1
|
Chu J, Jiang J, Fan X, Liu J, Gao K, Jiang Y, Li M, Xi W, Zhang L, Bian K, Yang A, Zhang R. A novel MYC-ZNF706-SLC7A11 regulatory circuit contributes to cancer progression and redox balance in human hepatocellular carcinoma. Cell Death Differ 2024; 31:1333-1348. [PMID: 38862581 PMCID: PMC11445280 DOI: 10.1038/s41418-024-01324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
The oncogenic potential of chromosome 8q22 copy number gain in liver cancer remains to be depicted. Here, we report that ZNF706, encoded by a gene mapped to chromosome 8q22, is a C2H2-type zinc finger protein. However, the biological function and mechanism of ZNF706 have been poorly investigated. Clinically, ZNF706 expression was elevated in hepatocellular carcinoma (HCC), and high ZNF706 expression was associated with unfavorable survival in HCC patients. Functional experiments revealed that ZNF706 knockdown inhibited HCC progression both in vitro and in vivo. RNA sequencing (RNA-seq) and chromatin immunoprecipitation-based deep sequencing (ChIP-seq) revealed that mechanistically, ZNF706 is a crucial ferroptosis regulator and that SLC7A11 is a critical target of ZNF706. In addition, ZNF706 knockdown inhibited SLC7A11 expression, increased lipid peroxidation, and promoted ferroptosis. Further analysis revealed that ZNF706 is a novel direct target transcriptionally activated by MYC in HCC cells. Importantly, MYC depletion reduced SLC7A11-mediated redox homeostasis, and this effect was reversed by ZNF706 reexpression. Collectively, our data demonstrate that ZNF706 is a potential oncogene in liver cancer and functions as a ferroptosis regulator by modulating SLC7A11 expression, constituting a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Jie Chu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jun Jiang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Health Service, Base of Health Service, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xin Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Jun Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ke Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, 710199, China
| | - Yu Jiang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Mengxuan Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wenjin Xi
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Lu Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ka Bian
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China.
| | - Angang Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Rui Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
2
|
Zheng Q, Ji W, Sun R, Dai K. Prognostic value of blood GRHL2 in patients with non-small-cell lung cancer after radiotherapy and chemotherapy. Biomark Med 2024; 18:611-617. [PMID: 39073846 PMCID: PMC11370899 DOI: 10.1080/17520363.2024.2366161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
Aim: We aimed to investigate the predictive value of the Grainyhead-like 2 (GRHL2) expression from circulating blood for recurrence, metastasis and overall death on patients with non-small-cell lung cancer (NSCLC).Materials & Methods: We collected blood samples from 122 patients who were admitted to our hospital for NSCLC.Results: Multivariable Cox proportional-hazards analysis in adjusted Model II showed that compared with GRHL2-negative expression, positive expression in patients with NSCLC was associated with increased death risk (HR = 7.0, 95% CI: 2.1-20.9, p = 0.03) and risk for composite end point (HR = 8.2, 95% CI: 4.0-27.1, p <0.01).Conclusion: This study supported that elevated circulating GRHL2 expression might be considered as a candidate prognostic biomarker for poor prognosis among these NSCLC patients.
Collapse
Affiliation(s)
- Qian Zheng
- Changzhou Cancer Hospital, Changzhou City, Jiangsu Province, 213000, P.R. China
| | - Wenjing Ji
- Changzhou Cancer Hospital, Changzhou City, Jiangsu Province, 213000, P.R. China
| | - Ruirui Sun
- Changzhou Cancer Hospital, Changzhou City, Jiangsu Province, 213000, P.R. China
| | - Kejun Dai
- Changzhou Cancer Hospital, Changzhou City, Jiangsu Province, 213000, P.R. China
| |
Collapse
|
3
|
Tao J, Xue C, Cao M, Ye J, Sun Y, Chen H, Guan Y, Zhang W, Zhang W, Yao Y. Protein disulfide isomerase family member 4 promotes triple-negative breast cancer tumorigenesis and radiotherapy resistance through JNK pathway. Breast Cancer Res 2024; 26:1. [PMID: 38167446 PMCID: PMC10759449 DOI: 10.1186/s13058-023-01758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Despite radiotherapy ability to significantly improve treatment outcomes and survival in triple-negative breast cancer (TNBC) patients, acquired resistance to radiotherapy poses a serious clinical challenge. Protein disulfide isomerase exists in endoplasmic reticulum and plays an important role in promoting protein folding and post-translational modification. However, little is known about the role of protein disulfide isomerase family member 4 (PDIA4) in TNBC, especially in the context of radiotherapy resistance. METHODS We detected the presence of PDIA4 in TNBC tissues and paracancerous tissues, then examined the proliferation and apoptosis of TNBC cells with/without radiotherapy. As part of the validation process, xenograft tumor mouse model was used. Mass spectrometry and western blot analysis were used to identify PDIA4-mediated molecular signaling pathway. RESULTS Based on paired clinical specimens of TNBC patients, we found that PDIA4 expression was significantly higher in tumor tissues compared to adjacent normal tissues. In vitro, PDIA4 knockdown not only increased apoptosis of tumor cells with/without radiotherapy, but also decreased the ability of proliferation. In contrast, overexpression of PDIA4 induced the opposite effects on apoptosis and proliferation. According to Co-IP/MS results, PDIA4 prevented Tax1 binding protein 1 (TAX1BP1) degradation by binding to TAX1BP1, which inhibited c-Jun N-terminal kinase (JNK) activation. Moreover, PDIA4 knockdown suppressed tumor growth xenograft model in vivo, which was accompanied by an increase in apoptosis and promoted tumor growth inhibition after radiotherapy. CONCLUSIONS The results of this study indicate that PDIA4 is an oncoprotein that promotes TNBC progression, and targeted therapy may represent a new and effective anti-tumor strategy, especially for patients with radiotherapy resistance.
Collapse
Affiliation(s)
- Jinqiu Tao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Cailin Xue
- Division of Hepatobilliary Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Meng Cao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Jiahui Ye
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yulu Sun
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Hao Chen
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yinan Guan
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Weijie Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Yongzhong Yao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
4
|
Guo L, Song B, Xiao J, Lin H, Chen J, Jian B. Predictive value of blood biomarkers in elderly patients with non-small-cell lung cancer. Biomark Med 2023; 17:1011-1019. [PMID: 38235564 DOI: 10.2217/bmm-2023-0723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Aim: Whether GRHL1 can be considered as a potential biomarker for screening non-small-cell lung cancer (NSCLC) is still uncertain. We aimed to investigate the value of circulating blood GRHL1 on detecting NSCLC in an older population. Materials & methods: Diagnostic models from 351 older patients with NSCLC were constructed to assess the predictive value of blood GRHL1 on distinguishing NSCLC. Results: We observed that GRHL1 (odds ratio: 3.25; 95% CI: 1.70-6.91; p < 0.001) maintained a strong relationship with an elevated rate of NSCLC after adequate clinical confounding factors were controlled for. Importantly, serum GRHL1 (area under the curve: 0.725; 95% CI: 0.708-0.863; p < 0.001) had a good predictive value. Conclusion: This is the first time that circulating GRHL1 has been shown to have good value for early detection of NSCLC in an elderly population.
Collapse
Affiliation(s)
- Lianghua Guo
- Department of Respiratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan, 355000, China
| | - Bin Song
- Department of Respiratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan, 355000, China
| | - Jianhong Xiao
- Department of Respiratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan, 355000, China
| | - Hui Lin
- Department of Respiratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan, 355000, China
| | - Junhua Chen
- Department of Respiratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan, 355000, China
| | - Baoren Jian
- Department of Respiratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan, 355000, China
| |
Collapse
|
5
|
GRHL2 Enhances Phosphorylated Estrogen Receptor (ER) Chromatin Binding and Regulates ER-Mediated Transcriptional Activation and Repression. Mol Cell Biol 2022; 42:e0019122. [PMID: 36036613 PMCID: PMC9584124 DOI: 10.1128/mcb.00191-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation of estrogen receptor α (ER) at serine 118 (pS118-ER) is induced by estrogen and is the most abundant posttranslational mark associated with a transcriptionally active receptor. Cistromic analysis of pS118-ER from our group revealed enrichment of the GRHL2 motif near pS118-ER binding sites. In this study, we used cistromic and transcriptomic analyses to interrogate the relationship between GRHL2 and pS118-ER. We found that GRHL2 is bound to chromatin at pS118-ER/GRHL2 co-occupancy sites prior to ligand treatment, and GRHL2 binding is required for maximal pS118-ER recruitment. pS118-ER/GRHL2 co-occupancy sites were enriched at active enhancers marked by H3K27ac and H3K4me1, along with FOXA1 and p300, compared to sites where each factor binds independently. Transcriptomic analysis yielded four subsets of ER/GRHL2-coregulated genes revealing that GRHL2 can both enhance and antagonize E2-mediated ER transcriptional activity. Gene ontology analysis indicated that coregulated genes are involved in cell migration. Accordingly, knockdown of GRHL2, combined with estrogen treatment, resulted in increased cell migration but no change in proliferation. These results support a model in which GRHL2 binds to selected enhancers and facilitates pS118-ER recruitment to chromatin, which then results in differential activation and repression of genes that control estrogen-regulated ER-positive breast cancer cell migration.
