. The AIMP1 peptide induced phosphorylation of SMAD2 via ERK activation, and inhibited the nuclear translocation of SMAD, resulting in a reduction of the synthesis of type I collagen. The AIMP1 peptide attenuated liver fibrosis induced by CCl4, in a dose-dependent manner. Masson-Trichrome staining showed that the AIMP1 peptide reduced collagen deposition. Immunohistochemical staining showed that the levels of α-SMA, TGFβ and type I collagen were all reduced by the AIMP1 peptide. Liver toxicity analysis showed that the AIMP1 peptide improved the levels of relevant biological parameters in the blood. These results suggest that AIMP1 peptide may have potential for development as a therapeutic agent to treat liver fibrosis.
Collapse
Affiliation(s)
- Jongchan Ahn
- Department of Biomedical Science, College of Life Science, CHA University, Gyunggido, Republic of Korea
| | - Mi Kwon Son
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Kwangil Kim
- Department of Pathology, Bundang CHA General Hospital, CHA University, Gyunggido, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, College of Life Science, CHA University, Gyunggido, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Gyunggido, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Sang Gyu Park
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon, Gyunggido, Republic of Korea
| |
Collapse
|
11
|
Phenotypic Changes in Hepatic Stellate Cells in Response to Toxic Liver Injury. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Stewart RK, Dangi A, Huang C, Murase N, Kimura S, Stolz DB, Wilson GC, Lentsch AB, Gandhi CR. A novel mouse model of depletion of stellate cells clarifies their role in ischemia/reperfusion- and endotoxin-induced acute liver injury. J Hepatol 2014; 60:298-305. [PMID: 24060854 PMCID: PMC4195246 DOI: 10.1016/j.jhep.2013.09.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 08/05/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Hepatic stellate cells (HSCs) that express glial fibrillary acidic protein (GFAP) are located between the sinusoidal endothelial cells and hepatocytes. HSCs are activated during liver injury and cause hepatic fibrosis by producing excessive extracellular matrix. HSCs also produce many growth factors, chemokines and cytokines, and thus may play an important role in acute liver injury. However, this function has not been clarified due to unavailability of a model, in which HSCs are depleted from the normal liver. METHODS We treated mice expressing HSV-thymidine kinase under the GFAP promoter (GFAP-Tg) with 3 consecutive (3 days apart) CCl4 (0.16 μl/g; ip) injections to stimulate HSCs to enter the cell cycle and proliferate. This was followed by 10-day ganciclovir (40 μg/g/day; ip) treatment, which is expected to eliminate actively proliferating HSCs. Mice were then subjected to hepatic ischemia/reperfusion (I/R) or endotoxin treatment. RESULTS CCl4/ganciclovir treatment caused depletion of the majority of HSCs (about 64-72%), while the liver recovered from the initial CCl4-induced injury (confirmed by histology, serum ALT and neutrophil infiltration). The magnitude of hepatic injury due to I/R or endotoxemia (determined by histopathology and serum ALT) was lower in HSC-depleted mice. Their hepatic expression of TNF-α, neutrophil chemoattractant CXCL1 and endothelin-A receptor also was significantly lower than the control mice. CONCLUSIONS HSCs play an important role both in I/R- and endotoxin-induced acute hepatocyte injury, with TNF-α and endothelin-1 as important mediators of these effects.
