1
|
Nguyen CT, Le VP, Le TH, Kim JS, Back SH, Koo KI. Sacrificing Alginate in Decellularized Extracellular Matrix Scaffolds for Implantable Artificial Livers. J Funct Biomater 2025; 16:35. [PMID: 39852591 PMCID: PMC11766338 DOI: 10.3390/jfb16010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
This research introduced a strategy to fabricate sub-millimeter-diameter artificial liver tissue by extruding a combination of a liver decellularized extracellular matrix (dECM), alginate, endothelial cells, and hepatocytes. Vascularization remains a critical challenge in liver tissue engineering, as replicating the liver's intricate vascular network is essential for sustaining cellular function and viability. Seven scaffold groups were evaluated, incorporating different cell compositions, scaffold materials, and structural configurations. The hepatocyte and endothelial cell scaffold treated with alginate lyase demonstrated the highest diffusion rate, along with enhanced albumin secretion (2.8 µg/mL) and urea synthesis (220 µg/mL) during the same period by day 10. A dense and interconnected endothelial cell network was observed as early as day 4 in the lyased coculture group. Furthermore, three-week implantation studies in rats showed a stable integration to the host with no adverse effects. This approach offers significant potential for advancing functional liver tissue replacements, combining accelerated diffusion, enhanced albumin secretion, improved urea synthesis, dense vascular network formation, and stable implantation outcomes.
Collapse
Affiliation(s)
- Chanh-Trung Nguyen
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (C.-T.N.)
| | - Van Phu Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (C.-T.N.)
| | - Thi Huong Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (C.-T.N.)
| | - Jeong Sook Kim
- Department of Obstetrics and Gynecology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea;
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Kyo-in Koo
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (C.-T.N.)
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
2
|
Teong B, Manousakas I, Chang SJ, Huang HH, Ju KC, Kuo SM. Alternative approach of cell encapsulation by Volvox spheres. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:79-87. [DOI: 10.1016/j.msec.2015.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 03/02/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
|
3
|
Efficient large-scale generation of functional hepatocytes from mouse embryonic stem cells grown in a rotating bioreactor with exogenous growth factors and hormones. Stem Cell Res Ther 2014; 4:145. [PMID: 24294908 PMCID: PMC4054944 DOI: 10.1186/scrt356] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/30/2013] [Accepted: 10/21/2013] [Indexed: 12/19/2022] Open
Abstract
Introduction Embryonic stem (ES) cells are considered a potentially advantageous source of hepatocytes for both transplantation and the development of bioartificial livers. However, the efficient large-scale generation of functional hepatocytes from ES cells remains a major challenge, especially for those methods compatible with clinical applications. Methods In this study, we investigated whether a large number of functional hepatocytes can be differentiated from mouse ES (mES) cells using a simulated microgravity bioreactor. mES cells were cultured in a rotating bioreactor in the presence of exogenous growth factors and hormones to form embryoid bodies (EBs), which then differentiated into hepatocytes. Results During the rotating culture, most of the EB-derived cells gradually showed the histologic characteristics of normal hepatocytes. More specifically, the expression of hepatic genes and proteins was detected at a higher level in the differentiated cells from the bioreactor culture than in cells from a static culture. On further growing, the EBs on tissue-culture plates, most of the EB-derived cells were found to display the morphologic features of hepatocytes, as well as albumin synthesis. In addition, the EB-derived cells grown in the rotating bioreactor exhibited higher levels of liver-specific functions, such as glycogen storage, cytochrome P450 activity, low-density lipoprotein, and indocyanine green uptake, than did differentiated cells grown in static culture. When the EB-derived cells from day-14 EBs and the cells’ culture supernatant were injected into nude mice, the transplanted cells were engrafted into the recipient livers. Conclusions Large quantities of high-quality hepatocytes can be generated from mES cells in a rotating bioreactor via EB formation. This system may be useful in the large-scale generation of hepatocytes for both cell transplantation and the development of bioartificial livers.
Collapse
|
4
|
Shen LJ, Chen FY, Zhang Y, Cao LF, Kuang Y, Zhong M, Wang T, Zhong H. MYCN transgenic zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis. PLoS One 2013; 8:e59070. [PMID: 23554972 PMCID: PMC3598662 DOI: 10.1371/journal.pone.0059070] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/11/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Amplification of MYCN (N-Myc) oncogene has been reported as a frequent event and a poor prognostic marker in human acute myeloid leukemia (AML). The molecular mechanisms and transcriptional networks by which MYCN exerts its influence in AML are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS We introduced murine MYCN gene into embryonic zebrafish through a heat-shock promoter and established the stable germline Tg(MYCN:HSE:EGFP) zebrafish. N-Myc downstream regulated gene 1 (NDRG1), negatively controlled by MYCN in human and functionally involved in neutrophil maturation, was significantly under-expressed in this model. Using peripheral blood smear detection, histological section and flow cytometric analysis of single cell suspension from kidney and spleen, we found that MYCN overexpression promoted cell proliferation, enhanced the repopulating activity of myeloid cells and the accumulation of immature hematopoietic blast cells. MYCN enhanced primitive hematopoiesis by upregulating scl and lmo2 expression and promoted myelopoiesis by inhibiting gata1 expression and inducing pu.1, mpo expression. Microarray analysis identified that cell cycle, glycolysis/gluconeogenesis, MAPK/Ras, and p53-mediated apoptosis pathways were upregulated. In addition, mismatch repair, transforming and growth factor β (TGFβ) were downregulated in MYCN-overexpressing blood cells (p<0.01). All of these signaling pathways are critical in the proliferation and malignant transformation of blood cells. CONCLUSION/SIGNIFICANCE The above results induced by overexpression of MYCN closely resemble the main aspects of human AML, suggesting that MYCN plays a role in the etiology of AML. MYCN reprograms hematopoietic cell fate by regulating NDRG1 and several lineage-specific hematopoietic transcription factors. Therefore, this MYCN transgenic zebrafish model facilitates dissection of MYCN-mediated signaling in vivo, and enables high-throughput scale screens to identify the potential therapeutic targets.