Collapse
|
6
|
Hua J, Ma C, Wang CH, Wang Y, Feng S, Xiao T, Zhu C. Abnormal GRHL2 Methylation Confers Malignant Progression to Acute Leukemia. Appl Bionics Biomech 2022; 2022:9708829. [PMID: 35855840 PMCID: PMC9288345 DOI: 10.1155/2022/9708829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Abnormal methylation of Grainyhead-like 2 (GRHL2) is associated with a substantial role in the malignant phenotype of tumor patients. Our present research is aimed at studying the abnormal expression of GRHL2 and the association of methylation in patients with acute leukemia and its relationship with prognosis. Materials and Methods We used quantitative real-time polymerase chain reaction (qRT-PCR) for detecting the aberrant expression level of GRHL2 in 60 patients with acute leukemia and 60 normal controls. We analyzed the significant correlation between the expression level of GRHL2 with clinicopathological features and patients' prognosis in acute leukemia using the corresponding statistical methods. Secondly, we employed qRT-PCR and Western blotting to detect the mRNA and protein levels of GRHL2 in leukemia cell lines. Next, we used methylation-specific polymerase chain reaction (MSP) technology for detecting the methylation of GRHL2 in clinical samples with acute leukemia and cell lines. Then we investigated the demethylating effect of arsenic trioxide and 5-azacitidine on the mRNA and protein expression levels of GRHL2 in cell lines of acute leukemia. Finally, we studied the effects of arsenide trioxide and 5-azacitidine on the proliferation of leukemia cells and the TGF-β signaling pathway. Results We found a lower level of GRHL2 expression not only in acute leukemia patients but also in cell lines when compared with normal controls. At the same time, the expression level of GRHL2 in patients with acute leukemia was significantly correlated with leukocyte count, platelet count, and cytogenetic risk grouping. In addition, the lower GRHL2 expression group showed a significantly lower overall survival rate in acute leukemia patients than that of patients with a higher GRHL2 expression group. Univariate and multivariate analyses revealed that the expression of GRHL2 is an independent risk factor in acute leukemia patients. The methylation level of the GRHL2 promoter region in acute leukemia patients and cell lines was significantly higher than the normal control group, and we found the elevated mRNA and protein levels of GRHL2 in acute leukemia cell lines after the use of the demethylation drug arsenic trioxide and 5-azacitidine. At the same time, arsenide trioxide and 5-azacitidine are associated with the inhibition of cellular proliferation of acute leukemia cells and also promote the elevated expression of TGF-β signaling pathway-linked proteins, including TGF-β, Smad2, Smad3, and Smad4. Conclusion Increased expression and methylation level of GRHL2 are closely associated with the prognosis and malignant phenotype of acute leukemia patients and play an irreplaceable role in the occurrence and development of patients with acute leukemia.
Collapse
Affiliation(s)
- Jing Hua
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| | - Congcong Ma
- Department of Hematology, Liaocheng People's Hospital, Shandong University, China
| | - Chao Hui Wang
- Department of Hematology, Qingdao Haici Medical Group, China
| | - Yan Wang
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| | - Saran Feng
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| | - Taiwu Xiao
- Department of Hematology, Liaocheng People's Hospital, Shandong University, China
| | - ChuanSheng Zhu
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| |
Collapse
|
7
|
Gasperoni JG, Fuller JN, Darido C, Wilanowski T, Dworkin S. Grainyhead-like (Grhl) Target Genes in Development and Cancer. Int J Mol Sci 2022; 23:ijms23052735. [PMID: 35269877 PMCID: PMC8911041 DOI: 10.3390/ijms23052735] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
Grainyhead-like (GRHL) factors are essential, highly conserved transcription factors (TFs) that regulate processes common to both natural cellular behaviours during embryogenesis, and de-regulation of growth and survival pathways in cancer. Serving to drive the transcription, and therefore activation of multiple co-ordinating pathways, the three GRHL family members (GRHL1-3) are a critical conduit for modulating the molecular landscape that guides cellular decision-making processes during proliferation, epithelial-mesenchymal transition (EMT) and migration. Animal models and in vitro approaches harbouring GRHL loss or gain-of-function are key research tools to understanding gene function, which gives confidence that resultant phenotypes and cellular behaviours may be translatable to humans. Critically, identifying and characterising the target genes to which these factors bind is also essential, as they allow us to discover and understand novel genetic pathways that could ultimately be used as targets for disease diagnosis, drug discovery and therapeutic strategies. GRHL1-3 and their transcriptional targets have been shown to drive comparable cellular processes in Drosophila, C. elegans, zebrafish and mice, and have recently also been implicated in the aetiology and/or progression of a number of human congenital disorders and cancers of epithelial origin. In this review, we will summarise the state of knowledge pertaining to the role of the GRHL family target genes in both development and cancer, primarily through understanding the genetic pathways transcriptionally regulated by these factors across disparate disease contexts.
Collapse
Affiliation(s)
- Jemma G. Gasperoni
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
| | - Jarrad N. Fuller
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
| | - Charbel Darido
- The Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
- Correspondence:
| |
Collapse
|
8
|
Huang P, Xu M, Han H, Zhao X, Li MD, Yang Z. Integrative Analysis of Epigenome and Transcriptome Data Reveals Aberrantly Methylated Promoters and Enhancers in Hepatocellular Carcinoma. Front Oncol 2021; 11:769390. [PMID: 34858848 PMCID: PMC8631276 DOI: 10.3389/fonc.2021.769390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is a key transcription regulator, whose aberration was ubiquitous and important in most cancers including hepatocellular carcinoma (HCC). Whole-genome bisulfite sequencing (WGBS) was conducted for comparison of DNA methylation in tumor and adjacent tissues from 33 HCC patients, accompanying RNA-seq to determine differentially methylated region-associated, differentially expressed genes (DMR-DEGs), which were independently replicated in the TCGA-LIHC cohort and experimentally validated via 5-aza-2-deoxycytidine (5-azadC) demethylation. A total of 9,867,700 CpG sites showed significantly differential methylation in HCC. Integrations of mRNA-seq, histone ChIP-seq, and WGBS data identified 611 high-confidence DMR-DEGs. Enrichment analysis demonstrated activation of multiple molecular pathways related to cell cycle and DNA repair, accompanying repression of several critical metabolism pathways such as tyrosine and monocarboxylic acid metabolism. In TCGA-LIHC, we replicated about 53% of identified DMR-DEGs and highlighted the prognostic significance of combinations of methylation and expression of nine DMR-DEGs, which were more efficient prognostic biomarkers than considering either type of data alone. Finally, we validated 22/23 (95.7%) DMR-DEGs in 5-azadC-treated LO2 and/or HepG2 cells. In conclusion, integration of epigenome and transcriptome data depicted activation of multiple pivotal cell cycle-related pathways and repression of several metabolic pathways triggered by aberrant DNA methylation of promoters and enhancers in HCC.
Collapse
Affiliation(s)
- Peng Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengxiang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
He Y, Gan M, Wang Y, Huang T, Wang J, Han T, Yu B. EGFR-ERK induced activation of GRHL1 promotes cell cycle progression by up-regulating cell cycle related genes in lung cancer. Cell Death Dis 2021; 12:430. [PMID: 33931584 PMCID: PMC8087693 DOI: 10.1038/s41419-021-03721-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/09/2022]
Abstract
Grainyhead-like 1 (GRHL1) is a transcription factor involved in embryonic development. However, little is known about the biological functions of GRHL1 in cancer. In this study, we found that GRHL1 was upregulated in non-small cell lung cancer (NSCLC) and correlated with poor survival of patients. GRHL1 overexpression promoted the proliferation of NSCLC cells and knocking down GRHL1 inhibited the proliferation. RNA sequencing showed that a series of cell cycle-related genes were altered when knocking down GRHL1. We further demonstrated that GRHL1 could regulate the expression of cell cycle-related genes by binding to the promoter regions and increasing the transcription of the target genes. Besides, we also found that EGF stimulation could activate GRHL1 and promoted its nuclear translocation. We identified the key phosphorylation site at Ser76 on GRHL1 that is regulated by the EGFR-ERK axis. Taken together, these findings elucidate a new function of GRHL1 on regulating the cell cycle progression and point out the potential role of GRHL1 as a drug target in NSCLC.
Collapse
Affiliation(s)
- Yiming He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China.,Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China
| | - Mingxi Gan
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, P. R. China
| | - Yanan Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, P. R. China
| | - Tong Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China
| | - Jianbin Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, P. R. China.
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China.
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China.
| |
Collapse
|
10
|
de Vries M, Owens HG, Carpinelli MR, Partridge D, Kersbergen A, Sutherland KD, Auden A, Anderson PJ, Jane SM, Dworkin S. Delineating the roles of Grhl2 in craniofacial development through tissue-specific conditional deletion and epistasis approaches in mouse. Dev Dyn 2021; 250:1191-1209. [PMID: 33638290 DOI: 10.1002/dvdy.322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/31/2021] [Accepted: 02/20/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The highly conserved Grainyhead-like (Grhl) family of transcription factors play critical roles in the development of the neural tube and craniofacial skeleton. In particular, deletion of family member Grainyhead-like 2 (Grhl2) leads to mid-gestational embryonic lethality, maxillary clefting, abdominoschisis, and both cranial and caudal neural tube closure defects. These highly pleiotropic and systemic defects suggest that Grhl2 plays numerous critical developmental roles to ensure correct morphogenesis and patterning. RESULTS Here, using four separate Cre-lox conditional deletion models, as well as one genetic epistasis approach (Grhl2+/- ;Edn1+/- double heterozygous mice) we have investigated tissue-specific roles of Grhl2 in embryonic development, with a particular focus on the craniofacial skeleton. We find that loss of Grhl2 in the pharyngeal epithelium (using the ShhCre driver) leads to low-penetrance micrognathia, whereas deletion of Grhl2 within the ectoderm of the pharynx (NestinCre ) leads to small, albeit significant, differences in the proximal-distal elongation of both the maxilla and mandible. Loss of Grhl2 in endoderm (Sox17-2aiCre ) resulted in noticeable lung defects and a single instance of secondary palatal clefting, although formation of other endoderm-derived organs such as the stomach, bladder and intestines was not affected. Lastly, deletion of Grhl2 in cells of the neural crest (Wnt1Cre ) did not lead to any discernible defects in craniofacial development, and similarly, our epistasis approach did not detect any phenotypic consequences of loss of a single allele of both Grhl2 and Edn1. CONCLUSION Taken together, our study identifies a pharyngeal-epithelium intrinsic, non-cell-autonomous role for Grhl2 in the patterning and formation of the craniofacial skeleton, as well as an endoderm-specific role for Grhl2 in the formation and establishment of the mammalian lung.