Collapse
Affiliation(s)
- Rachel K. Stewart
- Thomas E. Starzl Transplantation Institute and Departments of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Anil Dangi
- Thomas E. Starzl Transplantation Institute and Departments of Surgery, University of Pittsburgh, Pittsburgh, PA 15213,Department of Surgery University of Cincinnati and Cincinnati VA Medical Center, Cincinnati, OH, USA and Cincinnati Veterans Administration, Cincinnati, OH, USA
| | - Chao Huang
- Thomas E. Starzl Transplantation Institute and Departments of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Noriko Murase
- Thomas E. Starzl Transplantation Institute and Departments of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Shoko Kimura
- Thomas E. Starzl Transplantation Institute and Departments of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Donna B. Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory C. Wilson
- Department of Surgery University of Cincinnati and Cincinnati VA Medical Center, Cincinnati, OH, USA and Cincinnati Veterans Administration, Cincinnati, OH, USA
| | - Alex B. Lentsch
- Department of Surgery University of Cincinnati and Cincinnati VA Medical Center, Cincinnati, OH, USA and Cincinnati Veterans Administration, Cincinnati, OH, USA
| | - Chandrashekhar R. Gandhi
- Thomas E. Starzl Transplantation Institute and Departments of Surgery, University of Pittsburgh, Pittsburgh, PA 15213,Department of Surgery University of Cincinnati and Cincinnati VA Medical Center, Cincinnati, OH, USA and Cincinnati Veterans Administration, Cincinnati, OH, USA,Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
13
|
Nguyen VT, Lee JS, Qian ZJ, Li YX, Kim KN, Heo SJ, Jeon YJ, Park WS, Choi IW, Je JY, Jung WK. Gliotoxin isolated from marine fungus Aspergillus sp. induces apoptosis of human cervical cancer and chondrosarcoma cells. Mar Drugs 2013; 12:69-87. [PMID: 24368570 PMCID: PMC3917261 DOI: 10.3390/md12010069] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 12/19/2022] Open
Abstract
Gliotoxin, a secondary metabolite produced by marine fungus Aspergillus sp., possesses various biological activities including anticancer activity. However, the mechanism underlying gliotoxin-induced cytotoxicity on human cervical cancer (Hela) and human chondrosarcoma (SW1353) cells remains unclear. In this study, we focused on the effect of gliotoxin induction on apoptosis, the activating expressions of caspase family enzymes in the cells. Apoptotic cell levels were measured through DAPI and Annexin V/Propidium Iodide (PI) double staining analysis. The apoptotic protein expression of Bcl-2 and caspase family was detected by Western blot in Hela and SW1353 cells. Our results showed that gliotoxin treatment inhibited cell proliferation and induced significant morphological changes. Gliotoxin induced apoptosis was further confirmed by DNA fragmentation, chromatin condensation and disrupted mitochondrial membrane potential. Gliotoxin-induced activation of caspase-3, caspase-8 and caspase-9, down-regulation of Bcl-2, up-regulation of Bax and cytochromec (cyt c) release showed evidence for the gliotoxin activity on apoptosis. These findings suggest that gliotoxin isolated from marine fungus Aspergillus sp. induced apoptosis in Hela and SW1353 cells via the mitochondrial pathway followed by downstream events leading to apoptotic mode of cell death.
Collapse
Affiliation(s)
- Van-Tinh Nguyen
- Department of Biomedical Engineering, and Centre for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan 608-737, Korea; E-Mail:
| | - Jung Suck Lee
- Industry-Academic Cooperation Foundation, Jeju National University, Jeju 690-756, Korea; E-Mail:
| | - Zhong-Ji Qian
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; E-Mail:
| | - Yong-Xin Li
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Korea; E-Mail:
| | - Kil-Nam Kim
- Marine Bio Research Team, Korea Basic Science Institute (KBSI), Jeju 690-140, Korea; E-Mail:
| | - Soo-Jin Heo
- Global Bioresources Research Center, Korea Institute of Ocean Science & Technology, Ansan 426-744, Korea; E-Mail:
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; E-Mail:
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 200-701, Korea; E-Mail:
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 608-737, Korea; E-Mail:
| | - Jae-Young Je
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 550-749, Korea
- Authors to whom correspondence should be addressed; E-Mails: (J.-Y.J.); (W.-K.J.); Tel.: +82-61-659-7416 (J.-Y.J.); Fax: +82-61-659-7419 (J.-Y.J.); Tel./Fax: +82-51-629-5775 (W.-K.J.)
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Centre for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan 608-737, Korea; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (J.-Y.J.); (W.-K.J.); Tel.: +82-61-659-7416 (J.-Y.J.); Fax: +82-61-659-7419 (J.-Y.J.); Tel./Fax: +82-51-629-5775 (W.-K.J.)