Collapse
Affiliation(s)
- Li-Jing Shen
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang-Yuan Chen
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| | - Yong Zhang
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan-Fang Cao
- Department of Pediatric, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Kuang
- Shanghai Research Center for Biomodel Organisms, Shanghai, China
| | - Min Zhong
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Wang
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Zhong
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Fujimori H, Shikanai M, Teraoka H, Masutani M, Yoshioka KI. Induction of cancerous stem cells during embryonic stem cell differentiation. J Biol Chem 2012; 287:36777-91. [PMID: 22961983 DOI: 10.1074/jbc.m112.372557] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stem cell maintenance depends on their surrounding microenvironment, and aberrancies in the environment have been associated with tumorigenesis. However, it remains to be elucidated whether an environmental aberrancy can act as a carcinogenic stress for cellular transformation of differentiating stem cells into cancer stem cells. Here, utilizing mouse embryonic stem cells as a model, it was illustrated that environmental aberrancy during differentiation leads to the emergence of pluripotent cells showing cancerous characteristics. Analogous to precancerous stages, DNA lesions were spontaneously accumulated during embryonic stem cell differentiation under aberrational environments, which activates barrier responses such as senescence and apoptosis. However, overwhelming such barrier responses, piled-up spheres were subsequently induced from the previously senescent cells. The sphere cells exhibit aneuploidy and dysfunction of the Arf-p53 module as well as enhanced tumorigenicity and a strong self-renewal capacity, suggesting development of cancerous stem cells. Our current study suggests that stem cells differentiating in an aberrational environment are at risk of cellular transformation into malignant counterparts.
Collapse
Affiliation(s)
- Hiroaki Fujimori
- Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | |
Collapse
|
6
|
Arai T, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Iinuma N, Iesato Y, Koyama T, Yoshizawa T, Uetake R, Yamauchi A, Yang L, Kawate H, Ogawa S, Kobayashi A, Miyagawa S, Shindo T. Induction of LYVE-1/stabilin-2-positive liver sinusoidal endothelial-like cells from embryoid bodies by modulation of adrenomedullin-RAMP2 signaling. Peptides 2011; 32:1855-65. [PMID: 21782867 DOI: 10.1016/j.peptides.2011.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 01/29/2023]
Abstract
Embryonic stem cells (ESCs) are a useful source for various cell lineages. So far, however, progress toward reconstitution of mature liver morphology and function has been limited. We have shown that knockout mice deficient in adrenomedullin (AM), a multifunctional endogenous peptide, or its receptor-activity modifying protein (RAMP2) die in utero due to poor vascular development and hemorrhage within the liver. In this study, using embryoid bodies (EBs)-culture system, we successfully induced liver sinusoidal endothelial-like cells by modulation of AM-RAMP2. In an EB differentiation system, we found that co-administration of AM and SB431542, an inhibitor of transforming growth factor β (TGFβ) receptor type 1, markedly enhanced differentiation of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1)/stabilin-2-positive endothelial cells. These cells showed robust endocytosis of acetylated low-density lipoprotein (Ac-LDL) and upregulated expression of liver sinusoidal endothelial cells (LSECs)-specific markers, including factor 8 (F8), Fc-γ receptor 2b (Fcgr2b), and mannose receptor C type 1 (Mrc1), and also possessed fenestrae-like structure, a key morphological feature of LSECs. In RAMP2-null liver, by contrast, LYVE-1 was downregulated in LSECs, and the sinusoidal structure was disrupted. Our findings highlight the importance of AM-RAMP2 signaling for development of LSECs.