Collapse
Affiliation(s)
- Michael de Vries
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Harley G Owens
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, Australia
| | - Marina R Carpinelli
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, Australia
| | - Darren Partridge
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, Australia
| | - Ariena Kersbergen
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kate D Sutherland
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alana Auden
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, Australia
| | - Peter J Anderson
- Australian Craniofacial Unit, Women and Children's Hospital, Adelaide, South Australia, Australia.,Faculty of Health Sciences, University of Adelaide, South Australia, Australia.,Nanjing Medical University, Nanjing, China
| | - Stephen M Jane
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, Australia
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Waidmann O, Pleli T, Weigert A, Imelmann E, Kakoschky B, Schmithals C, Döring C, Frank M, Longerich T, Köberle V, Hansmann ML, Brüne B, Zeuzem S, Piiper A, Dikic I. Tax1BP1 limits hepatic inflammation and reduces experimental hepatocarcinogenesis. Sci Rep 2020; 10:16264. [PMID: 33004985 PMCID: PMC7530720 DOI: 10.1038/s41598-020-73387-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
The nuclear factor kappa beta (NFκB) signaling pathway plays an important role in liver homeostasis and cancer development. Tax1-binding protein 1 (Tax1BP1) is a regulator of the NFκB signaling pathway, but its role in the liver and hepatocellular carcinoma (HCC) is presently unknown. Here we investigated the role of Tax1BP1 in liver cells and murine models of HCC and liver fibrosis. We applied the diethylnitrosamine (DEN) model of experimental hepatocarcinogenesis in Tax1BP1+/+ and Tax1BP1-/- mice. The amount and subsets of non-parenchymal liver cells in in Tax1BP1+/+ and Tax1BP1-/- mice were determined and activation of NFκB and stress induced signaling pathways were assessed. Differential expression of mRNA and miRNA was determined. Tax1BP1-/- mice showed increased numbers of inflammatory cells in the liver. Furthermore, a sustained activation of the NFκB signaling pathway was found in hepatocytes as well as increased transcription of proinflammatory cytokines in isolated Kupffer cells from Tax1BP1-/- mice. Several differentially expressed mRNAs and miRNAs in livers of Tax1BP1-/- mice were found, which are regulators of inflammation or are involved in cancer development or progression. Furthermore, Tax1BP1-/- mice developed more HCCs than their Tax1BP1+/+ littermates. We conclude that Tax1BP1 protects from liver cancer development by limiting proinflammatory signaling.
Collapse
Affiliation(s)
- Oliver Waidmann
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,Institut für Biochemie 2, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Thomas Pleli
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Weigert
- Institut für Biochemie 1, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Esther Imelmann
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Bianca Kakoschky
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christian Schmithals
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Claudia Döring
- Senckenbergsches Institut für Pathologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Matthias Frank
- Senckenbergsches Institut für Pathologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Longerich
- Sektion Translationale Gastrointestinale Pathologie, Institut für Pathologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Verena Köberle
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Martin-Leo Hansmann
- Senckenbergsches Institut für Pathologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Bernhard Brüne
- Institut für Biochemie 1, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Stefan Zeuzem
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Albrecht Piiper
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ivan Dikic
- Institut für Biochemie 2, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| |
Collapse
|
12
|
Sundararajan V, Pang QY, Choolani M, Huang RYJ. Spotlight on the Granules (Grainyhead-Like Proteins) - From an Evolutionary Conserved Controller of Epithelial Trait to Pioneering the Chromatin Landscape. Front Mol Biosci 2020; 7:213. [PMID: 32974388 PMCID: PMC7471608 DOI: 10.3389/fmolb.2020.00213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Among the transcription factors that are conserved across phylogeny, the grainyhead family holds vital roles in driving the epithelial cell fate. In Drosophila, the function of grainyhead (grh) gene is essential during developmental processes such as epithelial differentiation, tracheal tube formation, maintenance of wing and hair polarity, and epidermal barrier wound repair. Three main mammalian orthologs of grh: Grainyhead-like 1-3 (GRHL1, GRHL2, and GRHL3) are highly conserved in terms of their gene structures and functions. GRHL proteins are essentially associated with the development and maintenance of the epithelial phenotype across diverse physiological conditions such as epidermal differentiation and craniofacial development as well as pathological functions including hearing impairment and neural tube defects. More importantly, through direct chromatin binding and induction of epigenetic alterations, GRHL factors function as potent suppressors of oncogenic cellular dedifferentiation program - epithelial-mesenchymal transition and its associated tumor-promoting phenotypes such as tumor cell migration and invasion. On the contrary, GRHL factors also induce pro-tumorigenic effects such as increased migration and anchorage-independent growth in certain tumor types. Furthermore, investigations focusing on the epithelial-specific activation of grh and GRHL factors have revealed that these factors potentially act as a pioneer factor in establishing a cell-type/cell-state specific accessible chromatin landscape that is exclusive for epithelial gene transcription. In this review, we highlight the essential roles of grh and GRHL factors during embryogenesis and pathogenesis, with a special focus on its emerging pioneering function.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Center for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Qing You Pang
- Center for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Ruby Yun-Ju Huang
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Yuan M, Wang J, Fang F. Grainyhead-Like Genes Family May Act as Novel Biomarkers in Colon Cancer. Onco Targets Ther 2020; 13:3237-3245. [PMID: 32368082 PMCID: PMC7173839 DOI: 10.2147/ott.s242763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/22/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE The Grainyhead-like (GRHL) genes family were reported to participate in the development of a number of diseases. This study was designed to investigate the role of GRHL genes family in colon cancer (CC). METHODS In this study, the transcriptional levels of GRHL genes family in patients with CC from GEPIA were explored. Meanwhile, the immunohistochemical data of the GRHL genes family were also obtained in the HPA database. Additionally, we re-identified the mRNA of these genes via real-time PCR. Furthermore, the association between the levels of GRHL genes and stage plot as well as survival condition including overall survival and disease-free survival of patients with CC was analyzed. Finally, by transfecting with specific-siRNA, clone formation assay was performed to observe the role of GRHL genes family in the proliferation of SW480 human colon cancer cells. RESULTS We found that the mRNA and protein levels of GRHL1, GRHL2 and GRHL3 were significantly higher in CC tissues than in normal colon tissues. Additionally, GRHL1, GRHL2 and GRHL3 were significantly associated with the stages of CC. The Kaplan-Meier plotter showed that the low levels of GRHL1, GRHL2 and GRHL3 conferred a better overall survival of patients with CC while the high levels of GRHL1 and GRHL3 were associated with poor disease-free survival. Knockdown of GRHL1, GRHL2 and GRH L3 siHgnificantly inhibited the ability of colony formation of human colon cancer cells. CONCLUSION Our study demonstrated that GRHL genes are involved in the prognosis and survival in patients with CC, the inhibition of which may suppress the proliferation of colon cancer cells.
Collapse
Affiliation(s)
- Minchi Yuan
- Department of Oncology, The First People’s Hospital of Jiashan, Jiashan, Zhejiang, People’s Republic of China
| | - Jianping Wang
- Department of Anorectal Surgery, Lishui Hospital of Zhejiang University, Zhejiang, People’s Republic of China
| | - Fazhuang Fang
- Department of Abdominal Tumor Surgery, Jinhua Guangfu Hospital, Jinhua, Zhejiang, People’s Republic of China
| |
Collapse
|
14
|
de Vries M, Carpinelli M, Rutland E, Hatzipantelis A, Partridge D, Auden A, Anderson PJ, De Groef B, Wu H, Osterwalder M, Visel A, Jane SM, Dworkin S. Interrogating the Grainyhead-like 2 (Grhl2) genomic locus identifies an enhancer element that regulates palatogenesis in mouse. Dev Biol 2020; 459:194-203. [PMID: 31782997 DOI: 10.1016/j.ydbio.2019.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
The highly-conserved Grainyhead-like (Grhl) transcription factors are critical regulators of embryogenesis that regulate cellular survival, proliferation, migration and epithelial integrity, especially during the formation of the craniofacial skeleton. Family member Grhl2 is expressed throughout epithelial tissues during development, and loss of Grhl2 function leads to significant defects in neurulation, abdominal wall closure, formation of the face and fusion of the maxilla/palate. Whereas numerous downstream target genes of Grhl2 have been identified, very little is known about how this crucial developmental transcription factor itself is regulated. Here, using in silico and in utero expression analyses and functional deletion in mice, we have identified a novel 2.4 kb enhancer element (mm1286) that drives reporter gene expression in a pattern that strongly recapitulates endogenous Grhl2 in the craniofacial primordia, modulates Grhl2 expression in these tissues, and augments Grhl2-mediated closure of the secondary palate. Deletion of this genomic element, in the context of inactivation of one allele of Grhl2 (through generation of double heterozygous Grhl2+/-;mm1286+/- mice), results in a significant predisposition to palatal clefting at birth. Moreover, we found that a highly conserved 325 bp region of mm1286 is both necessary and sufficient for mediating the craniofacial-specific enhancer activity of this region, and that an extremely well-conserved 12-bp sequence within this element (CTGTCAAACAGGT) substantially determines full enhancer function. Together, these data provide valuable new insights into the upstream genomic regulatory landscape responsible for transcriptional control of Grhl2 during palatal closure.
Collapse
Affiliation(s)
- Michael de Vries
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3004, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Marina Carpinelli
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3004, Australia
| | - Emilie Rutland
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3004, Australia
| | - Aaron Hatzipantelis
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3004, Australia
| | - Darren Partridge
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3004, Australia
| | - Alana Auden
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3004, Australia
| | - Peter J Anderson
- Australian Craniofacial Unit, Women and Children's Hospital, Adelaide, SA, 5005, Australia; Faculty of Health Sciences, University of Adelaide, SA, 5005, Australia; Nanjing Medical University, Nanjing, PR China
| | - Bert De Groef
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Han Wu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; School of Natural Sciences, University of California, Merced, CA, 95343, USA
| | - Stephen M Jane
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, 3004, Australia
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, 3086, Australia.
| |
Collapse
|
15
|
Kotarba G, Taracha-Wisniewska A, Wilanowski T. Grainyhead-like transcription factors in cancer - Focus on recent developments. Exp Biol Med (Maywood) 2020; 245:402-410. [PMID: 32008358 DOI: 10.1177/1535370220903009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The role of grainyhead-like transcription factors in cancer has been widely investigated by the scientific community. However, some of its aspects do not seem to be adequately appreciated, and these are the topic of our article. In addition to their well-documented role as tumor suppressors, in many cases the grainyhead-like proteins perform tumor-promoting functions, which make them potential drug targets. However, it is difficult to directly target transcription factors, which is why we recommend an alternative approach. The transcriptional transactivation activity of grainyhead-like transcription factors is regulated by phosphorylation, and protein kinases are much more feasible drug targets. Studying the phosphorylation of grainyhead-like proteins may thus allow to identify protein kinases regulating the activity of these factors, and design inhibitors of these kinases to indirectly regulate the activity of grainyhead-like transcription factors. There are many somatic mutations in the GRHL genes that occur during cancer development. These mutations are widely distributed across the GRHL loci, and these mutations are very rare. For this reason, they are unlikely to become targets of future therapies, nevertheless some of them may be driver mutations and studying them may provide important novel information about the regulation of functioning of the GRHL genes and proteins. Analogous information may be obtained by studying single nucleotide polymorphisms in GRHL genes that are associated with disease risk. Such polymorphisms may also prove useful in identifying individuals with an increased risk of a particular disease. Impact statement In the present article, we focus on relatively little appreciated aspects of involvement of the grainyhead-like (GRHL) transcription factors in cancer. These aspects are nevertheless very important for the functioning of GRHL proteins, as well as for cancer development. Some of the GRHL factors perform tumor-promoting functions in certain types of cancer, which makes them potential drug targets. Much information is available about somatic cancer mutations in the GRHL genes, yet there are very few analyses of these mutations in the scientific literature. The activity of GRHL transcription factors is controlled by phosphorylation, and we suggest that regulating their phosphorylation with specific protein kinases provides an alternative approach to modify the activity of GRHL proteins. Some single nucleotide polymorphisms (SNPs) in the GRHL genes are associated with disease risk. Studying such SNPs may yield new information about the functioning of GRHL genes and proteins, and may also allow to identify people with an increased risk of a particular disease.