| |
Collapse
|
14
|
Abstract
Liver regeneration is perhaps the most studied example of compensatory growth aimed to replace loss of tissue in an organ. Hepatocytes, the main functional cells of the liver, manage to proliferate to restore mass and to simultaneously deliver all functions hepatic functions necessary to maintain body homeostasis. They are the first cells to respond to regenerative stimuli triggered by mitogenic growth factor receptors MET (the hepatocyte growth factor receptor] and epidermal growth factor receptor and complemented by auxiliary mitogenic signals induced by other cytokines. Termination of liver regeneration is a complex process affected by integrin mediated signaling and it restores the organ to its original mass as determined by the needs of the body (hepatostat function). When hepatocytes cannot proliferate, progenitor cells derived from the biliary epithelium transdifferentiate to restore the hepatocyte compartment. In a reverse situation, hepatocytes can also transdifferentiate to restore the biliary compartment. Several hormones and xenobiotics alter the hepatostat directly and induce an increase in liver to body weight ratio (augmentative hepatomegaly). The complex challenges of the liver toward body homeostasis are thus always preserved by complex but unfailing responses involving orchestrated signaling and affecting growth and differentiation of all hepatic cell types.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
15
|
Bittnerová L, Jiroutová A, Rudolf E, Rezácová M, Kanta J. Effect of collagen I gel on apoptosis of rat hepatic stellate cells. ACTA MEDICA (HRADEC KRÁLOVÉ) 2013; 56:73-9. [PMID: 24069661 DOI: 10.14712/18059694.2014.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Activated hepatic stellate cells (HSC) are a major source offibrous proteins in cirrhotic liver. Inducing or accelerating their apoptosis is a potential way of liver fibrosis treatment. Extracellular matrix (ECM) surrounding cells in tissue affects their differentiation, migration, proliferation and function. Type I collagen is the main ECM component in fibrotic liver. We have examined how this protein modifies apoptosis of normal rat HSC induced by gliotoxin, cycloheximide and cytochalasin D in vitro and spontaneous apoptosis of HSC isolated from CCl4-damaged liver. We have found that type I collagen gel enhances HSC apoptosis regardless of the agent triggering this process.
Collapse
Affiliation(s)
- Lenka Bittnerová
- Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine, Hradec Králové, Czech Republic
| | | | | | | | | |
Collapse
|
16
|
Nejak-Bowen KN, Orr AV, Bowen Jr WC, Michalopoulos GK. Gliotoxin-induced changes in rat liver regeneration after partial hepatectomy. Liver Int 2013; 33:1044-55. [PMID: 23552057 PMCID: PMC3706483 DOI: 10.1111/liv.12164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/10/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatic non-parenchymal cells (NPCs), encompassing hepatic stellate cells (HSCs), macrophages and endothelial cells, synthesize new hepatocyte growth factor (HGF) during liver regeneration (LR), and also play an important function in matrix production at the end of regeneration. AIMS The aim of this study was to determine whether ablating NPCs either during hepatocyte proliferation or during matrix resynthesis will have any effect on LR. METHODS Rats were injected with either gliotoxin (which induces NPC apoptosis) or vehicle control at various stages during partial hepatectomy (PH). NPCs and hepatocytes were also treated in vitro with gliotoxin. RESULTS Proliferating cells were abundant in control livers 24 h after PH, while in gliotoxin-treated rats, mitosis was absent, apoptotic NPCs were apparent and HGF was decreased. In vitro studies demonstrated a > 50% decrease in cell viability in NPC cultures, while hepatocyte viability and proliferation were unaffected. Chronic elimination of NPCs over a period of 5 days after PH led to increased desmin-positive HSCs and fewer alpha smooth muscle actin-expressing HSCs. Finally, there was continued proliferation of hepatocytes and decreased collagen I and TGF-β when HSCs, the matrix-producing NPCs, were ablated during later stages of LR. CONCLUSIONS Ablation of NPCs at early time points after PH interferes with liver regeneration, while their ablation at late stages causes impairment in the termination of LR, demonstrating a time-dependent regulatory role of NPCs in the regenerative process.
Collapse
Affiliation(s)
| | - Anne V. Orr
- Department of Pathology; University of Pittsburgh; Pittsburgh PA USA
| | | | | |
Collapse
|
17
|
Fundamental immunology of skin transplantation and key strategies for tolerance induction. Arch Immunol Ther Exp (Warsz) 2013; 61:397-405. [PMID: 23685832 DOI: 10.1007/s00005-013-0233-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 04/26/2013] [Indexed: 12/21/2022]
Abstract
Transplantation of allogeneic or xenogeneic skin grafts can evoke strong immune responses that lead to acute rejection of the graft tissues. In this process, donor-derived dendritic cells play crucial roles in the triggering of such immune responses. Both the innate and acquired host immune systems participate in graft rejection. At present, the rejection of skin grafts cannot be well-controlled by ordinary systemic immunosuppression therapy. Although several strategies for the long-term survival of allogeneic or xenogeneic skin grafts have been demonstrated in animal models, the induction of long-term tolerance to skin grafts is still a great challenge in clinical settings. In this article, we review the progress in the understanding of immune responses to skin grafts and discuss the possible methods that can decrease the immunogenicity of graft tissues and improve the survival of skin grafts, especially those included in preoperative pre-treatments.
