1
|
Yang AYP, Wistuba-Hamprecht K, Greten TF, Ruf B. Innate-like T cells in liver disease. Trends Immunol 2024; 45:535-548. [PMID: 38879436 DOI: 10.1016/j.it.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 07/14/2024]
Abstract
Mammalian innate-like T cells (ILTCs), including mucosal-associated invariant T (MAIT), natural killer T (NKT), and γδ T cells, are abundant tissue-resident lymphocytes that have recently emerged as orchestrators of hepatic inflammation, tissue repair, and immune homeostasis. This review explores the involvement of different ILTC subsets in liver diseases. We explore the mechanisms underlying the pro- and anti-inflammatory effector functions of ILTCs in a context-dependent manner. We highlight latest findings regarding the dynamic interplay between ILTC functional subsets and other immune and parenchymal cells which may inform candidate immunomodulatory strategies to achieve improved clinical outcomes in liver diseases. We present new insights into how distinct gene expression programs in hepatic ILTCs are induced, maintained, and reprogrammed in a context- and disease stage-dependent manner.
Collapse
Affiliation(s)
- Albert Ying-Po Yang
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) - Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany; Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology, and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Center for Cancer Research (CCR) Liver Cancer Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Ruf
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) - Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Tsuji M, Nair MS, Masuda K, Castagna C, Chong Z, Darling TL, Seehra K, Hwang Y, Ribeiro ÁL, Ferreira GM, Corredor L, Coelho-Dos-Reis JGA, Tsuji Y, Mori M, Boon ACM, Diamond MS, Huang Y, Ho DD. An immunostimulatory glycolipid that blocks SARS-CoV-2, RSV, and influenza infections in vivo. Nat Commun 2023; 14:3959. [PMID: 37402814 DOI: 10.1038/s41467-023-39738-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
Prophylactic vaccines for SARS-CoV-2 have lowered the incidence of severe COVID-19, but emergence of viral variants that are antigenically distinct from the vaccine strains are of concern and additional, broadly acting preventive approaches are desirable. Here, we report on a glycolipid termed 7DW8-5 that exploits the host innate immune system to enable rapid control of viral infections in vivo. This glycolipid binds to CD1d on antigen-presenting cells and thereby stimulates NKT cells to release a cascade of cytokines and chemokines. The intranasal administration of 7DW8-5 prior to virus exposure significantly blocked infection by three different authentic variants of SARS-CoV-2, as well as by respiratory syncytial virus and influenza virus, in mice or hamsters. We also found that this protective antiviral effect is both host-directed and mechanism-specific, requiring both the CD1d molecule and interferon-[Formula: see text]. A chemical compound like 7DW8-5 that is easy to administer and cheap to manufacture may be useful not only in slowing the spread of COVID-19 but also in responding to future pandemics long before vaccines or drugs are developed.
Collapse
Affiliation(s)
- Moriya Tsuji
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Kazuya Masuda
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Candace Castagna
- Institute of Comparative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Zhenlu Chong
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tamarand L Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kuljeet Seehra
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Youngmin Hwang
- Columbia Center for Human Development, Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Ágata Lopes Ribeiro
- Basic and Applied Virology Laboratory, Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Geovane Marques Ferreira
- Basic and Applied Virology Laboratory, Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laura Corredor
- Institute of Comparative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Yukiko Tsuji
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Munemasa Mori
- Columbia Center for Human Development, Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
4
|
Dölen Y, Valente M, Tagit O, Jäger E, Van Dinther EAW, van Riessen NK, Hruby M, Gileadi U, Cerundolo V, Figdor CG. Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses. Oncoimmunology 2020; 9:1738813. [PMID: 33457086 PMCID: PMC7790498 DOI: 10.1080/2162402x.2020.1738813] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nanovaccines, co-delivering antigen and invariant natural killer T (iNKT) cell agonists, proved to be very effective in inducing anti-tumor T cell responses due to their exceptional helper function. However, it is known that iNKT cells are not equally present in all lymphoid organs and nanoparticles do not get evenly distributed to all immune compartments. In this study, we evaluated the effect of the vaccination route on iNKT cell help to T and B cell responses for the first time in an antigen and agonist co-delivery setting. Intravenous administration of PLGA nanoparticles was mainly targeting liver and spleen where iNKT1 cells are abundant and induced the highest serum IFN-y levels, T cell cytotoxicity, and Th-1 type antibody responses. In comparison, after subcutaneous or intranodal injections, nanoparticles mostly drained or remained in regional lymph nodes where iNKT17 cells were abundant. After subcutaneous and intranodal injections, antigen-specific IgG2 c production was hampered and IFN-y production, as well as cytotoxic T cell responses, depended on sporadic systemic drainage. Therapeutic anti-tumor experiments also demonstrated a clear advantage of intravenous injection over intranodal or subcutaneous vaccinations. Moreover, tumor control could be further improved by PD-1 immune checkpoint blockade after intravenous vaccination, but not by intranodal vaccination. Anti PD-1 antibody combination mainly exerts its effect by prolonging the cytotoxicity of T cells. Nanovaccines also demonstrated synergism with anti-4-1BB agonistic antibody treatment in controlling tumor growth. We conclude that nanovaccines containing iNKT cell agonists shall be preferentially administered intravenously, to optimally reach cellular partners for inducing effective anti-tumor immune responses.
Collapse
Affiliation(s)
- Yusuf Dölen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - Michael Valente
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - Oya Tagit
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - Eliezer Jäger
- Institute of Macromolecular Chemistry V.v.i., Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Eric A W Van Dinther
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - N Koen van Riessen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - Martin Hruby
- Institute of Macromolecular Chemistry V.v.i., Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Key features and homing properties of NK cells in the liver are shaped by activated iNKT cells. Sci Rep 2019; 9:16362. [PMID: 31704965 PMCID: PMC6841958 DOI: 10.1038/s41598-019-52666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 10/16/2019] [Indexed: 11/16/2022] Open
Abstract
The contribution of natural killer (NK) cells to the clearance of hepatic viral infections is well recognized. The recently discovered heterogeneity of NK cell populations renders them interesting targets for immune interventions. Invariant natural killer T (iNKT) cells represent a key interaction partner for hepatic NK cells. The present study addressed whether characteristics of NK cells in the liver can be shaped by targeting iNKT cells. For this, the CD1d-binding pegylated glycolipid αGalCerMPEG was assessed for its ability to modulate the features of NK cells permanently or transiently residing in the liver. In vivo administration resulted in enhanced functionality of educated and highly differentiated CD27+ Mac-1+ NK cells accompanied by an increased proliferation. Improved liver homing was supported by serum-derived and cellular factors. Reduced viral loads in a mCMV infection model confirmed the beneficial effect of NK cells located in the liver upon stimulation with αGalCerMPEG. Thus, targeting iNKT cell-mediated NK cell activation in the liver represents a promising approach for the establishment of liver-directed immune interventions.
Collapse
|
6
|
Hildreth AD, O'Sullivan TE. Tissue-Resident Innate and Innate-Like Lymphocyte Responses to Viral Infection. Viruses 2019; 11:v11030272. [PMID: 30893756 PMCID: PMC6466361 DOI: 10.3390/v11030272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Infection is restrained by the concerted activation of tissue-resident and circulating immune cells. Recent discoveries have demonstrated that tissue-resident lymphocyte subsets, comprised of innate lymphoid cells (ILCs) and unconventional T cells, have vital roles in the initiation of primary antiviral responses. Via direct and indirect mechanisms, ILCs and unconventional T cell subsets play a critical role in the ability of the immune system to mount an effective antiviral response through potent early cytokine production. In this review, we will summarize the current knowledge of tissue-resident lymphocytes during initial viral infection and evaluate their redundant or nonredundant contributions to host protection or virus-induced pathology.
Collapse
Affiliation(s)
- Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| |
Collapse
|
7
|
Kanomata N, Kurebayashi J, Koike Y, Yamaguchi R, Moriya T. CD1d- and PJA2-related immune microenvironment differs between invasive breast carcinomas with and without a micropapillary feature. BMC Cancer 2019; 19:76. [PMID: 30651076 PMCID: PMC6335725 DOI: 10.1186/s12885-018-5221-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/13/2018] [Indexed: 01/21/2023] Open
Abstract
Background Invasive micropapillary carcinoma (IMPC) of the breast is characterized by its unique morphology and frequent nodal metastasis. However, the mechanism for development of this unique subtype has not been clearly elucidated. The aim of this study was to obtain a better understanding of IMPC. Methods Using representative cases of mixed IMPC, mRNA expression in the micropapillary area and usual invasive area was compared. Then, immunohistochemical analyses for 294 cases (76 invasive carcinomas with a micropapillary feature [ICMF] and 218 invasive carcinomas without a micropapillary feature [ICNMF]) were conducted. Clinicopathological analyses were also studied. Results DNA microarray analyses for mixed IMPC showed that BC-1514 (C21orf118) was commonly upregulated in the micropapillary area. CAMK2N1, CD1d, PJA2, RPL5, SAMD13, TCF4, and TXNIP were commonly downregulated in the micropapillary area. Immunohistochemically, we confirmed that BC-1514 was more upregulated in ICMF than in ICNMF. CD1d and PJA2 were more downregulated in ICMF than ICNMF. All patients with cases of PJA2 overexpression survived without cancer recurrence during the follow-up period, although the differences for disease-free (p = 0.153) or overall survival (p = 0.272) were not significant. Conclusions The CD1d- and PJA2-related tumour microenvironment might be crucial for IMPC. Further study of the immune microenvironment and micropapillary features is warranted.