Collapse
Affiliation(s)
- Grzegorz Kotarba
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland
| | | | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland
| |
Collapse
|
16
|
Huang XB, He YG, Zheng L, Feng H, Li YM, Li HY, Yang FX, Li J. Identification of hepatitis B virus and liver cancer bridge molecules based on functional module network. World J Gastroenterol 2019; 25:4921-4932. [PMID: 31543683 PMCID: PMC6737318 DOI: 10.3748/wjg.v25.i33.4921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/29/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The potential role of chronic inflammation in the development of cancer has been widely recognized. However, there has been little research fully and thoroughly exploring the molecular link between hepatitis B virus (HBV) and hepatocellular carcinoma (HCC). AIM To elucidate the molecular links between HBV and HCC through analyzing the molecular processes of HBV-HCC using a multidimensional approach. METHODS First, maladjusted genes shared between HBV and HCC were identified by disease-related differentially expressed genes. Second, the protein-protein interaction network based on dysfunctional genes identified a series of dysfunctional modules and significant crosstalk between modules based on the hypergeometric test. In addition, key regulators were detected by pivot analysis. Finally, targeted drugs that have regulatory effects on diseases were predicted by modular methods and drug target information. RESULTS The study found that 67 genes continued to increase in the HBV-HCC process. Moreover, 366 overlapping genes in the module network participated in multiple functional blocks. It could be presumed that these genes and their interactions play an important role in the relationship between inflammation and cancer. Correspondingly, significant crosstalk constructed a module level bridge for HBV-HCC molecular processes. On the other hand, a series of non-coding RNAs and transcription factors that have potential pivot regulatory effects on HBV and HCC were identified. Among them, some of the regulators also had persistent disorders in the process of HBV-HCC including microRNA-192, microRNA-215, and microRNA-874, and early growth response 2, FOS, and Kruppel-like factor 4. Therefore, the study concluded that these pivots are the key bridge molecules outside the module. Last but not least, a variety of drugs that may have some potential pharmacological or toxic side effects on HBV-induced HCC were predicted, but their mechanisms still need to be further explored. CONCLUSION The results suggest that the persistent inflammatory environment of HBV can be utilized as an important risk factor to induce the occurrence of HCC, which is supported by molecular evidence.
Collapse
Affiliation(s)
- Xiao-Bing Huang
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Yong-Gang He
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Huan Feng
- Division of Nursing, Second Hospital Affiliated to Third Military Medical University, Xinqiao Hospital, Chongqing 400037, China
| | - Yu-Ming Li
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Hong-Yan Li
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Feng-Xia Yang
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Jing Li
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| |
Collapse
|
17
|
Reese RM, Harrison MM, Alarid ET. Grainyhead-like Protein 2: The Emerging Role in Hormone-Dependent Cancers and Epigenetics. Endocrinology 2019; 160:1275-1288. [PMID: 30958537 DOI: 10.1210/en.2019-00213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/16/2023]
Abstract
In mammals, the grainyhead-like transcription factor (GRHL) family is composed of three nuclear proteins that are responsible for driving epithelial cell fate: GRHL1, GRHL2, and GRHL3. GRHL2 is important in maintaining proper tubulogenesis during development and in suppressing the epithelial-to-mesenchymal transition. Within the last decade, evidence indicates both tumor-suppressive and oncogenic roles for GRHL2 in various types of cancers. Recent studies suggest that GRHL2 may be especially important in hormone-dependent cancers, as correlative relationships exist between GRHL2 and various steroid receptors, such as the androgen and estrogen receptors. Acting as a pioneer factor and coactivator, GRHL2 may directly affect steroid receptor transcriptional activity. This review will highlight recent discoveries of GRHL2 activity in cancer and in maintaining the epithelial state, while also exploring recent literature on the role of GRHL2 in hormone-dependent cancers and epigenetics.
Collapse
Affiliation(s)
- Rebecca M Reese
- Department of Oncology and Carbone Comprehensive Cancer Center, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Elaine T Alarid
- Department of Oncology and Carbone Comprehensive Cancer Center, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
18
|
Wang G, Pan J, Zhang L, Wang C. Overexpression of grainyhead-like transcription factor 2 is associated with poor prognosis in human pancreatic carcinoma. Oncol Lett 2018; 17:1491-1496. [PMID: 30675204 PMCID: PMC6341798 DOI: 10.3892/ol.2018.9741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/03/2018] [Indexed: 12/23/2022] Open
Abstract
Recent studies have demonstrated that the abnormal expression of the grainyhead-like transcription factor 2 (GRHL2) gene contributes to the progression and poor prognosis of cancer through multiple mechanisms, but little is known about its expression status and prognostic value in pancreatic carcinoma (PC). The aim of the present study was to investigate the expression of GRHL2 in PC and to evaluate its clinicopathological and prognostic significance. Immunohistochemistry and western blotting were used to detect the expression of GRHL2 in PC tissues and cell lines, respectively. The expression of GRHL2 was investigated in 92 PC tissue samples by immunohistochemistry. High expression of GRHL2 was significantly associated with histological differentiation (P=0.018) and lymphatic metastasis (P=0.024). A Kaplan-Meier analysis revealed that high expression of GRHL2 was associated with worsened overall survival time (P<0.001). Multivariate analysis indicated that GRHL2 may be an independent prognostic factor for poor overall survival time (P=0.001). Additionally, western blot analysis demonstrated that the GRHL2 protein was highly expressed in PC cell lines. GRHL2 may serve an important role in the tumourigenesis of PC and serve as a potential therapeutic target for the prevention of PC progression.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui 230001, P.R. China
| | - Jingen Pan
- Department of General Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui 230001, P.R. China
| | - Lu Zhang
- Department of General Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui 230001, P.R. China
| | - Cheng Wang
- Department of General Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
19
|
Grainyhead-like 2 (GRHL2) knockout abolishes oral cancer development through reciprocal regulation of the MAP kinase and TGF-β signaling pathways. Oncogenesis 2018; 7:38. [PMID: 29735981 PMCID: PMC5938237 DOI: 10.1038/s41389-018-0047-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/25/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023] Open
Abstract
Grainyhead-Like 2 (GRHL2) is an epithelial-specific transcription factor that regulates epithelial morphogenesis and differentiation. Prior studies suggested inverse regulation between GRHL2 and TGF-β in epithelial plasticity and potential carcinogenesis. Here, we report the role of GRHL2 in oral carcinogenesis in vivo using a novel Grhl2 knockout (KO) mouse model and the underlying mechanism involving its functional interaction with TGF-β signaling. We developed epithelial-specific Grhl2 conditional KO mice by crossing Grhl2 floxed mice with those expressing CreER driven by the K14 promoter. After induction of Grhl2 KO, we confirmed the loss of GRHL2 and its target proteins, while Grhl2 KO strongly induced TGF-β signaling molecules. When exposed to 4-nitroquinoline 1-oxide (4-NQO), a strong chemical carcinogen, Grhl2 wild-type (WT) mice developed rampant oral tongue tumors, while Grhl2 KO mice completely abolished tumor development. In cultured oral squamous cell carcinoma (OSCC) cell lines, TGF-β signaling was notably induced by GRHL2 knockdown while being suppressed by GRHL2 overexpression. GRHL2 knockdown or KO in vitro and in vivo, respectively, led to loss of active p-Erk1/2 and p-JNK MAP kinase levels; moreover, ectopic overexpression of GRHL2 strongly induced the MAP kinase activation. Furthermore, the suppressive effect of GRHL2 on TGF-β signaling was diminished in cells exposed to Erk and JNK inhibitors. These data indicate that GRHL2 activates the Erk and JNK MAP kinases, which in turn suppresses the TGF -β signaling. This novel signaling represents an alternative pathway by which GRHL2 regulates carcinogenesis, and is distinct from the direct transcriptional regulation by GRHL2 binding at its target gene promoters, e.g., E-cadherin, hTERT, p63, and miR-200 family genes. Taken together, the current study provides the first genetic evidence to support the role of GRHL2 in carcinogenesis and the underlying novel mechanism that involves the functional interaction between GRHL2 and TGF-β signaling through the MAPK pathways.