Collapse
|
18
|
Puche JE, Lee YA, Jiao J, Aloman C, Fiel MI, Muñoz U, Kraus T, Lee T, Yee HF, Friedman SL. A novel murine model to deplete hepatic stellate cells uncovers their role in amplifying liver damage in mice. Hepatology 2013; 57:339-50. [PMID: 22961591 PMCID: PMC3522764 DOI: 10.1002/hep.26053] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 08/01/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED We have developed a novel model for depleting mouse hepatic stellate cells (HSCs) that has allowed us to clarify their contributions to hepatic injury and fibrosis. Transgenic (Tg) mice expressing the herpes simplex virus thymidine kinase gene (HSV-Tk) driven by the mouse GFAP promoter were used to render proliferating HSCs susceptible to killing in response to ganciclovir (GCV). Effects of GCV were explored in primary HSCs and in vivo. Panlobular damage was provoked to maximize HSC depletion by combining CCl(4) (centrilobular injury) with allyl alcohol (AA) (periportal injury), as well as in a bile duct ligation (BDL) model. Cell depletion in situ was quantified using dual immunofluorescence (IF) for desmin and GFAP. In primary HSCs isolated from both untreated wild-type (WT) and Tg mice, GCV induced cell death in ≈ 50% of HSCs from Tg, but not WT, mice. In TG mice treated with CCl(4) +AA+GCV, there was a significant decrease in GFAP and desmin-positive cells, compared to WT mice (≈ 65% reduction; P < 0.01), which was accompanied by a decrease in the expression of HSC-activation markers (alpha smooth muscle actin, beta platelet-derived growth factor receptor, and collagen I). Similar results were observed after BDL. Associated with HSC depletion in both fibrosis models, there was marked attenuation of fibrosis and liver injury, as indicated by Sirius Red/Fast Green, hematoxylin and eosin quantification, and serum alanine/aspartate aminotransferase. Hepatic expression of interleukin-10 and interferon-gamma was increased after HSC depletion. No toxicity of GCV in either WT or Tg mice accounted for the differences in injury. CONCLUSION Activated HSCs significantly amplify the response to liver injury, further expanding this cell type's repertoire in orchestrating hepatic injury and repair.
Collapse
Affiliation(s)
- Juan E. Puche
- Division of Liver Diseases, Mount Sinai School of Medicine, NY, USA,University CEU-San Pablo, School of Medicine, Madrid, Spain
| | - Youngmin A. Lee
- Division of Liver Diseases, Mount Sinai School of Medicine, NY, USA
| | - Jingjing Jiao
- Division of Liver Diseases, Mount Sinai School of Medicine, NY, USA
| | - Costica Aloman
- Division of Liver Diseases, Mount Sinai School of Medicine, NY, USA
| | - Maria I. Fiel
- Division of Liver Diseases, Mount Sinai School of Medicine, NY, USA
| | - Ursula Muñoz
- Division of Liver Diseases, Mount Sinai School of Medicine, NY, USA,University CEU-San Pablo, School of Medicine, Madrid, Spain
| | - Thomas Kraus
- Department of Microbiology, Mount Sinai School of Medicine, NY, USA
| | - Tingfang Lee
- Division of Liver Diseases, Mount Sinai School of Medicine, NY, USA
| | - Hal F. Yee
- Department of Medicine, University of California, San Francisco, CA, USA
| | | |
Collapse
|
19
|
Gandhi CR. Oxidative Stress and Hepatic Stellate Cells: A PARADOXICAL RELATIONSHIP. TRENDS IN CELL & MOLECULAR BIOLOGY 2012; 7:1-10. [PMID: 27721591 PMCID: PMC5051570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In physiology, reactive oxygen species (ROS) are produced by most cells for normal function and as a defense mechanism against foreign particles, microbes and viruses. Hepatic macrophages (Kupffer cells), sinusoidal endothelial cells, hepatocytes and hepatic stellate cells (HSCs) are all capable of generating ROS in physiology and pathology. ROS are also produced by infiltrating inflammatory cells during acute and chronic liver injury. Increased levels of ROS have been implicated in apoptotic/necrotic death of hepatocytes, and liver failure. In contrast to causing injury to hepatocytes, ROS and lipid peroxidation products induce transdifferentiation of the quiescent HSCs into an activated highly proliferative myofibroblast-like phenotype. ROS and lipid peroxidation products also stimulate the synthesis of extracellular matrix (ECM) by activated HSCs. Deposition of excessive amounts of ECM is the primary mechanism of fibrosis and cirrhosis of the liver, and interactions between ROS and HSCs appear to play a major role in this pathology. Although these findings suggest that HSCs are resistant to the injurious actions of ROS, there is compelling evidence demonstrating ROS-induced death of activated HSCs. Detailed mechanistic understanding of such paradoxical interactions between ROS and HSCs will be critical for developing therapies for chronic fibrotic liver disease.