Collapse
Affiliation(s)
- Naoki Kanomata
- Department of Pathology, Kawasaki Medical School, Matsushima 577, Kurashiki, Okayama, 701-0192, Japan.
| | - Junichi Kurebayashi
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yoshikazu Koike
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Rin Yamaguchi
- Department of Pathology and Laboratory Medicine, Kurume University Medical Center, Kurume, Fukuoka, Japan.,Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Takuya Moriya
- Department of Pathology, Kawasaki Medical School, Matsushima 577, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
8
|
Davitt CJH, Longet S, Albutti A, Aversa V, Nordqvist S, Hackett B, McEntee CP, Rosa M, Coulter IS, Lebens M, Tobias J, Holmgren J, Lavelle EC. Alpha-galactosylceramide enhances mucosal immunity to oral whole-cell cholera vaccines. Mucosal Immunol 2019; 12:1055-1064. [PMID: 30953000 PMCID: PMC7746523 DOI: 10.1038/s41385-019-0159-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/26/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Cholera is a severe diarrheal disease caused by the bacterium Vibrio cholerae (V. cholerae) that results in 3-4 million cases globally with 100,000-150,000 deaths reported annually. Mostly confined to developing nations, current strategies to control the spread of cholera include the provision of safe drinking water and improved sanitation and hygiene, ideally in conjunction with oral vaccination. However, difficulties associated with the costs and logistics of these strategies have hampered their widespread implementation. Specific challenges pertaining to oral cholera vaccines (OCVs) include a lack of safe and effective adjuvants to further enhance gut immune responses, the complex and costly multicomponent vaccine manufacturing, limitations of conventional liquid formulation and the lack of an integrated delivery platform. Herein we describe the use of the orally active adjuvant α-Galactosylceramide (α-GalCer) to strongly enhance intestinal bacterium- and toxin-specific IgA responses to the OCV, Dukoral® in C57BL/6 and BALB/c mice. We further demonstrate the mucosal immunogenicity of a novel multi-antigen, single-component whole-cell killed V. cholerae strain and the enhancement of its immunogenicity by adding α-GalCer. Finally, we report that combining these components and recombinant cholera toxin B subunit in the SmPill® minisphere delivery system induced strong intestinal and systemic antigen-specific antibody responses.
Collapse
Affiliation(s)
- Christopher J. H. Davitt
- 0000 0004 1936 9705grid.8217.cAdjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland
| | - Stephanie Longet
- 0000 0004 1936 9705grid.8217.cAdjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland
| | - Aqel Albutti
- 0000 0004 1936 9705grid.8217.cAdjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland ,0000 0000 9421 8094grid.412602.3College of Applied Medical Sciences, Qassim University, Buraydah, 52571 Saudi Arabia
| | - Vincenzo Aversa
- 0000000102380260grid.15596.3eSublimity Therapeutics (Holdco) Ltd, DCU Alpha Innovation Campus, Old Finglas Road, Dublin, D11 KXN4 Ireland
| | - Stefan Nordqvist
- 0000 0000 9919 9582grid.8761.8Department of Microbiology and Immunology, University of Gothenburg Vaccine Research Institute (GUVAX), University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden
| | - Becky Hackett
- 0000 0004 1936 9705grid.8217.cAdjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland
| | - Craig P. McEntee
- 0000 0004 1936 9705grid.8217.cAdjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland
| | - Monica Rosa
- 0000000102380260grid.15596.3eSublimity Therapeutics (Holdco) Ltd, DCU Alpha Innovation Campus, Old Finglas Road, Dublin, D11 KXN4 Ireland
| | - Ivan S. Coulter
- 0000000102380260grid.15596.3eSublimity Therapeutics (Holdco) Ltd, DCU Alpha Innovation Campus, Old Finglas Road, Dublin, D11 KXN4 Ireland
| | - Michael Lebens
- 0000 0000 9919 9582grid.8761.8Department of Microbiology and Immunology, University of Gothenburg Vaccine Research Institute (GUVAX), University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden
| | - Joshua Tobias
- 0000 0000 9919 9582grid.8761.8Department of Microbiology and Immunology, University of Gothenburg Vaccine Research Institute (GUVAX), University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden
| | - Jan Holmgren
- 0000 0000 9919 9582grid.8761.8Department of Microbiology and Immunology, University of Gothenburg Vaccine Research Institute (GUVAX), University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden
| | - Ed C. Lavelle
- 0000 0004 1936 9705grid.8217.cAdjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland ,0000 0004 1936 9705grid.8217.cCentre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 PN40 Ireland
| |
Collapse
|
9
|
Bezgovsek J, Gulbins E, Friedrich SK, Lang KS, Duhan V. Sphingolipids in early viral replication and innate immune activation. Biol Chem 2018; 399:1115-1123. [DOI: 10.1515/hsz-2018-0181] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/21/2018] [Indexed: 01/08/2023]
Abstract
Abstract
In this review, we summarize the mechanisms by which sphingolipids modulate virus multiplication and the host innate immune response, using a number of host-virus systems as illustrative models. Sphingolipids exert diverse functions, both at the level of the viral life cycle and in the regulation of antiviral immune responses. Sphingolipids may influence viral replication in three ways: by serving as (co)receptors during viral entry, by modulating virus replication, and by shaping the antiviral immune response. Several studies have demonstrated that sphingosine kinases (SphK) and their product, sphingosine-1-phosphate (S1P), enhance the replication of influenza, measles, and hepatitis B virus (HBV). In contrast, ceramides, particularly S1P and SphK1, influence the expression of type I interferon (IFN-I) by modulating upstream antiviral signaling and enhancing dendritic cell maturation, differentiation, and positioning in tissue. The synthetic molecule α-galactosylceramide has also been shown to stimulate natural killer cell activation and interferon (IFN)-γ secretion. However, to date, clinical trials have failed to demonstrate any clinical benefit for sphingolipids in the treatment of cancer or HBV infection. Taken together, these findings show that sphingolipids play an important and underappreciated role in the control of virus replication and the innate immune response.
Collapse
|
10
|
Hung JT, Huang JR, Yu AL. Tailored design of NKT-stimulatory glycolipids for polarization of immune responses. J Biomed Sci 2017; 24:22. [PMID: 28335781 PMCID: PMC5364570 DOI: 10.1186/s12929-017-0325-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Natural killer T (NKT) cell is a distinct population of T lymphocytes that can rapidly release massive amount of Th1 and Th2 cytokines upon the engagement of their T cell receptor with glycolipids presented by CD1d. The secreted cytokines can promote cell-mediated immunity to kill tumor cells and intracellular pathogens, or suppress autoreactive immune cells in autoimmune diseases. Thus, NKT cell is an attractive target for developing new therapeutics to manipulate immune system. The best-known glycolipid to activate NKT cells is α-galactosylceramide (α-GalCer), which has been used as a prototype for designing new NKT stimulatory glycolipids. Many analogues have been generated by modification of the galactosyl moiety, the acyl chain or the phytosphingosine chain of α-GalCer. Some of the analogues showed greater abilities than α-GalCer in polarizing immune responses toward Th1 or Th2 dominance. Among them, several analogues containing phenyl groups in the lipid tails were more potent in inducing Th1-skewed cytokines and exhibited greater anticancer efficacy than α-GalCer. Analyses of the correlation between structure and activity of various α-GalCer analogues on the activation of iNKT cell revealed that CD1d–glycolipid complexes interacted with the same population of iNKT cell expressing similar T-cell receptor Vβ as α-GalCer. On the other hand, those phenyl glycolipids with propensity for Th1 dominant responses showed greater binding avidity and stability than α-GalCer for iNKT T-cell receptor when complexed with CD1d. Thus, it is the avidity and stability of the ternary complexes of CD1d-glycolipid-iNKT TCR that dictate the polarity and potency of immune responses. These findings provide a key to the rationale design of immune modulating glycolipids with desirable Th1/Th2 polarity for clinical application. In addition, elucidation of α-GalCer-induced anergy, liver damage and accumulation of myeloid derived suppressor cells has offered explanation for its lacklustre anti-cancer activities in clinical trials. On other hand, the lack of such drawbacks in glycolipid analogues containing phenyl groups in the lipid tails of α-GalCer coupled with the greater binding avidity and stability of CD1d-glycolipid complex for iNKT T-cell receptor, account for their superior anti-cancer efficacy in tumor bearing mice. Further clinical development of these phenyl glycolipids is warranted.