Collapse
Affiliation(s)
- Takuma Arai
- Department of Organ Regeneration, Shinshu University Graduate School of Medicine, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Otsubo T, Akiyama Y, Hashimoto Y, Shimada S, Goto K, Yuasa Y. MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis. PLoS One 2011; 6:e16617. [PMID: 21304604 PMCID: PMC3029394 DOI: 10.1371/journal.pone.0016617] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 01/07/2011] [Indexed: 12/12/2022] Open
Abstract
Background SRY (sex-determining region Y)-box 2 (SOX2) is a crucial transcription factor for the maintenance of embryonic stem cell pluripotency and the determination of cell fate. Previously, we demonstrated that SOX2 plays important roles in growth inhibition through cell cycle arrest and apoptosis, and that SOX2 expression is frequently down-regulated in gastric cancers. However, the mechanisms underlying loss of SOX2 expression and its target genes involved in gastric carcinogenesis remain largely unknown. Here, we assessed whether microRNAs (miRNAs) regulate SOX2 expression in gastric cancers. Furthermore, we attempted to find downstream target genes of SOX2 contributing to gastric carcinogenesis. Methodology/Principal Findings We performed in silico analysis and focused on miRNA-126 (miR-126) as a potential SOX2 regulator. Gain- and loss-of function experiments and luciferase assays revealed that miR-126 inhibited SOX2 expression by targeting two binding sites in the 3′-untranslated region (3′-UTR) of SOX2 mRNA in multiple cell lines. In addition, miR-126 was highly expressed in some cultured and primary gastric cancer cells with low SOX2 protein levels. Furthermore, exogenous miR-126 over-expression as well as siRNA-mediated knockdown of SOX2 significantly enhanced the anchorage-dependent and -independent growth of gastric cancer cell lines. We next performed microarray analysis after SOX2 over-expression in a gastric cancer cell line, and found that expression of the placenta-specific 1 (PLAC1) gene was significantly down-regulated by SOX2 over-expression. siRNA- and miR-126-mediated SOX2 knockdown experiments revealed that miR-126 positively regulated PLAC1 expression through suppression of SOX2 expression in gastric cancer cells. Conclusions Taken together, our results indicate that miR-126 is a novel miRNA that targets SOX2, and PLAC1 may be a novel downstream target gene of SOX2 in gastric cancer cells. These findings suggest that aberrant over-expression of miR-126 and consequent SOX2 down-regulation may contribute to gastric carcinogenesis.
Collapse
Affiliation(s)
- Takeshi Otsubo
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Hashimoto
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Goto
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
8
|
Solberg R, Andresen JH, Pettersen S, Wright MS, Munkeby BH, Charrat E, Khrestchatisky M, Rivera S, Saugstad OD. Resuscitation of hypoxic newborn piglets with supplementary oxygen induces dose-dependent increase in matrix metalloproteinase-activity and down-regulates vital genes. Pediatr Res 2010; 67:250-6. [PMID: 20010314 DOI: 10.1203/pdr.0b013e3181cde843] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The optimal oxygen concentration for newborn resuscitation is still discussed. Oxygen administration during reoxygenation may induce short- and long-term pathologic changes via oxidative stress and has been associated to later childhood cancer. The aim was to study changes in oxidative stress-associated markers in liver and lung tissue of newborn pigs after acute hypoxia followed by reoxygenation for 30 min with 21, 40, or 100% oxygen compared with room air or to ventilation with 100% oxygen without preceding hypoxia. Nine hours after resuscitation, we found a dose-dependent increase in the matrix metalloproteinase gelatinase activity in liver tissue related to percentage oxygen supply by resuscitation (100% versus 21%; p = 0.002) pointing at more extensive tissue damage. Receiving 100% oxygen for 30 min without preceding hypoxia decreased the expression of VEGFR2 and TGFBR3 mRNA in liver tissue, but not in lung tissue. MMP-, VEGF-, and TGFbeta-superfamily are vital for the development, growth, and functional integrity of most tissues and our data rise concern about both short- and long-term consequences of even a brief hyperoxic exposure.
Collapse
Affiliation(s)
- Rønnaug Solberg
- Department of Paediatric Research, University of Oslo, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Potentials of regenerative medicine for liver disease. Surg Today 2009; 39:1019-25. [PMID: 19997795 DOI: 10.1007/s00595-009-4056-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 04/29/2009] [Indexed: 01/04/2023]
Abstract
Liver transplantation is still the only effective treatment for end-stage liver disease. However, because of the serious worldwide shortage of donated organs, an alternative cellular therapy would be desirable. Animal studies and preclinical trials have indicated that hepatocyte transplantation can serve as an alternative to liver transplantation. Unfortunately, however, the harvesting of hepatocytes is associated with the same problem as organ transplantation, i.e., a lack of a suitable cell source. Therefore, current stem cell technology, which is attempting to establish an unlimited supply of hepatocytes, would facilitate the clinical application of hepatocyte transplantation. This review summarizes current knowledge of embryonic and adult stem cell differentiation into hepatocytes and discusses how liver stem cells could be applied clinically in the future.
Collapse
|
10
|
A promising new approach of VEGFR2-based DNA vaccine for tumor immunotherapy. Immunol Lett 2009; 126:60-6. [DOI: 10.1016/j.imlet.2009.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/17/2009] [Accepted: 07/30/2009] [Indexed: 02/08/2023]
|
11
|
Andersson TB, Ingelman-Sundberg M. Livers cells derived from human embryonic stem cells. DRUG DISCOVERY TODAY. TECHNOLOGIES 2008; 5:e105-e148. [PMID: 24125547 DOI: 10.1016/j.ddtec.2008.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|