Collapse
|
20
|
Lim MP, Devi LA, Rozenfeld R. Cannabidiol causes activated hepatic stellate cell death through a mechanism of endoplasmic reticulum stress-induced apoptosis. Cell Death Dis 2011; 2:e170. [PMID: 21654828 PMCID: PMC3168994 DOI: 10.1038/cddis.2011.52] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The major cellular event in the development and progression of liver fibrosis is the activation of hepatic stellate cells (HSCs). Activated HSCs proliferate and produce excess collagen, leading to accumulation of scar matrix and fibrotic liver. As such, the induction of activated HSC death has been proposed as a means to achieve resolution of liver fibrosis. Here we demonstrate that cannabidiol (CBD), a major non-psychoactive component of the plant Cannabis sativa, induces apoptosis in activated HSCs through a cannabinoid receptor-independent mechanism. CBD elicits an endoplasmic reticulum (ER) stress response, characterized by changes in ER morphology and the initiation of RNA-dependent protein kinase-like ER kinase-, activating transcription factor-6-, and inositol-requiring ER-to-nucleus signal kinase-1 (IRE1)-mediated signaling cascades. Furthermore, CBD induces downstream activation of the pro-apoptotic IRE1/ASK1/c-Jun N-terminal kinase pathway, leading to HSC death. Importantly, we show that this mechanism of CBD-induced ER stress-mediated apoptosis is specific to activated HSCs, as it occurs in activated human and rat HSC lines, and in primary in vivo-activated mouse HSCs, but not in quiescent HSCs or primary hepatocytes from rat. Finally, we provide evidence that the elevated basal level of ER stress in activated HSCs has a role in their susceptibility to the pro-apoptotic effect of CBD. We propose that CBD, by selectively inducing death of activated HSCs, represents a potential therapeutic agent for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- M P Lim
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
21
|
|
22
|
Douglass A, Wallace K, Koruth M, Barelle C, Porter AJ, Wright MC. Using a recombinant single chain antibody for targeting liver myofibroblasts with anti-fibrogenic therapeutics. Arab J Gastroenterol 2010. [DOI: 10.1016/j.ajg.2009.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Gieling RG, Burt AD, Mann DA. Fibrosis and cirrhosis reversibility - molecular mechanisms. Clin Liver Dis 2008; 12:915-37, xi. [PMID: 18984474 DOI: 10.1016/j.cld.2008.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The concept that liver fibrosis is a dynamic process with potential for regression as well as progression has emerged in parallel with clinical evidence for remodeling of fibrotic extracellular matrix in patients who can be effectively treated for their underlying cause of liver disease. This article reviews recent discoveries relating to the cellular and molecular mechanisms that regulate fibrosis regression, with emphasis on studies that have used experimental in vivo models of liver disease. Apoptosis of hepatic myofibroblasts is discussed. The functions played by transcription factors, receptor-ligand interactions, and cell-matrix interactions as regulators of the lifespan of hepatic myofibroblasts are considered, as are the therapeutic opportunities for modulating these functions. Growth factors, proteolytic enzymes, and their inhibitors are discussed in detail.