Collapse
|
20
|
Chen W, Shimane T, Kawano S, Alshaikh A, Kim SY, Chung SH, Kim RH, Shin KH, Walentin K, Park NH, Schmidt-Ott KM, Kang MK. Human Papillomavirus 16 E6 Induces FoxM1B in Oral Keratinocytes through GRHL2. J Dent Res 2018; 97:795-802. [PMID: 29443638 DOI: 10.1177/0022034518756071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High-risk human papillomavirus (HPV) is a major risk factor for oral and pharyngeal cancers (OPCs), yet the detailed mechanisms by which HPV promotes OPCs are not understood. Forkhead box M1B (FoxM1B) is an oncogene essential for cell cycle progression and tumorigenesis, and it is aberrantly overexpressed in many tumors. We previously showed that FoxM1B was the putative target of an epithelial-specific transcription factor, Grainyhead-like 2 (GRHL2). In the current study, we demonstrate that HPV type 16 (HPV-16) E6 induces FoxM1B in human oral keratinocytes (HOKs) and tonsillar epithelial cells (TECs) in part through GRHL2. FoxM1B was barely detectable in cultured normal human oral keratinocytes (NHOKs) and progressively increased in immortalized HOKs harboring HPV-16 genome (HOK-16B) and tumorigenic HOK-16B/BaP-T cells. Retroviral expression of HPV-16 E6 and/or E7 in NHOKs, TECs, and hypopharyngeal carcinoma cells (FaDu) revealed induction of FoxM1B and GRHL2 by the E6 protein but not E7. Both GRHL2 and FoxM1B were strongly induced in the epidermis of HPV-16 E6 transgenic mice and HPV+ oral squamous cell carcinomas. Ectopic expression of FoxM1B led to acquisition of transformed phenotype in HOK-16B cells. Loss of FoxM1B by lentiviral short hairpin RNA vector or chemical inhibitor led to elimination of tumorigenic characteristics of HOK-16B/BaP-T cells. Luciferase reporter assay revealed that GRHL2 directly bound and regulated the FoxM1B gene promoter activity. Using epithelial-specific Grhl2 conditional knockout mice, we exposed wild-type (WT) and Grhl2 KO mice to 4-nitroquinolin 1-oxide (4-NQO), which led to induction of FoxM1B in the tongue tissues and rampant oral tumor development in the WT mice. However, 4-NQO exposure failed to induce tongue tumors or induction of FoxM1B expression in Grhl2 KO mice. Collectively, these results indicate that HPV-16 induces FoxM1B in part through GRHL2 transcriptional activity and that elevated FoxM1B level is required for oropharyngeal cancer development.
Collapse
Affiliation(s)
- W Chen
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - T Shimane
- 2 Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - S Kawano
- 3 Asahi University School of Dentistry, Gifu, Japan
| | - A Alshaikh
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - S Y Kim
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - S H Chung
- 4 Deptartment of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - R H Kim
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,5 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - K H Shin
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,5 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - K Walentin
- 6 Max Delbruck Center for Molecular Medicine and Department of Nephrology, Charité Medical University, Berlin, Germany
| | - N H Park
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,5 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - K M Schmidt-Ott
- 6 Max Delbruck Center for Molecular Medicine and Department of Nephrology, Charité Medical University, Berlin, Germany
| | - M K Kang
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,5 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
21
|
Satishchandran A, Ambade A, Rao S, Hsueh YC, Iracheta-Vellve A, Tornai D, Lowe P, Gyongyosi B, Li J, Catalano D, Zhong L, Kodys K, Xie J, Bala S, Gao G, Szabo G. MicroRNA 122, Regulated by GRLH2, Protects Livers of Mice and Patients From Ethanol-Induced Liver Disease. Gastroenterology 2018; 154:238-252.e7. [PMID: 28987423 PMCID: PMC5742049 DOI: 10.1053/j.gastro.2017.09.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Chronic, excessive alcohol consumption leads to alcoholic liver disease (ALD) characterized by steatosis, inflammation, and eventually cirrhosis. The hepatocyte specific microRNA 122 (MIR122) regulates hepatocyte differentiation and metabolism. We investigated whether an alcohol-induced decrease in level of MIR122 contributes to development of ALD. METHODS We obtained liver samples from 12 patients with ALD and cirrhosis and 9 healthy individuals (controls) and analyzed them by histology and immunohistochemistry. C57Bl/6 mice were placed on a Lieber-DeCarli liquid diet, in which they were fed ethanol for 8 weeks, as a model of ALD, or a control diet. These mice were also given injections of CCl4, to increase liver fibrosis, for 8 weeks. On day 28, mice with ethanol-induced liver disease and advanced fibrosis, and controls, were given injections of recombinant adeno-associated virus 8 vector that expressed the primary miR-122 transcript (pri-MIR122, to overexpress MIR122 in hepatocytes) or vector (control). Two weeks before ethanol feeding, some mice were given injections of a vector that expressed an anti-MIR122, to knock down its expression. Serum and liver tissues were collected; hepatocytes and liver mononuclear cells were analyzed by histology, immunoblots, and confocal microscopy. We performed in silico analyses to identify targets of MIR122 and chromatin immunoprecipitation quantitative polymerase chain reaction analyses in Huh-7 cells. RESULTS Levels of MIR122 were decreased in liver samples from patients with ALD and mice on the Lieber-DeCarli diet, compared with controls. Transgenic expression of MIR122 in hepatocytes of mice with ethanol-induced liver disease and advanced fibrosis significantly reduced serum levels of alanine aminotransferase (ALT) and liver steatosis and fibrosis, compared with mice given injections of the control vector. Ethanol feeding reduced expression of pri-MIR122 by increasing expression of the spliced form of the transcription factor grainyhead like transcription factor 2 (GRHL2) in liver tissues from mice. Levels of GRHL2 also were increased in liver tissues from patients with ALD, compared with controls; increases correlated with decreases in levels of MIR122 in human liver. Mice given injections of the anti-MIR122 before ethanol feeding had increased steatosis, inflammation, and serum levels of alanine aminotransferase compared with mice given a control vector. Levels of hypoxia-inducible factor 1 alpha (HIF1α) mRNA, a target of MIR122, were increased in liver tissues from patients and mice with ALD, compared with controls. Mice with hepatocyte-specific disruption of Hif1α developed less-severe liver injury following administration of ethanol, injection of anti-MIR122, or both. CONCLUSIONS Levels of MIR122 decrease in livers from patients with ALD and mice with ethanol-induced liver disease, compared with controls. Transcription of MIR122 is inhibited by GRHL2, which is increased in livers of mice and patients with ALD. Expression of an anti-MIR122 worsened the severity of liver damage following ethanol feeding in mice. MIR122 appears to protect the liver from ethanol-induced damage by reducing levels of HIF1α. These processes might be manipulated to reduce the severity of ALD in patients.
Collapse
Affiliation(s)
- Abhishek Satishchandran
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Aditya Ambade
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sitara Rao
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Ying-Chao Hsueh
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Arvin Iracheta-Vellve
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David Tornai
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Patrick Lowe
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Benedek Gyongyosi
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jia Li
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Li Zhong
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jun Xie
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
22
|
Abstract
Grainyhead-like 2 is a human homolog of Drosophila grainyhead. It inhibits epithelial-to-mesenchymal transition that is necessary for cell migration, and it is involved in neural tube closure, epithelial morphogenesis, and barrier formation during embryogenesis by regulation of the expression of cell junction proteins such as E-cadherin and vimentin. Cancer shares many common characters with development such as epithelial-to-mesenchymal transition. In addition to its important role in development, grainyhead-like 2 is implicated in carcinogenesis as well. However, the reports on grainyhead-like 2 in various cancers are controversial. Grainyhead-like 2 can act as either a tumor suppressor or an oncogene with the mechanisms not well elucidated. In this review, we summarized recent progress on grainyhead-like 2 in development and cancer in order to get an insight into the regulation network of grainyhead-like 2 and understand the roles of grainyhead-like 2 in various cancers.
Collapse
Affiliation(s)
- Lijun Ma
- 1 Department of Oncology, Tongren Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Hongli Yan
- 3 Department of Laboratory Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, P.R. China
| | - Hui Zhao
- 4 School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong
| | - Jianmin Sun
- 2 Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, P.R. China.,5 Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,6 Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Abstract
Esophageal cancer (EC) is one of the most common causes of cancer-related mortality in the world. Although much effort has been made to improve the 5-year survival rate of patients with EC, it still remains low due to diagnosis at an advanced stage, aggressive local invasion, early metastasis, and resistance to chemotherapy. Although grainyhead-like 2 (GRHL2) has attracted interest since it has been recently identified as a novel suppressor of the epithelial–mesenchymal transition, clinical values of GRHL2 and its relationship with the metastasis-related factors, such as hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF), remain unclear. In order to investigate the expression of GRHL2, HIF-1α, and VEGF, and their correlation with angiogenesis in EC, 63 patients with EC were examined. The expression of GRHL2, HIF-1α, and VEGF in tumor tissues was higher than that in adjacent tissues and was associated with tumor differentiation. GRHL2 expression was significantly correlated with lymph node metastasis and invasion depth, whereas VEGF expression was associated with tumor (TNM) stage. A significant correlation was found between the expression of GRHL2 and HIF-1α. The patients expressing low GRHL2 and high HIF-1α showed significant reduction in both overall survival rate and disease-free survival rate. The results demonstrated that abnormal expression of GRHL2 is common in EC, and low expression of GRHL2 accompanied by a high expression of HIF-1α indicates poor prognosis.
Collapse
Affiliation(s)
| | | | - Xiaoqiu Wang
- Department of Pathology, Anhui Provincial Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Bing Hu
- Department of Medical Oncology
| |
Collapse
|
24
|
Faddaoui A, Sheta R, Bachvarova M, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Gobeil S, Morin C, Ghani K, Bachvarov D. Suppression of the grainyhead transcription factor 2 gene (GRHL2) inhibits the proliferation, migration, invasion and mediates cell cycle arrest of ovarian cancer cells. Cell Cycle 2017; 16:693-706. [PMID: 28278050 DOI: 10.1080/15384101.2017.1295181] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previously, we have identified the Grainyhead transcription factor 2 gene (GRHL2) as notably hypomethylated in high-grade (HG) serous epithelial ovarian tumors, compared with normal ovarian tissues. GRHL2 is known for its functions in normal tissue development and wound healing. In the context of cancer, the role of GRHL2 is still ambiguous as both tumorigenic and tumor suppressive functions have been reported for this gene, although a role of GRHL2 in maintaining the epithelial status of cancer cells has been suggested. In this study, we report that GRHL2 is strongly overexpressed in both low malignant potential (LMP) and HG serous epithelial ovarian tumors, which probably correlates with its hypomethylated status. Suppression of the GRHL2 expression led to a sharp decrease in cell proliferation, migration and invasion and induced G1 cell cycle arrest in epithelial ovarian cancer (EOC) cells displaying either epithelial (A2780s) or mesenchymal (SKOV3) phenotypes. However, no phenotypic alterations were observed in these EOC cell lines following GRHL2 silencing. Gene expression profiling and consecutive canonical pathway and network analyses confirmed these data, as in both these EOC cell lines, GRHL2 ablation was associated with the downregulation of various genes and pathways implicated in cell growth and proliferation, cell cycle control and cellular metabolism. Taken together, our data are indicative for a strong oncogenic potential of the GRHL2 gene in EOC progression and support recent findings on the role of GRHL2 as one of the major phenotypic stability factors (PSFs) that stabilize the highly aggressive/metastatic hybrid epithelial/mesenchymal (E/M) phenotype of cancer cells.