Collapse
Affiliation(s)
- Jung-Tung Hung
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan
| | - Jing-Rong Huang
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan
| | - Alice L Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan. .,Department of Pediatrics, University of California in San Diego, San Diego, CA, USA.
| |
Collapse
|
11
|
Kharkwal SS, Arora P, Porcelli SA. Glycolipid activators of invariant NKT cells as vaccine adjuvants. Immunogenetics 2016; 68:597-610. [PMID: 27377623 DOI: 10.1007/s00251-016-0925-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/22/2016] [Indexed: 11/26/2022]
Abstract
Natural Killer T cells (NKT cells) are a subpopulation of T lymphocytes with unique phenotypic properties and a remarkably broad range of immune effector and regulatory functions. One subset of these cells, known as invariant NKT cells (iNKT cells), has become a significant focus in the search for new and better ways to enhance immunotherapies and vaccination. These unconventional T cells are characterized by their ability to be specifically activated by a range of foreign and self-derived glycolipid antigens presented by CD1d, an MHC class I-related antigen presenting molecule that has evolved to bind and present lipid antigens. The development of synthetic α-galactosylceramides as a family of powerful glycolipid agonists for iNKT cells has led to approaches for augmenting a wide variety of immune responses, including those involved in vaccination against infections and cancers. Here we review the basic background biology of iNKT cells that is relevant to their potential for improving immune responses, and summarize recent work supporting the further development of glycolipid activators of iNKT cells as a new class of vaccine adjuvants.
Collapse
Affiliation(s)
- Shalu Sharma Kharkwal
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Pooja Arora
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Steven A Porcelli
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
12
|
Abstract
The liver is an organ that has the largest amount of natural killer T(NKT) cells, which play critical roles in the pathogenesis of liver diseases. In this article, the authors summarize recent findings about the roles of NKT cells in liver injury, inflammation, fibrosis, regeneration and cancer. In brief, NKT cells accelerate liver injury by producing pro-inflammatory cytokines and directly killing hepatocytes. NKT cells are involved in complex roles in liver fibrogenesis. For instance, NKT cells inhibit liver fibrosis via suppressing hepatic stellate cell activation and can also promote liver fibrosis via enhancing liver inflammation and injury. Inactivated or weakly activated NKT cells play a minimal role in controlling liver regeneration, whilst activated NKT cells have an inhibitory effect on liver regeneration. In liver cancer, NKT cells play both pro-tumor and anti-tumor roles in controlling tumor progress.
Collapse
Affiliation(s)
- Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | | |
Collapse
|
13
|
Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents. Clin Transl Immunology 2016; 5:e69. [PMID: 27195112 PMCID: PMC4855264 DOI: 10.1038/cti.2016.14] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 12/23/2022] Open
Abstract
Certain types of glycolipids have been found to have remarkable immunomodulatory properties as a result of their ability to activate specific T lymphocyte populations with an extremely wide range of immune effector properties. The most extensively studied glycolipid reactive T cells are known as invariant natural killer T (iNKT) cells. The antigen receptors of these cells specifically recognize certain glycolipids, most notably glycosphingolipids with α-anomeric monosaccharides, presented by the major histocompatibility complex class I-like molecule CD1d. Once activated, iNKT cells can secrete a very diverse array of pro- and anti-inflammatory cytokines to modulate innate and adaptive immune responses. Thus, glycolipid-mediated activation of iNKT cells has been explored for immunotherapy in a variety of disease states, including cancer and a range of infections. In this review, we discuss the design of synthetic glycolipid activators for iNKT cells, their impact on adaptive immune responses and their use to modulate iNKT cell responses to improve immunity against infections and cancer. Current challenges in translating results from preclinical animal studies to humans are also discussed.
Collapse
|
14
|
Increased Intraepithelial Vα24 Invariant NKT Cells in the Celiac Duodenum. Nutrients 2015; 7:8960-76. [PMID: 26529008 PMCID: PMC4663572 DOI: 10.3390/nu7115444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022] Open
Abstract
Celiac Disease (CD) is an interferon (IFN)γ-mediated duodenal hypersensitivity to wheat gluten occurring in genetically predisposed individuals. Gluten-free diet (GFD) leads to a complete remission of the disease. Vα24-restricted invariant NKT (iNKT) cells are important to maintain immune homeostasis in the gut mucosa because of their unique capacity to rapidly produce large quantities of both T-helper (Th)1 and Th2 cytokines upon stimulation. We studied the presence of these cells in the CD duodenum. Duodenal biopsies were obtained from 45 untreated-CD patients (uCD), 15 Gluten Free Diet-CD patients (GFD-CD), 44 non-inflamed non-CD controls (C-controls) and 15 inflamed non-CD controls (I-controls). Two populations from Spain and Argentina were recruited. Messenger RNA (mRNA) expression of Vα24-Jα18 (invariant TCRα chain of human iNKT cells), IFNγ and intracellular transcription factor Forkhead Box P3 (Foxp3), and flow cytometry intraepithelial lymphocyte (IEL) profile were determined. Both uCD and GFD-CD patients had higher Vα24-Jα18 mRNA levels than non-CD controls (I and C-controls). The expression of Vα24-Jα18 correlated with Marsh score for the severity of mucosal lesion and also with increased mRNA IFNγ levels. uCD and GFD-CD patients had decreased mRNA expression of FoxP3 but increased expression of Vα24-Jα18, which revealed a CD-like molecular profile. Increased numbers of iNKT cells were confirmed by flow cytometry within the intraepithelial lymphocyte compartment of uCD and GFD-CD patients and correlated with Vα24-Jα18 mRNA expression. In conclusion, we have found an increased number of iNKT cells in the duodenum from both uCD and GFD-CD patients, irrespective of the mucosal status. A CD-like molecular profile, defined by an increased mRNA expression of Vα24-Jα18 together with a decreased expression of FoxP3, may represent a pro-inflammatory signature of the CD duodenum.
Collapse
|
15
|
Li X, Kawamura A, Andrews CD, Miller JL, Wu D, Tsao T, Zhang M, Oren D, Padte NN, Porcelli SA, Wong CH, Kappe SHI, Ho DD, Tsuji M. Colocalization of a CD1d-Binding Glycolipid with a Radiation-Attenuated Sporozoite Vaccine in Lymph Node-Resident Dendritic Cells for a Robust Adjuvant Effect. THE JOURNAL OF IMMUNOLOGY 2015; 195:2710-21. [PMID: 26254338 DOI: 10.4049/jimmunol.1403017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 07/07/2015] [Indexed: 01/20/2023]
Abstract
A CD1d-binding glycolipid, α-Galactosylceramide (αGalCer), activates invariant NK T cells and acts as an adjuvant. We previously identified a fluorinated phenyl ring-modified αGalCer analog, 7DW8-5, displaying nearly 100-fold stronger CD1d binding affinity. In the current study, 7DW8-5 was found to exert a more potent adjuvant effect than αGalCer for a vaccine based on radiation-attenuated sporozoites of a rodent malaria parasite, Plasmodium yoelii, also referred to as irradiated P. yoelii sporozoites (IrPySpz). 7DW8-5 had a superb adjuvant effect only when the glycolipid and IrPySpz were conjointly administered i.m. Therefore, we evaluated the effect of distinctly different biodistribution patterns of αGalCer and 7DW8-5 on their respective adjuvant activities. Although both glycolipids induce a similar cytokine response in sera of mice injected i.v., after i.m. injection, αGalCer induces a systemic cytokine response, whereas 7DW8-5 is locally trapped by CD1d expressed by dendritic cells (DCs) in draining lymph nodes (dLNs). Moreover, the i.m. coadministration of 7DW8-5 with IrPySpz results in the recruitment of DCs to dLNs and the activation and maturation of DCs. These events cause the potent adjuvant effect of 7DW8-5, resulting in the enhancement of the CD8(+) T cell response induced by IrPySpz and, ultimately, improved protection against malaria. Our study is the first to show that the colocalization of a CD1d-binding invariant NK T cell-stimulatory glycolipid and a vaccine, like radiation-attenuated sporozoites, in dLN-resident DCs upon i.m. conjoint administration governs the potency of the adjuvant effect of the glycolipid.
Collapse
Affiliation(s)
- Xiangming Li
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016
| | - Akira Kawamura
- Department of Chemistry, Hunter College of The City University of New York, New York, NY 10065
| | - Chasity D Andrews
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016
| | | | - Douglass Wu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Tiffany Tsao
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016
| | - Min Zhang
- Department of Pathology, New York University, New York, NY 10016
| | - Deena Oren
- Structural Biology Resource Center, The Rockefeller University, New York, NY 10065
| | - Neal N Padte
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037; Academia Sinica, Taipei 115-74, Taiwan, Republic of China
| | | | - David D Ho
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016;
| |
Collapse
|
16
|
Gottschalk C, Mettke E, Kurts C. The Role of Invariant Natural Killer T Cells in Dendritic Cell Licensing, Cross-Priming, and Memory CD8(+) T Cell Generation. Front Immunol 2015; 6:379. [PMID: 26284065 PMCID: PMC4517377 DOI: 10.3389/fimmu.2015.00379] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/11/2015] [Indexed: 12/23/2022] Open
Abstract
New vaccination strategies focus on achieving CD8+ T cell (CTL) immunity rather than on induction of protective antibody responses. While the requirement of CD4+ T (Th) cell help in dendritic cell (DC) activation and licensing, and in CTL memory induction has been described in several disease models, CTL responses may occur in a Th cell help-independent manner. Invariant natural killer T cells (iNKT cells) can substitute for Th cell help and license DC as well. iNKT cells produce a broad spectrum of Th1 and Th2 cytokines, thereby inducing a similar set of costimulatory molecules and cytokines in DC. This form of licensing differs from Th cell help by inducing other chemokines, while Th cell-licensed DCs produce CCR5 ligands, iNKT cell-licensed DCs produce CCL17, which attracts CCR4+ CD8+ T cells for subsequent activation. It has recently been shown that iNKT cells do not only enhance immune responses against bacterial pathogens or parasites but also play a role in viral infections. The inclusion of iNKT cell ligands in influenza virus vaccines enhanced memory CTL generation and protective immunity in a mouse model. This review will focus on the role of iNKT cells in the cross-talk with cross-priming DC and memory CD8+ T cell formation.