Collapse
Affiliation(s)
- Roben G Gieling
- Liver Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
24
|
Li JT, Liao ZX, Ping J, Xu D, Wang H. Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies. J Gastroenterol 2008; 43:419-28. [PMID: 18600385 DOI: 10.1007/s00535-008-2180-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 02/25/2008] [Indexed: 02/06/2023]
Abstract
Activation of hepatic stellate cells (HSCs) is the dominant event in liver fibrosis. The early events in the organization of HSC activation have been termed initiation. Initiation encompasses rapid changes in gene expression and phenotype that render the cells responsive to cytokines and other local stimuli. Cellular responses following initiation are termed perpetuation, which encompasses those cellular events that amplify the activated phenotype through enhanced growth factor expression and responsiveness. Multiple cells and cytokines play a part in the regulation of HSC activation. HSC activation consists of discrete phenotype responses, mainly proliferation, contractility, fibrogenesis, matrix degradation, chemotaxis and retinoid loss. Currently, antifibrotic therapeutic strategies include inhibition of HSC proliferation or stimulation of HSC apoptosis, downregulation of collagen production or promotion of its degradation, administration of cytokines, and infusion of mesenchymal stem cells. In this review, we summarize the latest advances in our understanding of the mechanisms of HSC activation and possible antifibrotic therapeutic strategies.
Collapse
Affiliation(s)
- Jing-Ting Li
- Department of Pharmacology, Basic Medical School of Wuhan University, Luojia Hill, Wuhan 430071, China
| | | | | | | | | |
Collapse
|
25
|
Targeting liver myofibroblasts: a novel approach in anti-fibrogenic therapy. Hepatol Int 2008; 2:405-15. [PMID: 19669316 PMCID: PMC2716909 DOI: 10.1007/s12072-008-9093-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 07/21/2008] [Indexed: 02/06/2023]
Abstract
Chronic liver disease results in a liver-scarring response termed fibrosis. Excessive scarring leads to cirrhosis, which is associated with high morbidity and mortality. The only treatment for liver cirrhosis is liver transplantation; therefore, much attention has been directed toward therapies that will slow or reverse fibrosis. Although anti-fibrogenic therapies have been shown to be effective in experimental animal models, licensed therapies have yet to emerge. A potential problem for any anti-fibrogenic therapy in the liver is the existence of the body’s major drug metabolising cell (the hepatocyte) adjacent to the primary fibrosis-causing cell, the myofibroblast. This article reviews the development of a human recombinant single-chain antibody (scAb) that binds to the surface of myofibroblasts. This antibody binds specifically to myofibroblasts in fibrotic mouse livers. When conjugated with a compound that stimulates myofibroblast apoptosis, the antibody directs the specific apoptosis of myofibroblasts with greater specificity and efficacy than the free compound. The antibody also reduces the adverse effect of liver macrophage apoptosis and—in contrast to the free compound—reversed fibrosis in the sustained injury model used. These data suggest that specifically stimulating the apoptosis of liver myofibroblasts using a targeting antibody has potential in the treatment of liver fibrosis.
Collapse
|
26
|
Douglass A, Wallace K, Parr R, Park J, Durward E, Broadbent I, Barelle C, Porter AJ, Wright MC. Antibody-targeted myofibroblast apoptosis reduces fibrosis during sustained liver injury. J Hepatol 2008; 49:88-98. [PMID: 18394744 DOI: 10.1016/j.jhep.2008.01.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 01/04/2008] [Accepted: 01/15/2008] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Myofibroblast apoptosis promotes the resolution of liver fibrosis. However, retaining macrophages may enhance reversal. The effects of specifically stimulating myofibroblast apoptosis in vivo were assessed. METHODS A single chain antibody (C1-3) to an extracellular domain of a myofibroblast membrane protein was injected as a fluorescent- or gliotoxin conjugate into mice with liver fibrosis. RESULTS C1-3 specifically targeted alpha-smooth muscle actin positive liver myofibroblasts within scar regions of the liver in vivo and did not co-localise with liver monocytes/macrophages. Injection of free gliotoxin stimulated a 2-fold increase in non-parenchymal cell apoptosis and depleted liver myofibroblasts by 30% and monocytes/macrophages by 50% but had no effect on fibrosis severity in the sustained injury model employed. In contrast, C1-3-targeted gliotoxin stimulated a 5-fold increase in non-parenchymal cell apoptosis, depleted liver myofibroblasts by 60%, did not affect the number of monocytes/macrophages and significantly reduced fibrosis severity. Fibrosis reduction was associated with increased metalloproteinase-13 levels. CONCLUSIONS These data demonstrate that specific targeting of liver myofibroblast apoptosis is the most effective anti-fibrogenic therapy, supporting a role for liver monocytes and/or macrophages in the promotion of liver fibrosis reduction.
Collapse
Affiliation(s)
- Angela Douglass
- Institute of Cellular Medicine, School of Clinical and Laboratory Sciences, University of Newcastle Upon Tyne, Level 2 Leech Building, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|