Collapse
Affiliation(s)
- Adnen Faddaoui
- a Department of Molecular Medicine , Université Laval , Québec , Canada.,b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| | - Razan Sheta
- a Department of Molecular Medicine , Université Laval , Québec , Canada.,b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| | - Magdalena Bachvarova
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| | - Marie Plante
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada.,c Department of Obstetrics and Gynecology , Université Laval , Québec , Canada
| | - Jean Gregoire
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada.,c Department of Obstetrics and Gynecology , Université Laval , Québec , Canada
| | - Marie-Claude Renaud
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada.,c Department of Obstetrics and Gynecology , Université Laval , Québec , Canada
| | - Alexandra Sebastianelli
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada.,c Department of Obstetrics and Gynecology , Université Laval , Québec , Canada
| | - Stephane Gobeil
- a Department of Molecular Medicine , Université Laval , Québec , Canada.,d Centre de Recherche du CHU de Québec , CHUL , Québec , Canada
| | - Chantale Morin
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| | - Karim Ghani
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| | - Dimcho Bachvarov
- a Department of Molecular Medicine , Université Laval , Québec , Canada.,b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| |
Collapse
|
25
|
Grhl2 reduces invasion and migration through inhibition of TGFβ-induced EMT in gastric cancer. Oncogenesis 2017; 6:e284. [PMID: 28067907 PMCID: PMC5294246 DOI: 10.1038/oncsis.2016.83] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/27/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022] Open
Abstract
Metastasis is one of the typical features of malignancy that significantly increases cancer-related mortality. Recent studies have shown that epithelial-mesenchymal transition (EMT) is closely related to the invasion and migration of cancer cells. Grainyhead-like 2 (Grhl2), a transcription factor, has been reported to be associated with several tumor processes including EMT. In the previous study, we have reported that Grhl2 functioned as a tumor suppressor in proliferation and apoptosis of gastric cancer. Here we aim to explore the effects of Grhl2 on invasion and migration of gastric cancer and further clarify its possible underlying mechanisms. As a result, in both SGC7901 and MKN45 cells, Grhl2 overexpression significantly inhibited the ability of invasion and migration. In addition, preliminary experiments showed that Grhl2 reduces the protein expression of matrix metalloproteinase-2, -7 and -9 (MMP-2, MMP-7 and MMP-9). Most importantly, Grhl2 antagonizes transforming growth factor-β (TGFβ)-induced EMT, and inhibition of TGFβ signaling pathways can restore Grhl2 expression. Finally, the results of subcutaneous xenograft model indicated that Grhl2 suppresses the growth of gastric cancer and reverses EMT process in vivo. Meanwhile, the metastatic tumor model further confirmed the inhibition of Grhl2 on metastasis of gastric cancer. Taken together, our findings proved that Grhl2, functioned as a tumor suppressor, reduces the invasion and migration through inhibition of TGFβ-induced EMT in gastric cancer.
Collapse
|
26
|
MicroRNA-194 regulates keratinocyte proliferation and differentiation by targeting Grainyhead-like 2 in psoriasis. Pathol Res Pract 2016; 213:89-97. [PMID: 28040329 DOI: 10.1016/j.prp.2016.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are currently emerged as important regulators in psoriasis. Psoriasis is characterized by hyperproliferation and impaired differentiation of keratinocytes in skin lesions. miR-194 is a well-known regulator of cell proliferation and differentiation. However, the role of miR-194 in psoriasis pathogenesis remains unclear. In this study we aimed to investigate the role of miR-194 in keratinocyte hyperproliferation and differentiation. We found that miR-194 was significantly downregulated in psoriasis lesional skin. Overexpression of miR-194 inhibited the proliferation and promoted the differentiation of primary human keratinocytes, whereas miR-194 suppression promoted the proliferation and inhibited their differentiation. Bioinformatic analysis predicted that the Grainyhead-like 2 (GRHL2) was a target gene of miR-194, which we further validated with a dual-luciferase reporter assay, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blot analysis. The effect of miR-194 on cell proliferation and differentiation was significantly reversed by overexpression of GRHL2. Moreover, the expression of miR-194 and GRHL2 was inversely correlated in psoriasis lesional skin. Taken together, our results suggest that miR-194 inhibits the proliferation and promotes the differentiation of keratinocytes through targeting GRHL2. The downregulation of miR-194 expression may contribute to the pathogenesis of psoriasis and targeting miR-194 may represent a novel and potential therapeutic strategy for psoriasis.
Collapse
|
27
|
Niu ZS, Niu XJ, Wang WH. Genetic alterations in hepatocellular carcinoma: An update. World J Gastroenterol 2016; 22:9069-9095. [PMID: 27895396 PMCID: PMC5107590 DOI: 10.3748/wjg.v22.i41.9069] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although recent advances in therapeutic approaches for treating HCC have improved the prognoses of patients with HCC, this cancer is still associated with a poor survival rate mainly due to late diagnosis. Therefore, a diagnosis must be made sufficiently early to perform curative and effective treatments. There is a need for a deeper understanding of the molecular mechanisms underlying the initiation and progression of HCC because these mechanisms are critical for making early diagnoses and developing novel therapeutic strategies. Over the past decade, much progress has been made in elucidating the molecular mechanisms underlying hepatocarcinogenesis. In particular, recent advances in next-generation sequencing technologies have revealed numerous genetic alterations, including recurrently mutated genes and dysregulated signaling pathways in HCC. A better understanding of the genetic alterations in HCC could contribute to identifying potential driver mutations and discovering novel therapeutic targets in the future. In this article, we summarize the current advances in research on the genetic alterations, including genomic instability, single-nucleotide polymorphisms, somatic mutations and deregulated signaling pathways, implicated in the initiation and progression of HCC. We also attempt to elucidate some of the genetic mechanisms that contribute to making early diagnoses of and developing molecularly targeted therapies for HCC.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Genomic Instability
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Molecular Diagnostic Techniques
- Molecular Targeted Therapy
- Mutation
- Patient Selection
- Phenotype
- Polymorphism, Single Nucleotide
- Precision Medicine
- Predictive Value of Tests
- Signal Transduction
Collapse
|
28
|
Chen W, Yi JK, Shimane T, Mehrazarin S, Lin YL, Shin KH, Kim RH, Park NH, Kang MK. Grainyhead-like 2 regulates epithelial plasticity and stemness in oral cancer cells. Carcinogenesis 2016; 37:500-10. [PMID: 26933170 PMCID: PMC6118232 DOI: 10.1093/carcin/bgw027] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 01/06/2016] [Accepted: 02/20/2016] [Indexed: 12/22/2022] Open
Abstract
Grainyhead-like 2 (GRHL2) is one of the three mammalian homologues of Drosophila Grainyhead involved in epithelial morphogenesis. We recently showed that GRHL2 also controls normal epithelial cell proliferation and differentiation. In this study, we investigated the role of GRHL2 in oral carcinogenesis and the underlying mechanism. GRHL2 expression was elevated in cells and tissues of oral squamous cell carcinomas (OSCCs) compared with normal counterparts. Knockdown of GRHL2 resulted in the loss of in vivo tumorigenicity, cancer stemness and epithelial phenotype of oral cancer cells. GRHL2 loss also inhibited oral cancer cell proliferation and colony formation. GRHL2 regulated the expression of miR-200 family and Octamer-binding transcription factor 4 (Oct-4) genes through direct promoter DNA binding. Overexpression of miR-200 genes in the oral cancer cells depleted of GRHL2 partially restored the epithelial phenotype, proliferative rate and cancer stemness, indicating that miR-200 genes in part mediate the functional effects of GRHL2. Taken together, this study demonstrates a novel connection between GRHL2 and miR-200, and supports protumorigenic effect of GRHL2 on OSCCs.
Collapse
Affiliation(s)
- Wei Chen
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jin Kyu Yi
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, School of Dentistry, Kyung Hee University, Seoul 130-872, Korea
| | - Tetsu Shimane
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Shebli Mehrazarin
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Yi-Ling Lin
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ki-Hyuk Shin
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, Jonsson Comprehensive Cancer Center and
| | - Reuben H Kim
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, Jonsson Comprehensive Cancer Center and
| | - No-Hee Park
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Mo K Kang
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, Jonsson Comprehensive Cancer Center and
| |
Collapse
|
29
|
Trevino V, Cassese A, Nagy Z, Zhuang X, Herbert J, Antzack P, Clarke K, Davies N, Rahman A, Campbell MJ, Guindani M, Bicknell R, Vannucci M, Falciani F. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells. PLoS Comput Biol 2016; 12:e1004884. [PMID: 27124473 PMCID: PMC4849722 DOI: 10.1371/journal.pcbi.1004884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/24/2016] [Indexed: 11/19/2022] Open
Abstract
The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems. In the current era of cancer research, stimulated by the release of the entire human genome, it has become increasingly clear that to understand cancer we need to understand how the many thousands of genes and proteins involved interact. Modern techniques have enabled the collection of unprecedented amounts of high quality data describing the state of these molecules during cancer development. In cancer research particularly, this strategy has been particularly successful, leading to the discovery of new drugs able to target key factors promoting cancer growth. However, a large body of research suggests that in complex organs, the interaction between cancer and its surrounding environment is an essential part of the biology of both diseased and healthy tissues, therefore it is of paramount importance that this process is further investigated. Here we report a strategy designed to reveal communication signals between cancer cells and adjacent cell types. We apply the strategy to prostate cancer and find that normal cells surrounding the tumour do exert an anti-tumour activity on prostate cancer cells. By using a statistical model which integrates multiple levels of genetic data, we show that cell-to-cell communication genes are controlled by DNA alterations and have potential prognostic value.