Collapse
Affiliation(s)
- Catherine Gottschalk
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University of Bonn , Bonn , Germany
| | - Elisabeth Mettke
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University of Bonn , Bonn , Germany
| | - Christian Kurts
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University of Bonn , Bonn , Germany
| |
Collapse
|
17
|
Guo T, Chamoto K, Hirano N. Adoptive T Cell Therapy Targeting CD1 and MR1. Front Immunol 2015; 6:247. [PMID: 26052329 PMCID: PMC4440381 DOI: 10.3389/fimmu.2015.00247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
Adoptive T cell immunotherapy has demonstrated clinically relevant efficacy in treating malignant and infectious diseases. However, much of these therapies have been focused on enhancing, or generating de novo, effector functions of conventional T cells recognizing HLA molecules. Given the heterogeneity of HLA alleles, mismatched patients are ineligible for current HLA-restricted adoptive T cell therapies. CD1 and MR1 are class I-like monomorphic molecules and their restricted T cells possess unique T cell receptor specificity against entirely different classes of antigens. CD1 and MR1 molecules present lipid and vitamin B metabolite antigens, respectively, and offer a new front of targets for T cell therapies. This review will cover the recent progress in the basic research of CD1, MR1, and their restricted T cells that possess translational potential.
Collapse
Affiliation(s)
- Tingxi Guo
- Department of Immunology, University of Toronto , Toronto, ON , Canada ; Princess Margaret Cancer Centre, University Health Network , Toronto, ON , Canada
| | - Kenji Chamoto
- Princess Margaret Cancer Centre, University Health Network , Toronto, ON , Canada
| | - Naoto Hirano
- Department of Immunology, University of Toronto , Toronto, ON , Canada ; Princess Margaret Cancer Centre, University Health Network , Toronto, ON , Canada
| |
Collapse
|
18
|
Carreño LJ, Kharkwal SS, Porcelli SA. Optimizing NKT cell ligands as vaccine adjuvants. Immunotherapy 2015; 6:309-20. [PMID: 24762075 DOI: 10.2217/imt.13.175] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NKT cells are a subpopulation of T lymphocytes with phenotypic properties of both T and NK cells and a wide range of immune effector properties. In particular, one subset of these cells, known as invariant NKT cells (iNKT cells), has attracted substantial attention because of their ability to be specifically activated by glycolipid antigens presented by a cell surface protein called CD1d. The development of synthetic α-galactosylceramides as a family of powerful glycolipid agonists for iNKT cells has led to approaches for augmenting a wide variety of immune responses, including those involved in vaccination against infections and cancers. Here, we review basic, preclinical and clinical observations supporting approaches to improving immune responses through the use of iNKT cell-activating glycolipids. Results from preclinical animal studies and preliminary clinical studies in humans identify many promising applications for this approach in the development of vaccines and novel immunotherapies.
Collapse
Affiliation(s)
- Leandro J Carreño
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
19
|
El-Dahshan A, Al-Gharabli SI, Radetzki S, Al-Tel TH, Kumar P, Rademann J. Flexible, polymer-supported synthesis of sphingosine derivatives provides ceramides with enhanced biological activity. Bioorg Med Chem 2014; 22:5506-12. [DOI: 10.1016/j.bmc.2014.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/26/2022]
|
20
|
|
21
|
Ando T, Ito H, Ohtaki H, Seishima M. Toll-like receptor agonists and alpha-galactosylceramide synergistically enhance the production of interferon-gamma in murine splenocytes. Sci Rep 2014; 3:2559. [PMID: 23994875 PMCID: PMC3759050 DOI: 10.1038/srep02559] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/10/2013] [Indexed: 11/09/2022] Open
Abstract
Vα14 natural killer T (iNKT) cells activated by alpha-galactosylceramide (GalCer) secrete a large amount of cytokines. Toll-like receptors (TLRs) play a critical role in the innate immune responses via the recognition of pathological antigen. Previously we demonstrated that the iNKT cells activated by GalCer augmented LPS-induced NO production in peritoneal cells. In this study, we examined the effect of GalCer and TLR agonists by IFN-γ production from splenocytes. Splenocytes pretreated with GalCer induced TLR3, 4, 7/8, and 9 agonists in vitro, resulting in the enhancement of IFN-γ mRNA expression. In particular, IFN-γ stimulated by GalCer and LPS was increased in NK cells and CD8 T cells, and inhibited by a neutralizing anti-IL-12 antibody. Pretreatment with GalCer enhanced the phosphorylation of IκB-α induced by LPS stimulation. The present study showed that co-stimulation of GalCer and TLR agonists powerfully induced the production of IFN-γ from splenocytes.
Collapse
Affiliation(s)
- Tatsuya Ando
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | | | | | | |
Collapse
|
22
|
Padte NN, Boente-Carrera M, Andrews CD, McManus J, Grasperge BF, Gettie A, Coelho-dos-Reis JG, Li X, Wu D, Bruder JT, Sedegah M, Patterson N, Richie TL, Wong CH, Ho DD, Vasan S, Tsuji M. A glycolipid adjuvant, 7DW8-5, enhances CD8+ T cell responses induced by an adenovirus-vectored malaria vaccine in non-human primates. PLoS One 2013; 8:e78407. [PMID: 24205224 PMCID: PMC3808339 DOI: 10.1371/journal.pone.0078407] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/11/2013] [Indexed: 01/12/2023] Open
Abstract
A key strategy to a successful vaccine against malaria is to identify and develop new adjuvants that can enhance T-cell responses and improve protective immunity. Upon co-administration with a rodent malaria vaccine in mice, 7DW8-5, a recently identified novel analog of α-galactosylceramide (α-GalCer), enhances the level of malaria-specific protective immune responses more strongly than the parent compound. In this study, we sought to determine whether 7DW8-5 could provide a similar potent adjuvant effect on a candidate human malaria vaccine in the more relevant non-human primate (NHP) model, prior to committing to clinical development. The candidate human malaria vaccine, AdPfCA (NMRC-M3V-Ad-PfCA), consists of two non-replicating recombinant adenoviral (Ad) vectors, one expressing the circumsporozoite protein (CSP) and another expressing the apical membrane antigen-1 (AMA1) of Plasmodium falciparum. In several phase 1 clinical trials, AdPfCA was well tolerated and demonstrated immunogenicity for both humoral and cell-mediated responses. In the study described herein, 25 rhesus macaques received prime and boost intramuscular (IM) immunizations of AdPfCA alone or with an ascending dose of 7DW8-5. Our results indicate that 7DW8-5 is safe and well-tolerated and provides a significant enhancement (up to 9-fold) in malaria-specific CD8+ T-cell responses after both priming and boosting phases, supporting further clinical development.
Collapse
Affiliation(s)
- Neal N. Padte
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Mar Boente-Carrera
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Chasity D. Andrews
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Jenny McManus
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Brooke F. Grasperge
- Tulane National Primate Research Center, Tulane University Medical Center, Covington, Louisiana, United States of America
| | - Agegnehu Gettie
- Tulane National Primate Research Center, Tulane University Medical Center, Covington, Louisiana, United States of America
| | - Jordana G. Coelho-dos-Reis
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Xiangming Li
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Douglass Wu
- Department of Chemistry, the Scripps Research Institute, La Jolla, California, United States of America
| | - Joseph T. Bruder
- Research, GenVec, Inc., Gaithersburg, Maryland, United States of America
| | - Martha Sedegah
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Noelle Patterson
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Thomas L. Richie
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Chi-Huey Wong
- Department of Chemistry, the Scripps Research Institute, La Jolla, California, United States of America
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Sandhya Vasan
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
- * E-mail: (SV); (MT)
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
- * E-mail: (SV); (MT)
| |
Collapse
|
23
|
Wang H, Feng D, Park O, Yin S, Gao B. Invariant NKT cell activation induces neutrophil accumulation and hepatitis: opposite regulation by IL-4 and IFN-γ. Hepatology 2013; 58:1474-85. [PMID: 23686838 PMCID: PMC3758807 DOI: 10.1002/hep.26471] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/11/2013] [Indexed: 01/12/2023]
Abstract
UNLABELLED Alpha-Galactosylceramide (α-Galcer), a specific agonist for invariant natural killer T (iNKT) cells, is being evaluated in clinical trials for the treatment of viral hepatitis and liver cancer. However, the results from α-Galcer treatment are mixed, partially because of the variety of cytokines produced by activated iNKT cells that have an unknown synergistic effect on the progression of liver disease. It is well documented that injection of α-Galcer induces mild hepatitis with a rapid elevation in the levels of interleukin (IL)-4 and a delayed elevation in the levels of interferon-gamma (IFN-γ), and both of these cytokines are thought to mediate many functions of iNKT cells. Surprisingly, genetic deletion of both IL-4 and IFN-γ aggravated, rather than abolished, α-Galcer-induced iNKT hepatitis. Moreover, genetic ablation of IL-4, the IL-4 receptor, or its downstream signaling molecule signal transducer and activator of transcription (STAT)6 ameliorated α-Galcer-induced neutrophil infiltration, liver injury, and hepatitis. In contrast, genetic deletion of IFN-γ, the IFN-γ receptor, or its downstream signaling molecule STAT1 enhanced liver neutrophil accumulation, thereby exacerbating liver injury and hepatitis. Moreover, depletion of neutrophils eradicated α-Galcer-induced liver injury in wild-type, STAT1 knockout, and IFN-γ knockout mice. CONCLUSION Our results propose a model in which activated iNKT cells rapidly release IL-4, which promotes neutrophil survival and hepatitis but also sequentially produce IFN-γ, which acts in a negative feedback loop to ameliorate iNKT hepatitis by inducing neutrophil apoptosis. Thus, modification of iNKT production of IL-4 and IFN-γ may have the potential to improve the efficacy of α-Galcer in the treatment of liver disease.