Collapse
Affiliation(s)
- Victor Trevino
- Catedra de Bioinformatica, Escuela de Medicina, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - Alberto Cassese
- Department of Methodology and Statistics, Maastricht University, Maastricht, Netherlands
| | - Zsuzsanna Nagy
- School of Experimental and Clinical Medicine, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xiaodong Zhuang
- School of Immunity and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - John Herbert
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Philipp Antzack
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kim Clarke
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas Davies
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ayesha Rahman
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Moray J. Campbell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Michele Guindani
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Roy Bicknell
- School of Immunity and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, Texas, United States of America
| | - Francesco Falciani
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep 2016; 6:19943. [PMID: 26887977 PMCID: PMC4757891 DOI: 10.1038/srep19943] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT), a biological process by which polarized epithelial cells convert into a mesenchymal phenotype, has been implicated to contribute to the molecular heterogeneity of epithelial ovarian cancer (EOC). Here we report that a transcription factor—Grainyhead-like 2 (GRHL2) maintains the epithelial phenotype. EOC tumours with lower GRHL2 levels are associated with the Mes/Mesenchymal molecular subtype and a poorer overall survival. shRNA-mediated knockdown of GRHL2 in EOC cells with an epithelial phenotype results in EMT changes, with increased cell migration, invasion and motility. By ChIP-sequencing and gene expression microarray, microRNA-200b/a is identified as the direct transcriptional target of GRHL2 and regulates the epithelial status of EOC through ZEB1 and E-cadherin. Our study demonstrates that loss of GRHL2 increases the levels of histone mark H3K27me3 on promoters and GRHL2-binding sites at miR-200b/a and E-cadherin genes. These findings support GRHL2 as a pivotal gatekeeper of EMT in EOC via miR-200-ZEB1.
Collapse
|
31
|
Riethdorf S, Frey S, Santjer S, Stoupiec M, Otto B, Riethdorf L, Koop C, Wilczak W, Simon R, Sauter G, Pantel K, Assmann V. Diverse expression patterns of the EMT suppressor grainyhead-like 2 (GRHL2) in normal and tumour tissues. Int J Cancer 2015; 138:949-63. [PMID: 26355710 DOI: 10.1002/ijc.29841] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/03/2015] [Indexed: 12/16/2022]
Abstract
The transcription factor grainyhead-like 2 (GRHL2) plays a crucial role in various developmental processes. Although GRHL2 recently has attracted considerable interest in that it could be identified as a novel suppressor of the epithelial-to-mesenchymal transition, evidence is emerging that GRHL2 also exhibits tumour-promoting activities. Aim of the present study therefore was to help defining the relevance of GRHL2 for human cancers by performing a comprehensive immunohistochemical analysis of GRHL2 expression in normal (n = 608) and (n = 3,143) tumour tissues using tissue microarrays. Consistent with its accepted role in epithelial morphogenesis, GRHL2 expression preferentially but not exclusively was observed in epithelial cells. Regenerative and proliferating epithelial cells with stem cell features showed a strong GRHL2 expression. Highly complex GRHL2 expression patterns indicative of both reduced and elevated GRHL2 expression in tumours, possibly reflecting potential tumour-suppressing as well as oncogenic functions of GRHL2 in distinct human tumours, were observed. A dysregulation of GRHL2 expression for the first time was found in tumours of non-epithelial origin (e.g., astrocytomas, melanomas). We also report GRHL2 copy number gains which, however, did not necessarily translate into increased GRHL2 expression levels in cancer cells. Results obtained by meta-analysis of gene expression microarray data in conjunction with functional assays demonstrating a direct regulation of HER3 expression further point to a potential therapeutic relevance of GRHL2 in ovarian cancer. Hopefully, the results presented in this study may pave the way for a better understanding of the yet largely unknown function of GRHL2 in the initiation, progression and also therapy of cancers.
Collapse
Affiliation(s)
- Sabine Riethdorf
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Frey
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Santjer
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malgorzata Stoupiec
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Otto
- Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Christina Koop
- Department of Pathology, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Department of Pathology, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volker Assmann
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Mlacki M, Kikulska A, Krzywinska E, Pawlak M, Wilanowski T. Recent discoveries concerning the involvement of transcription factors from the Grainyhead-like family in cancer. Exp Biol Med (Maywood) 2015; 240:1396-401. [PMID: 26069269 DOI: 10.1177/1535370215588924] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/01/2015] [Indexed: 12/17/2022] Open
Abstract
The Grainyhead-like (GRHL) family of transcription factors has three mammalian members, which are currently termed Grainyhead-like 1 (GRHL1), Grainyhead-like 2 (GRHL2), and Grainyhead-like 3 (GRHL3). These factors adopt a DNA-binding immunoglobulin fold homologous to the DNA-binding domain of key tumor suppressor p53. Their patterns of expression are tissue and developmentally specific. Earlier studies of the GRHL proteins focused on their functions in mammalian development. In recent years, these factors have been linked to many different types of cancer: squamous cell carcinoma of the skin, breast cancer, gastric cancer, hepatocellular carcinoma, colorectal cancer, clear cell renal cell carcinoma, neuroblastoma, prostate cancer, and cervical cancer. The roles of GRHL proteins in these various types of cancer are complex, and in some cases appear to be contradictory: they can serve to promote cancer development, or they may act as tumor suppressors, depending on the particular GRHL protein involved and on the cancer type. The reasons for obvious discrepancies in results from different studies remain unclear. At the molecular level, the GRHL transcription factors regulate the expression of genes whose products are involved in cellular proliferation, differentiation, adhesion, and polarity. We herein review the roles of GRHL proteins in cancer development, and we critically examine relevant molecular mechanisms, which were proposed by different authors. We also discuss the significance of recent discoveries implicating the involvement of GRHL transcription factors in cancer and highlight potential future applications of this knowledge in cancer treatment.
Collapse
Affiliation(s)
- Michal Mlacki
- Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Agnieszka Kikulska
- Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ewa Krzywinska
- Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Magdalena Pawlak
- Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Tomasz Wilanowski
- Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| |
Collapse
|
33
|
Quan Y, Xu M, Cui P, Ye M, Zhuang B, Min Z. Grainyhead-like 2 Promotes Tumor Growth and is Associated with Poor Prognosis in Colorectal Cancer. J Cancer 2015; 6:342-50. [PMID: 25767604 PMCID: PMC4349874 DOI: 10.7150/jca.10969] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/26/2014] [Indexed: 01/05/2023] Open
Abstract
GRHL2 was implicated in regulating cancer development. Our previous study demonstrated that knockdown GRHL2 in colorectal cancer (CRC) cells inhibited cell proliferation by targeting ZEB1. It is unclear whether GRHL2 expression may have diagnostic or prognostic value in colorectal carcinoma. Additionally, how GRHL2 is associated with the clinical features of colorectal carcinoma is not known. In current study, immunohistochemistry stains were performed to examine GRHL2 in 171 colorectal cancers and paired normal colon mucosa. The prognostic value of GRHL2 was investigated in a retrospective cohort study with a five-year follow-up. The effects of GRHL2 on cell growth in vitro and in vivo were explored by GRHL2 over-expressing in HT29 and SW620 CRC cells. Further, the regulation of cell cycle and proliferation proteins by GRHL2 were assessed by flow cytometry and western blot. We found that GRHL2 was over-expressed in CRC tissues, and played an important role in CRC tumorigenesis. GRHL2 expression positively correlated with tumor size and TNM stage. Kaplan-Meier analysis showed that GRHL2 was an independent prognostic factor for both overall survival and recurrence-free survival. Ectopic over-expression of GRHL2 in CRC cell line HT29 and SW620 induced an increase of cellular proliferation in vitro and promoting tumor growth in vivo. The acquisition of GRHL2 regulated cell cycle and modulates the expression of proliferation proteins p21, p27, cyclin A and cyclin D1. Together, our findings reveal GRHL2 can be used as a novel predictive biomarker and represent a potential therapeutic target against CRC.
Collapse
Affiliation(s)
- Yingjun Quan
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Ming Xu
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Peng Cui
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Min Ye
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Biao Zhuang
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zhijun Min
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| |
Collapse
|
34
|
Quan Y, Jin R, Huang A, Zhao H, Feng B, Zang L, Zheng M. Downregulation of GRHL2 inhibits the proliferation of colorectal cancer cells by targeting ZEB1. Cancer Biol Ther 2014; 15:878-87. [PMID: 24756066 PMCID: PMC4100988 DOI: 10.4161/cbt.28877] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/09/2014] [Accepted: 04/13/2014] [Indexed: 12/19/2022] Open
Abstract
Previous reports have associated GRHL2 with tumor progression. However, the biological role of GRHL2 in human colorectal cancer (CRC) has not been explored. We examined the expression of GRHL2 in 75 CRC samples, as well as the paired non-tumor tissues, by immunohistochemistry, qRT-PCR, and western blot analysis. The association between GRHL2 expression and various clinicopathological parameters including Ki-67, a marker of proliferative activity, was also evaluated. We performed lentivirus-mediated shRNA transfection to knock down GRHL2 gene expression in HT29 and HCT116 CRC cells. Cell proliferation was examined by the CCK-8 (Cell Counting Kit-8) assay, colony formation, and cell cycle assay in vitro. Tumorigenesis in vivo was assessed using a mouse xenograft model. Moreover, we transiently silenced ZEB1 expression in GRHL2-knockdown CRC cells using specific shRNA, and then examined the effects on GRHL2 and E-cadherin expression, as well as cell proliferation. Herein, we demonstrated that enhanced GRHL2 expression was detected in CRC, and correlated with higher levels of Ki-67 staining, larger tumor size, and advanced clinical stage. Knocking down GRHL2 in HT29 and HCT116 CRC cells significantly inhibited cell proliferation by decreasing the number of cells in S phase and increasing that in the G 0/G 1 phaseof the cell cycle. This resulted in inhibition of tumorigenesis in vivo, as well as increased expression of ZEB1. Furthermore, transient ZEB1 knockdown dramatically enhanced cell proliferation and increased GRHL2 and E-cadherin expression. Collectively, our study has identified ZEB1 as a target of GRHL2 and suggested a reciprocal GRHL2-ZEB1 repressive relationship, providing a novel mechanism through which proliferation may be modulated in CRC cells.