Collapse
Affiliation(s)
- Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | | | | | | | | |
Collapse
|
24
|
Gao B, Radaeva S. Natural killer and natural killer T cells in liver fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:1061-9. [PMID: 23022478 PMCID: PMC3552008 DOI: 10.1016/j.bbadis.2012.09.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/20/2012] [Indexed: 12/22/2022]
Abstract
The liver lymphocyte population is enriched with natural killer (NK) cells, which play a key role in host defense against viral infection and tumor transformation. Recent evidence from animal models suggests that NK cells also play an important role in inhibiting liver fibrosis by selectively killing early or senescence activated hepatic stellate cells (HSCs) and by producing the anti-fibrotic cytokine IFN-γ. Furthermore, clinical studies have revealed that human NK cells can kill primary human HSCs and that the ability of NK cells from HCV patients to kill HSCs is enhanced and correlates inversely with the stages of liver fibrosis. IFN-α treatment enhances, while other factors (e.g., alcohol, TGF-β) attenuate, the cytotoxicity of NK cells against HSCs, thereby differentially regulating liver fibrogenesis. In addition, the mouse liver lymphocyte population is also enriched for natural killer T (NKT) cells, whereas human liver lymphocytes have a much lower percentage of NKT cells. Many studies suggest that NKT cells promote liver fibrogenesis by producing pro-fibrotic cytokines such as IL-4, IL-13, hedgehog ligands, and osteopontin; however, NKT cells may also attenuate liver fibrosis under certain conditions by killing HSCs and by producing IFN-γ. Finally, the potential for NK and NKT cells to be used as therapeutic targets for anti-fibrotic therapy is discussed. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
25
|
Subleski JJ, Jiang Q, Weiss JM, Wiltrout RH. The split personality of NKT cells in malignancy, autoimmune and allergic disorders. Immunotherapy 2011; 3:1167-84. [PMID: 21995570 PMCID: PMC3230042 DOI: 10.2217/imt.11.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
NKT cells are a heterogeneous subset of specialized, self-reactive T cells, with innate and adaptive immune properties, which allow them to bridge innate and adaptive immunity and profoundly influence autoimmune and malignant disease outcomes. NKT cells mediate these activities through their ability to rapidly express pro- and anti-inflammatory cytokines that influence the type and magnitude of the immune response. Not only do NKT cells regulate the functions of other cell types, but experimental evidence has found NKT cell subsets can modulate the functions of other NKT subsets. Depending on underlying mechanisms, NKT cells can inhibit or exacerbate autoimmunity and malignancy, making them potential targets for disease intervention. NKT cells can respond to foreign and endogenous antigenic glycolipid signals that are expressed during pathogenic invasion or ongoing inflammation, respectively, allowing them to rapidly react to and influence a broad array of diseases. In this article we review the unique development and activation pathways of NKT cells and focus on how these attributes augment or exacerbate autoimmune disorders and malignancy. We also examine the growing evidence that NKT cells are involved in liver inflammatory conditions that can contribute to the development of malignancy.
Collapse
Affiliation(s)
- Jeff J Subleski
- Laboratory of Experimental, Immunology, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| | - Qun Jiang
- Laboratory of Experimental, Immunology, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| | - Jonathan M Weiss
- Laboratory of Experimental, Immunology, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| | - Robert H Wiltrout
- Laboratory of Experimental, Immunology, Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| |
Collapse
|
26
|
Preventing and curing citrulline-induced autoimmune arthritis in a humanized mouse model using a Th2-polarizing iNKT cell agonist. Immunol Cell Biol 2011; 90:630-9. [PMID: 21912419 DOI: 10.1038/icb.2011.78] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Invariant natural killer T (iNKT) cells are innate lymphocytes with unique reactivity to glycolipid antigens bound to non-polymorphic CD1d molecules. They are capable of rapidly releasing pro- and/or anti-inflammatory cytokines and constitute attractive targets for immunotherapy of a wide range of diseases including autoimmune disorders. In this study, we have explored the beneficial effects of OCH, a Th2-polarizing glycolipid agonist of iNKT cells, in a humanized mouse model of rheumatoid arthritis (RA) in which citrullinated human proteins are targeted by autoaggressive immune responses in mice expressing an RA susceptibility human leukocyte antigen (HLA) DR4 molecule. We found for the first time that treatment with OCH both prevents and cures citrulline-induced autoimmune arthritis as evidenced by resolved ankle swelling and reversed histopathological changes associated with arthritis. Also importantly, OCH treatment blocked the arthritogenic capacity of citrullinated antigen-experienced splenocytes without compromising their global responsiveness or altering the proportion of splenic naturally occurring CD4(+)CD25(+)FoxP3(+) regulatory T cells. Interestingly, administering the Th1-promoting iNKT cell glycolipid ligand α-C-galactosylceramide into HLA-DR4 transgenic mice increased the incidence of arthritis in these animals and exacerbated their clinical symptoms, strongly suggesting a role for Th1 responses in the pathogenesis of citrulline-induced arthritis. Therefore, our findings indicate a role for Th1-mediated immunopathology in citrulline-induced arthritis and provide the first evidence that iNKT cell manipulation by Th2-skewing glycolipids may be of therapeutic value in this clinically relevant model, a finding that is potentially translatable to human RA.
Collapse
|
27
|
Duwaerts CC, Gregory SH. Targeting the diverse immunological functions expressed by hepatic NKT cells. Expert Opin Ther Targets 2011; 15:973-88. [PMID: 21564001 DOI: 10.1517/14728222.2011.584874] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION NKT cells comprise approximately 30% of the hepatic lymphoid population in mice (∼ 50% in humans). Most mouse hepatic NKT cells [invariant (i)NKT cells] express T cell receptors, composed of invariant Vα14Jα18 chains. Unlike conventional T cells, iNKT cells recognize glycolipids presented in association with MHC class Ib (CD1d) molecules. Purportedly, iNKT cells serve key functions in several immunological events; the nature of these is often unclear. The consequences of hepatic iNKT cell activation can be beneficial or detrimental. α-Galactosylceramide stimulates the production of IFN-γ and IL-4. The reciprocal suppression exhibited by these cytokines limits the potential therapeutic value of α-galactosylceramide. Efforts are ongoing to develop α-galactosylceramide analogs that modulate iNKT cell activity and selectively promote IFN-γ or IL-4. AREAS COVERED An overview of hepatic iNKT cells and their purported role in liver disease. Efforts to develop therapeutic agents that promote their beneficial contributions. EXPERT OPINION While a growing body of literature documents the differential effects of α-GalCer analogs on IFN-γ and IL-4 production, the effects of these analogs on other iNKT cell activities remain to be determined. An exhaustive examination of the effects of these analogs on inflammation and liver injury in animal models remains prior to considering their utility in clinical trials.
Collapse
Affiliation(s)
- Caroline C Duwaerts
- Rhode Island Hospital and The Warren Alpert Medical School at Brown University, Department of Medicine, Providence, RI 02903, USA
| | | |
Collapse
|
28
|
Van Kaer L, Parekh VV, Wu L. Invariant NK T cells: potential for immunotherapeutic targeting with glycolipid antigens. Immunotherapy 2011; 3:59-75. [PMID: 21174558 DOI: 10.2217/imt.10.85] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Invariant NK T (iNKT) cells are a subset of T lymphocytes that recognize glycolipid antigens bound with the antigen-presenting molecule CD1d. iNKT cells have potent immunoregulatory activities that can promote or suppress immune responses during different pathological conditions. These immunoregulatory properties can be harnessed for therapeutic purposes with cognate glycolipid antigens, such as the marine sponge-derived glycosphingolipid α-galactosylceramide. Preclinical studies have shown substantial promise for iNKT cell-based treatments of infections, cancer and autoimmune and inflammatory diseases. Translation of these preclinical studies to the clinic, while faced with some obstacles, has already had some initial success. In this article, we review the immunodulatory activities of iNKT cells and the potential for developing iNKT cell-based prophylactic and curative therapies of human disease.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Microbiology & Immunology, Vanderbilt University School of Medicine, Medical Center North, Room A-5301, 1161 21st Avenue South, Nashville, TN 37232-32363, USA.
| | | | | |
Collapse
|
29
|
Use of the NEO strategy (Nucleophilic addition/Epoxide Opening) for the synthesis of a new C-galactoside ester analogue of KRN 7000. Bioorg Med Chem Lett 2011; 21:2510-4. [DOI: 10.1016/j.bmcl.2011.02.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/10/2011] [Accepted: 02/12/2011] [Indexed: 11/23/2022]
|
30
|
Hepatitis C virus soluble E2 in combination with QuilA and CpG ODN induces neutralizing antibodies in mice. Vaccine 2011; 29:2910-7. [PMID: 21338680 DOI: 10.1016/j.vaccine.2011.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/16/2010] [Accepted: 02/05/2011] [Indexed: 11/22/2022]
Abstract
Several studies have emphasized the importance of an early, highly neutralizing antibody response in the clearance of Hepatitis C virus (HCV) infection. The envelope glycoprotein E2 is a major target for HCV neutralizing antibodies. Here, we compared antibody responses in mice immunized with native soluble E2 (sE2) from the H77 1a isolate coupled with different adjuvants or combinations of adjuvants. Adjuvanting sE2 with Freund's, monophosphoryl lipid A (MPL), cytosine phosphorothioate guanine oligodeoxynucleotide (CpG ODN), or alpha-galactosylceramide (αGalCer) derivatives elicited only moderate antibody responses. In contrast, immunizations with sE2 and QuilA elicited exceptionally high anti-E2 antibody titers. Sera from these mice effectively neutralized HCV pseudoparticles (HCVpp) 1a entry. Moreover, the combination of QuilA and CpG ODN further enhanced neutralizing antibody titers wherein cross-neutralization of HCVpp 4 was observed. We conclude that the combination of QuilA and CpG ODN is a promising adjuvant combination that should be further explored for the development of an HCV subunit vaccine. Our work also emphasizes that the ideal combination of adjuvant and immunogen has to be determined empirically.
Collapse
|
31
|
Motohashi S, Nakayama T. Invariant natural killer T cell-based immunotherapy for cancer. Immunotherapy 2011; 1:73-82. [PMID: 20635975 DOI: 10.2217/1750743x.1.1.73] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human Valpha24 invariant natural killer T (iNKT) cells are a distinct lymphocyte population, characterized by an invariant T-cell receptor Valpha24 chain paired mainly with Valpha11. Valpha24 iNKT cells are activated by a glycolipid ligand - alpha-galactosylceramide - and produce a large amount of Th1 and Th2 cytokines, thereby modulating the function of other cells. iNKT cells have the capability to control a wide variety of immune responses, including antitumor immunity. Abnormalities in the number and function of Valpha24 iNKT cells have been observed in patients with malignant diseases accompanied with a poor clinical outcome. Therefore, therapeutic strategies that focused on the restoration of Valpha24 iNKT cell population and function would be a reasonable rationale for the treatment of cancer. In this article, the progress to date in the clinical studies of iNKT cell-based immunotherapy is briefly reviewed and the role of Valpha24 iNKT cells in cancer immunotherapy is highlighted.
Collapse
Affiliation(s)
- Shinichiro Motohashi
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | |
Collapse
|
32
|
Miller DS, Finnie J, Bowden TR, Scholz AC, Oh S, Kok T, Burrell CJ, Trinidad L, Boyle DB, Li P. Preclinical efficacy studies of influenza A haemagglutinin precursor cleavage loop peptides as a potential vaccine. J Gen Virol 2011; 92:1152-1161. [PMID: 21289160 DOI: 10.1099/vir.0.028985-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A universal influenza vaccine that does not require annual reformulation would have clear advantages over the currently approved seasonal vaccine. In this study, we combined the mucosal adjuvant alpha-galactosylceramide (αGalCer) and peptides designed across the highly conserved influenza precursor haemagglutinin (HA(0)) cleavage loop as a vaccine. Peptides designed across the HA(0) of influenza A/H3N2 viruses, delivered to mice via the intranasal route with αGalCer as an adjuvant, provided 100 % protection following H3N2 virus challenge. Similarly, intranasal inoculation of peptides across the HA(0) of influenza A/H5N1 with αGalCer completely protected mice against heterotypic challenge with H3N2 virus. Our data suggest that these peptide vaccines effectively inhibited subsequent influenza A/H3N2 virus replication. In contrast, only 20 % of mice vaccinated with αGalCer-adjuvanted peptides spanning the HA(0) of H5N1 survived homologous viral challenge, possibly because the HA(0) of this virus subtype is cleaved by intracellular furin-like enzymes. Results of these studies demonstrated that HA(0) peptides adjuvanted with αGalCer have the potential to form the basis of a synthetic, intranasal influenza vaccine.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Body Weight
- Cross Protection
- Female
- Galactosylceramides/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Histocytochemistry
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Lung/pathology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Microscopy
- Orthomyxoviridae Infections/pathology
- Orthomyxoviridae Infections/prevention & control
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Viral Load
Collapse
Affiliation(s)
- Darren S Miller
- Microbiology-IMVS, SA Pathology, Frome Road, Adelaide, SA 5000, Australia
| | - John Finnie
- Veterinary Services, SA Pathology, School of Veterinary Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Timothy R Bowden
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia
| | - Anita C Scholz
- University of South Australia, Adelaide, SA 5005, Australia
| | - Sawyin Oh
- Microbiology-IMVS, SA Pathology, Frome Road, Adelaide, SA 5000, Australia
| | - Tuckweng Kok
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
- Microbiology-IMVS, SA Pathology, Frome Road, Adelaide, SA 5000, Australia
| | - Christopher J Burrell
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
- Microbiology-IMVS, SA Pathology, Frome Road, Adelaide, SA 5000, Australia
| | - Lee Trinidad
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia
| | - David B Boyle
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia
| | - Peng Li
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
- Microbiology-IMVS, SA Pathology, Frome Road, Adelaide, SA 5000, Australia
| |
Collapse
|
33
|
Cristillo AD, Ferrari MG, Hudacik L, Lewis B, Galmin L, Bowen B, Thompson D, Petrovsky N, Markham P, Pal R. Induction of mucosal and systemic antibody and T-cell responses following prime-boost immunization with novel adjuvanted human immunodeficiency virus-1-vaccine formulations. J Gen Virol 2011; 92:128-40. [PMID: 21169215 PMCID: PMC3052530 DOI: 10.1099/vir.0.023242-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
As sexual transmission of human immunodeficiency virus-1 (HIV-1) occurs via the mucosa, an ideal HIV-1 vaccine should induce both mucosal and systemic immunity. We therefore sought to evaluate the induction of mucosal responses using a DNA env prime–gp120 protein boost approach in which sequential nasal and parenteral protein administration was performed with two novel carbohydrate-based adjuvants. These adjuvants, Advax-M and Advax-P, were specifically designed for mucosal and systemic immune enhancement, respectively. Murine intranasal immunization with gp120/Advax-M adjuvant elicited gp120-specific IgA in serum and mucosal secretions that was markedly enhanced by DNA priming. Boosting of DNA-primed mice with gp120/Advax-M and gp120/Advax-P by sequential intranasal and intramuscular immunization, or vice versa, elicited persistent mucosal gp120-specific IgA, systemic IgG and memory T- and B-cell responses. Induction of homologous, but not heterologous, neutralizing activity was noted in the sera of all immunized groups. While confirmation of efficacy is required in challenge studies using non-human primates, these results suggest that the combination of DNA priming with sequential nasal and parenteral protein boosting, with appropriate mucosal and systemic adjuvants, could generate strong mucosal and systemic immunity and may block HIV-1 mucosal transmission and infection.
Collapse
Affiliation(s)
- Anthony D Cristillo
- Advanced BioScience Laboratories Inc., 5510 Nicholson Lane, Kensington, MD 20895, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wu L, Van Kaer L. Natural killer T cells in health and disease. Front Biosci (Schol Ed) 2011; 3:236-51. [PMID: 21196373 DOI: 10.2741/s148] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural killer T (NKT) cells are a subset of T lymphocytes that share surface markers and functional characteristics with both conventional T lymphocytes and natural killer cells. Most NKT cells express a semi-invariant T cell receptor that reacts with glycolipid antigens presented by the major histocompatibility complex class I-related protein CD1d on the surface of antigen-presenting cells. NKT cells become activated during a variety of infections and inflammatory conditions, rapidly producing large amounts of immunomodulatory cytokines. NKT cells can influence the activation state and functional properties of multiple other cell types in the immune system and, thus, modulate immune responses against infectious agents, autoantigens, tumors, tissue grafts and allergens. One attractive aspect of NKT cells is that their immunomodulatory activities can be readily harnessed with cognate glycolipid antigens, such as the marine sponge-derived glycosphingolipid alpha-galactosylceramide. These properties of NKT cells are being exploited for therapeutic intervention to prevent or treat cancer, infections, and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Lan Wu
- Department of Microbiology and Immunology, Room A-5301, Medical Center North, 1161 21st Avenue South, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | |
Collapse
|
35
|
Banchet-Cadeddu A, Hénon E, Dauchez M, Renault JH, Monneaux F, Haudrechy A. The stimulating adventure of KRN 7000. Org Biomol Chem 2011; 9:3080-104. [DOI: 10.1039/c0ob00975j] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Padte NN, Li X, Tsuji M, Vasan S. Clinical development of a novel CD1d-binding NKT cell ligand as a vaccine adjuvant. Clin Immunol 2010; 140:142-51. [PMID: 21185784 DOI: 10.1016/j.clim.2010.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/08/2010] [Accepted: 11/16/2010] [Indexed: 01/12/2023]
Abstract
Natural killer T (NKT) cells are known to play a role against certain microbial infections, including malaria and HIV, two major global infectious diseases. Strategies that can harness and amplify the immunotherapeutic potential of NKT cells can serve as powerful tools in the fight against such diseases. 7DW8-5, a novel glycolipid, may be one such tool. The interaction of 7DW8-5 with CD1d molecules induces activation of NKT cells, thereby activating various immune-competent cells including dendritic cells (DCs) to provide a significant adjuvant effect for several vaccines. This review discusses the discovery and characterization of 7DW8-5 and the practical considerations of its preclinical and clinical development as a potential glycolipid adjuvant for candidate malaria and HIV vaccines.
Collapse
Affiliation(s)
- Neal N Padte
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | | | | | | |
Collapse
|
37
|
Schneiders FL, Scheper RJ, von Blomberg BME, Woltman AM, Janssen HLA, van den Eertwegh AJM, Verheul HMW, de Gruijl TD, van der Vliet HJ. Clinical experience with α-galactosylceramide (KRN7000) in patients with advanced cancer and chronic hepatitis B/C infection. Clin Immunol 2010; 140:130-41. [PMID: 21169066 DOI: 10.1016/j.clim.2010.11.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/12/2010] [Accepted: 11/16/2010] [Indexed: 01/12/2023]
Abstract
For over a century, research has sought ways to boost the immune system in order to eradicate tumors and viruses that exist after escaping immunosurveillance. For the treatment of cancer and hepatitis immunotherapeutic strategies have overall had limited clinical success. An urgent need exists therefore to introduce more effective therapeutic approaches. Invariant (i)NKT cells constitute a conserved T lymphocyte lineage with dominant immunoregulatory, antitumor and antiviral effector cell properties. iNKT specifically recognize the glycolipid α-galactosylceramide in the context of CD1d resulting in their activation. Activated iNKT can promote the development of a long-lasting Th1 biased proinflammatory immune response as demonstrated in multiple tumor-metastasis and viral infection models. Here, we will provide a brief overview of the preclinical data of α-galactosylceramide that formed the basis for subsequent clinical trials in patients with advanced cancer and chronic hepatitis B/C, and elaborate on our own clinical experience with α-galactosylceramide in these patient groups.
Collapse
Affiliation(s)
- Famke L Schneiders
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang W, Xia C, Nadas J, Chen W, Gu L, Wang PG. Introduction of aromatic group on 4'-OH of α-GalCer manipulated NKT cell cytokine production. Bioorg Med Chem 2010; 19:2767-76. [PMID: 21439833 DOI: 10.1016/j.bmc.2010.11.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 01/12/2023]
Abstract
The glycosphingolipid α-GalCer has been found to influence mammalian immune system significantly through the natural killer T cells. Unfortunately, the pre-clinical and clinical studies revealed several critical disadvantages that prevented the therapeutic application of α-GalCer in treating cancer and other diseases. Recently, the detailed illustration of the CD1d/α-GalCer/NKT TCR complex crystal structural, together with other latest structural and biological understanding on glycolipid ligands and NKT cells, provided a new platform for developing novel glycolipid ligands with optimized therapeutic effects. Here, we designed a series of novel aromatic group substituted α-GalCer analogues. The biological activity of these analogues was characterized and the results showed the unique substitution group manipulated the immune responses of NKT cells. Computer modeling and simulation study indicated the analogues had unique binding mode when forming CD1d/glycolipid/NKT TCR complex, comparing to original α-GalCer.
Collapse
Affiliation(s)
- Wenpeng Zhang
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
39
|
NKT cell costimulation: experimental progress and therapeutic promise. Trends Mol Med 2010; 17:65-77. [PMID: 21087900 DOI: 10.1016/j.molmed.2010.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 01/23/2023]
Abstract
Invariant natural killer T (iNKT) cells are innate lymphocytes with unique specificity for glycolipid antigens and remarkable immunomodulatory properties. The role of costimulatory interactions in iNKT cell responses has recently come under scrutiny. Although iNKT cells and their prototype glycolipid agonist α-galactosylceramide (α-GalCer) have shown promise in several clinical trials conducted in patients with cancer or viral diseases, current iNKT cell-based therapies are far from effective. The concomitant targeting of T cell receptors (TCRs) and costimulatory molecules on iNKT cells represents an exciting new opportunity to optimize such therapeutic approaches. Here, we review recent advances in our understanding of iNKT cell costimulation and discuss potential treatment modalities based on the responsiveness of iNKT cells to disease-tailored glycolipids and select costimulatory ligands.
Collapse
|
40
|
Mannik LA, Chin-Yee I, Sharif S, Van Kaer L, Delovitch TL, Haeryfar SMM. Engagement of glycosylphosphatidylinositol-anchored proteins results in enhanced mouse and human invariant natural killer T cell responses. Immunology 2010; 132:361-75. [PMID: 21070234 DOI: 10.1111/j.1365-2567.2010.03369.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a small subset of lymphocytes that recognize glycolipid antigens in the context of CD1d and consequently produce large quantities of pro-inflammatory and/or anti-inflammatory cytokines. Several transmembrane glycoproteins have been implicated in the co-stimulation of iNKT cell responses. However, whether glycosylphosphatidylinositol (GPI)-anchored proteins can function in this capacity is not known. Here, we demonstrate that antibody-mediated cross-linking of the prototype mouse GPI-anchored protein Thy-1 (CD90) on the surface of a double-negative (CD4⁻CD8⁻) iNKT cell line leads to cytokine production at both the mRNA and protein levels. In addition, Thy-1 triggering enhanced cytokine secretion by iNKT cells that were concomitantly stimulated with α-galactosylceramide (αGC), consistent with a co-stimulatory role for Thy-1 in iNKT cell activation. This was also evident when a CD4+ mouse iNKT cell line or primary hepatic NKT cells were stimulated with αGC and/or anti-Thy-1 antibody. Cross-linking Ly-6A/E, another GPI-anchored protein, could also boost cytokine secretion by αGC-stimulated iNKT cells, suggesting that the observed effects reflect a general property of GPI-anchored proteins. To extend these results from mouse to human cells, we focused on CD55, a GPI-anchored protein that, unlike Thy-1, is expressed on human iNKT cells. Cross-linking CD55 augmented αGC-induced iNKT cell responses as judged by more vigorous proliferation and higher CD69 expression. Collectively, these findings demonstrate for the first time that GPI-anchored proteins are able to co-stimulate CD1d-restricted, glycolipid-reactive iNKT cells in both mice and humans.
Collapse
Affiliation(s)
- Lisa A Mannik
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Stuart JK, Bisch SP, Leon-Ponte M, Hayatsu J, Mazzuca DM, Vareki SM, Haeryfar SM. Negative modulation of invariant natural killer T cell responses to glycolipid antigens by p38 MAP kinase. Int Immunopharmacol 2010; 10:1068-76. [DOI: 10.1016/j.intimp.2010.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/19/2010] [Accepted: 06/07/2010] [Indexed: 12/21/2022]
|
42
|
Van Kaer L, Parekh VV, Wu L. Invariant natural killer T cells: bridging innate and adaptive immunity. Cell Tissue Res 2010; 343:43-55. [PMID: 20734065 DOI: 10.1007/s00441-010-1023-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/13/2010] [Indexed: 02/08/2023]
Abstract
Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North, Room A-5301, 1161 21st Ave. South, Nashville, TN 37232-2363, USA.
| | | | | |
Collapse
|
43
|
Saito TI, Li HW, Sykes M. Invariant NKT cells are required for antitumor responses induced by host-versus-graft responses. THE JOURNAL OF IMMUNOLOGY 2010; 185:2099-105. [PMID: 20631307 DOI: 10.4049/jimmunol.0901985] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Based on clinical observations, we have previously shown in a murine model that recipient leukocyte infusion (RLI) induces a host-versus-graft reaction in mixed bone marrow chimeras and that rejection of donor cells leads to a specific antitumor response against recipient malignancies. This response is dependent on T cells and IFN-gamma. We investigated the role of NKT cells (NKTs) in this phenomenon. Depletion of recipient NK1.1(+) cells led to loss of an anti-tumor effect induced by RLI in mixed bone marrow chimeras. In recipients specifically lacking host invariant NKT cells (iNKTs), RLI did not induce an antitumor effect, indicating a critical role for recipient iNKTs. Conversely, specific activation of iNKTs enhanced the anti-tumor effect induced by RLI. Following RLI, recipient iNKTs, NK cells, dendritic cells (DCs), and CD8 T cells were activated. CD8 T cells were the major producers of IFN-gamma. Lack of recipient iNKTs resulted in failure of activation of NK cells and DCs by RLI. Our studies demonstrate a central role for iNKTs in promoting RLI-induced anti-tumor effects and suggest that this pathway involved promotion of the activation of recipient NK cells and DCs.
Collapse
Affiliation(s)
- Toshiki I Saito
- Bone Marrow Transplantation Section, Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| | | | | |
Collapse
|
44
|
Bontkes HJ, Moreno M, Hangalapura B, Lindenberg JJ, de Groot J, Lougheed S, van der Vliet HJJ, van den Eertwegh AJM, de Gruijl TD, von Blomberg BME, Scheper RJ. Attenuation of invariant natural killer T-cell anergy induction through intradermal delivery of alpha-galactosylceramide. Clin Immunol 2010; 136:364-74. [PMID: 20570567 DOI: 10.1016/j.clim.2010.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 04/05/2010] [Accepted: 04/28/2010] [Indexed: 11/28/2022]
Abstract
CD1d restricted, alpha-galactosylceramide (alphaGC) responsive invariant (i)NKT cells positively regulate immune responses. Both intravenous and intradermal administered alphaGC are known to activate iNKT cells. iNKT cells become unresponsive to a second intravenous alphaGC injection, whereas no data are available regarding potential anergy upon intradermal administration. Here, comparative analysis of two intradermal versus two intravenous injections in mice demonstrated that iNKT cell anergy was prevented by intradermal injection and when combined with a vaccine, superior tumor protection afforded by intradermally administered alphaGC. Moreover, human skin dendritic cells (DC) took up intradermally injected alphaGC and activated iNKT cells upon migration, while iNKT cells in human skin-draining lymph nodes expanded in response to alphaGC presented either by exogenously added DC or by CD1d positive antigen presenting cells in the lymph nodes. In conclusion, glycolipids such as alphaGC may greatly improve the efficacy of skin immunization strategies, targeting cutaneous and lymph node DC.
Collapse
Affiliation(s)
- Hetty J Bontkes
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gao B, Radaeva S, Park O. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J Leukoc Biol 2009; 86:513-28. [PMID: 19542050 DOI: 10.1189/jlb.0309135] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatic lymphocytes are enriched in NK and NKT cells that play important roles in antiviral and antitumor defenses and in the pathogenesis of chronic liver disease. In this review, we discuss the differential distribution of NK and NKT cells in mouse, rat, and human livers, the ultrastructural similarities and differences between liver NK and NKT cells, and the regulation of liver NK and NKT cells in a variety of murine liver injury models. We also summarize recent findings about the role of NK and NKT cells in liver injury, fibrosis, and repair. In general, NK and NKT cells accelerate liver injury by producing proinflammatory cytokines and killing hepatocytes. NK cells inhibit liver fibrosis via killing early-activated and senescent-activated stellate cells and producing IFN-gamma. In regulating liver fibrosis, NKT cells appear to be less important than NK cells as a result of hepatic NKT cell tolerance. NK cells inhibit liver regeneration by producing IFN-gamma and killing hepatocytes; however, the role of NK cells on the proliferation of liver progenitor cells and the role of NKT cells in liver regeneration have been controversial. The emerging roles of NK/NKT cells in chronic human liver disease will also be discussed.Understanding the role of NK and NKT cells in the pathogenesis of chronic liver disease may help us design better therapies to treat patients with this disease.
Collapse
Affiliation(s)
- Bin Gao
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
46
|
Woltman AM, Ter Borg MJ, Binda RS, Sprengers D, von Blomberg BME, Scheper RJ, Hayashi K, Nishi N, Boonstra A, van der Molen R, Janssen HLA. Alpha-galactosylceramide in chronic hepatitis B infection: results from a randomized placebo-controlled Phase I/II trial. Antivir Ther 2009; 14:809-18. [PMID: 19812443 DOI: 10.3851/imp1295] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The glycosphingolipid alpha-galactosylceramide (alpha-GalCer) is known to stimulate invariant natural killer T-cells (iNKTs) and is able to induce powerful antiviral immune responses. The present dose-escalating randomized placebo-controlled Phase I/II trial aimed to investigate antiviral activity and safety of alpha-GalCer as a novel class of treatment for chronic hepatitis B patients. METHODS Patients were randomly assigned to 0.1 microg/kg (n=8), 1 microg/kg (n=6) or 10 microg/kg (n=6) alpha-GalCer or placebo (n=7) treatment. RESULTS Almost all alpha-GalCer-treated patients showed a rapid and strong decrease in natural killer T-cell (NKT) numbers. Patients with high baseline NKT numbers showed immune activation, including natural killer cell activation, increased serum tumour necrosis factor-alpha and interleukin-6 levels, and development of fever. Three patients demonstrated a transient decrease in hepatitis B virus (HBV) DNA. Only one alpha-GalCer-treated patient had a sustained decrease in HBV DNA at the end of follow-up. Four patients discontinued therapy because of fever shortly after drug administration. No significant side effects were observed. CONCLUSIONS alpha-GalCer (0.1-10 microg/kg) used as monotherapy for chronic hepatitis B infection resulted in a strong decrease of NKTs, but did not clearly affect HBV DNA and alanine aminotransferase levels. alpha-GalCer was poorly tolerated and is unlikely to be suitable as an alternative monotherapy to the current treatment regimen.
Collapse
Affiliation(s)
- Andrea M Woltman
- Department of Gastroenterology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wu L, Gabriel CL, Parekh VV, Van Kaer L. Invariant natural killer T cells: innate-like T cells with potent immunomodulatory activities. ACTA ACUST UNITED AC 2009; 73:535-45. [DOI: 10.1111/j.1399-0039.2009.01256.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Abstract
Chronic, persistent HCV infection is a public health issue. It often progresses to life-threatening complications, including liver cirrhosis and hepatocellular carcinoma. The current standard therapy is a combination of pegylated IFN-alpha and ribavirin. This therapy results in a sustained virologic response in only 50% of patients infected with HCV genotype 1 and is often accompanied with substantial side-effects. Therefore, it is imperative to develop novel therapies with higher efficacy and less substantial side-effects. Impaired immune responses to HCV are key features of chronic HCV infection; thus, intervention strategies typically involve boosting the immune responses against HCV. These immune-based therapies for chronic HCV infection include therapeutic vaccines, antagonists of T cell inhibitory factors, anti-HCV neutralizing antibodies, cytokines, and agonists for TLRs. Currently, various types of immune-based therapies are under development that might be used as a monotherapy or in combination with other antiviral drugs for the treatment of chronic HCV infection.
Collapse
Affiliation(s)
- Dong-Yeop Chang
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | | |
Collapse
|
49
|
Kim S, Lalani S, Parekh VV, Wu L, Van Kaer L. Glycolipid ligands of invariant natural killer T cells as vaccine adjuvants. Expert Rev Vaccines 2009; 7:1519-32. [PMID: 19053208 DOI: 10.1586/14760584.7.10.1519] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Invariant natural killer T (iNKT) cells are a unique subset of T lymphocytes that recognize glycolipid antigens in the context of the antigen-presenting molecule CD1d. Upon glycolipid antigen stimulation, iNKT cells rapidly produce copious amounts of immunomodulatory cytokines, leading to potent activation of a variety of innate and adaptive immune cells. These immune-potentiating properties of iNKT cells hold great promise for the development of vaccine adjuvants. This review aims to summarize the immunomodulatory activities of iNKT cell ligands and to discuss prospects for developing iNKT cell-based vaccine adjuvants.
Collapse
Affiliation(s)
- Sungjune Kim
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
50
|
Invariant natural killer T cells and immunotherapy of cancer. Clin Immunol 2008; 129:182-94. [PMID: 18783990 DOI: 10.1016/j.clim.2008.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 11/20/2022]
Abstract
Invariant CD1d restricted natural killer T (iNKT) cells are regulatory cells that express a canonical TCR-Valpha-chain (Valpha24.Jalpha18 in humans and Valpha14.Jalpha18 in mice) which recognizes glycolipid antigens presented by the monomorphic CD1d molecule. They can secrete a wide variety of both pro-inflammatory and anti-inflammatory cytokines very swiftly upon their activation. Evidence for the significance of iNKT cells in human cancer has been ambiguous. Still, the (pre-)clinical findings reviewed here, provide evidence for a distinct contribution of iNKT cells to natural anti-tumor immune responses in humans. Furthermore, clinical phase I studies that are discussed here have revealed that the infusion of cancer patients with ligand-loaded dendritic cells or cultured iNKT cells is well tolerated. We thus underscore the potential of iNKT cell based immunotherapy in conjunction with established modalities such as surgery and radiotherapy, as adjuvant therapy against carcinomas.
Collapse
|