Collapse
Affiliation(s)
- Yingjun Quan
- Department of Surgery; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, PR China
- Shanghai Institute of Digestive Surgery; Shanghai, PR China
| | - Runsen Jin
- Department of Surgery; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, PR China
| | - Ao Huang
- Shanghai Institute of Digestive Surgery; Shanghai, PR China
| | - Hongchao Zhao
- Shanghai Institute of Digestive Surgery; Shanghai, PR China
| | - Bo Feng
- Department of Surgery; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, PR China
| | - Lu Zang
- Department of Surgery; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, PR China
| | - Minhua Zheng
- Department of Surgery; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, PR China
- Shanghai Minhang District Central Hospital; Shanghai, PR China
| |
Collapse
|
35
|
Dworkin S, Simkin J, Darido C, Partridge DD, Georgy SR, Caddy J, Wilanowski T, Lieschke GJ, Doggett K, Heath JK, Jane SM. Grainyhead-like 3 regulation of endothelin-1 in the pharyngeal endoderm is critical for growth and development of the craniofacial skeleton. Mech Dev 2014; 133:77-90. [PMID: 24915580 DOI: 10.1016/j.mod.2014.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/25/2014] [Indexed: 10/25/2022]
Abstract
Craniofacial development is a highly conserved process that requires complex interactions between neural crest cells (NCCs) and pharyngeal tissues derived from all three germ layers. Signals emanating from the pharyngeal endoderm drive differentiation of NCCs into craniofacial cartilage, and disruption of this process underpins several human craniofacial defects (CFD). Here, we demonstrate that morpholino (MO)-mediated knockdown in zebrafish of the highly conserved transcription factor grainyhead-like 3 (grhl3), which is selectively expressed in the pharyngeal endoderm, leads to severe hypoplasia of the lower jaw cartilages. Phylogenetic analysis of conserved grhl-binding sites in gene regulatory regions identified endothelin-1 (edn1) as a putative direct grhl3 target gene, and this was confirmed by chromatin precipitation (ChIP) assays in zebrafish embryos. Injection of sub-phenotypic concentrations of MOs targeting both grhl3 and edn1 induced jaw abnormalities, and injection of edn1 mRNA into grhl3-morphants rescued both pharyngeal expression of the downstream effectors of edn1, and jaw cartilage formation. This study sheds new light on the role of endodermal endothelin-1 in vertebrate jaw development, and highlights potential new genetic defects that could underpin human CFD.
Collapse
Affiliation(s)
- Sebastian Dworkin
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC 3181, Australia.
| | - Johanna Simkin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia
| | - Charbel Darido
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC 3181, Australia
| | - Darren D Partridge
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC 3181, Australia
| | - Smitha R Georgy
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC 3181, Australia
| | - Jacinta Caddy
- Bone Marrow Research Laboratories, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Tomasz Wilanowski
- Bone Marrow Research Laboratories, Royal Melbourne Hospital, Parkville, VIC 3050, Australia; Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Graham J Lieschke
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Karen Doggett
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia
| | - Joan K Heath
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia; Colon Molecular and Cell Biology Laboratory, Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, VIC 3050, Australia
| | - Stephen M Jane
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC 3181, Australia; Alfred Hospital, Prahran, VIC 3181, Australia
| |
Collapse
|
36
|
Cervigne NK, Machado J, Goswami RS, Sadikovic B, Bradley G, Perez-Ordonez B, Galloni NN, Gilbert R, Gullane P, Irish JC, Jurisica I, Reis PP, Kamel-Reid S. Recurrent genomic alterations in sequential progressive leukoplakia and oral cancer: drivers of oral tumorigenesis? Hum Mol Genet 2014; 23:2618-28. [PMID: 24403051 PMCID: PMC3990162 DOI: 10.1093/hmg/ddt657] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A significant proportion (up to 62%) of oral squamous cell carcinomas (OSCCs) may arise from oral potential malignant lesions (OPMLs), such as leukoplakia. Patient outcomes may thus be improved through detection of lesions at a risk for malignant transformation, by identifying and categorizing genetic changes in sequential, progressive OPMLs. We conducted array comparative genomic hybridization analysis of 25 sequential, progressive OPMLs and same-site OSCCs from five patients. Recurrent DNA copy number gains were identified on 1p in 20/25 cases (80%) with minimal, high-level amplification regions on 1p35 and 1p36. Other regions of gains were frequently observed: 11q13.4 (68%), 9q34.13 (64%), 21q22.3 (60%), 6p21 and 6q25 (56%) and 10q24, 19q13.2, 22q12, 5q31.2, 7p13, 10q24 and 14q22 (48%). DNA losses were observed in >20% of samples and mainly detected on 5q31.2 (35%), 16p13.2 (30%), 9q33.1 and 9q33.29 (25%) and 17q11.2, 3p26.2, 18q21.1, 4q34.1 and 8p23.2 (20%). Such copy number alterations (CNAs) were mapped in all grades of dysplasia that progressed, and their corresponding OSCCs, in 70% of patients, indicating that these CNAs may be associated with disease progression. Amplified genes mapping within recurrent CNAs (KHDRBS1, PARP1, RAB1A, HBEGF, PAIP2, BTBD7) were selected for validation, by quantitative real-time PCR, in an independent set of 32 progressive leukoplakia, 32 OSSCs and 21 non-progressive leukoplakia samples. Amplification of BTBD7, KHDRBS1, PARP1 and RAB1A was exclusively detected in progressive leukoplakia and corresponding OSCC. BTBD7, KHDRBS1, PARP1 and RAB1A may be associated with OSCC progression. Protein–protein interaction networks were created to identify possible pathways associated with OSCC progression.
Collapse
Affiliation(s)
- Nilva K Cervigne
- Division of Applied Molecular Oncology, Ontario Cancer Institute
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Varma S, Mahavadi P, Sasikumar S, Cushing L, Hyland T, Rosser AE, Riccardi D, Lu J, Kalin TV, Kalinichenko VV, Guenther A, Ramirez MI, Pardo A, Selman M, Warburton D. Grainyhead-like 2 (GRHL2) distribution reveals novel pathophysiological differences between human idiopathic pulmonary fibrosis and mouse models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2013; 306:L405-19. [PMID: 24375798 DOI: 10.1152/ajplung.00143.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic injury of alveolar lung epithelium leads to epithelial disintegrity in idiopathic pulmonary fibrosis (IPF). We had reported earlier that Grhl2, a transcriptional factor, maintains alveolar epithelial cell integrity by directly regulating components of adherens and tight junctions and thus hypothesized an important role of GRHL2 in pathogenesis of IPF. Comparison of GRHL2 distribution at different stages of human lung development showed its abundance in developing lung epithelium and in adult lung epithelium. However, GRHL2 is detected in normal human lung mesenchyme only at early fetal stage (week 9). Similar mesenchymal reexpression of GRHL2 was also observed in IPF. Immunofluorescence analysis in serial sections from three IPF patients revealed at least two subsets of alveolar epithelial cells (AEC), based on differential GRHL2 expression and the converse fluorescence intensities for epithelial vs. mesenchymal markers. Grhl2 was not detected in mesenchyme in intraperitoneal bleomycin-induced injury as well as in spontaneously occurring fibrosis in double-mutant HPS1 and HPS2 mice, whereas in contrast in a radiation-induced fibrosis model, with forced Forkhead box M1 (Foxm1) expression, an overlap of Grhl2 with a mesenchymal marker was observed in fibrotic regions. Grhl2's role in alveolar epithelial cell plasticity was confirmed by altered Grhl2 gene expression analysis in IPF and further validated by in vitro manipulation of its expression in alveolar epithelial cell lines. Our findings reveal important pathophysiological differences between human IPF and specific mouse models of fibrosis and support a crucial role of GRHL2 in epithelial activation in lung fibrosis and perhaps also in epithelial plasticity.
Collapse
Affiliation(s)
- Saaket Varma
- Saban Research Institute, Children's Hospital Los Angeles, 4650 Sunset Blvd., MS35, Los Angeles, CA 90027.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xiang J, Fu X, Ran W, Chen X, Hang Z, Mao H, Wang Z. Expression and role of grainyhead-like 2 in gastric cancer. Med Oncol 2013; 30:714. [DOI: 10.1007/s12032-013-0714-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/22/2013] [Indexed: 12/21/2022]
|
39
|
Werner S, Frey S, Riethdorf S, Schulze C, Alawi M, Kling L, Vafaizadeh V, Sauter G, Terracciano L, Schumacher U, Pantel K, Assmann V. Dual roles of the transcription factor grainyhead-like 2 (GRHL2) in breast cancer. J Biol Chem 2013; 288:22993-3008. [PMID: 23814079 DOI: 10.1074/jbc.m113.456293] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Using a retrovirus-mediated cDNA expression cloning approach, we identified the grainyhead-like 2 (GRHL2) transcription factor as novel protooncogene. Overexpression of GRHL2 in NIH3T3 cells induced striking morphological changes, an increase in cell proliferation, anchorage-independent growth, and tumor growth in vivo. By combining a microarray analysis and a phylogenetic footprinting analysis with various biochemical assays, we identified the epidermal growth factor receptor family member Erbb3 as a novel GRHL2 target gene. In breast cancer cell lines, shRNA-mediated knockdown of GRHL2 expression or functional inactivation of GRHL2 using dominant negative GRHL2 proteins induces down-regulation of ERBB3 gene expression, a striking reduction in cell proliferation, and morphological and phenotypical alterations characteristic of an epithelial-to-mesenchymal transition (EMT), thus implying contradictory roles of GRHL2 in breast carcinogenesis. Interestingly, we could further demonstrate that expression of GRHL2 is directly suppressed by the transcription factor zinc finger enhancer-binding protein 1 (ZEB1), which in turn is a direct target for repression by GRHL2, suggesting that the EMT transcription factors GRHL2 and ZEB1 form a double negative regulatory feedback loop in breast cancer cells. Finally, a comprehensive immunohistochemical analysis of GRHL2 expression in primary breast cancers showed loss of GRHL2 expression at the invasive front of primary tumors. A pathophysiological relevance of GRHL2 in breast cancer metastasis is further demonstrated by our finding of a statistically significant association between loss of GRHL2 expression in primary breast cancers and lymph node metastasis. We thus demonstrate a crucial role of GRHL2 in breast carcinogenesis.
Collapse
Affiliation(s)
- Stefan Werner
- Department of Tumor Biology, Leibniz-Institute for Experimental Virology, Virus Genomics, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen W, Xiao Liu Z, Oh JE, Shin KH, Kim RH, Jiang M, Park NH, Kang MK. Grainyhead-like 2 (GRHL2) inhibits keratinocyte differentiation through epigenetic mechanism. Cell Death Dis 2012; 3:e450. [PMID: 23254293 PMCID: PMC3542624 DOI: 10.1038/cddis.2012.190] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We recently identified Grainyhead-like 2 (GRHL2), a mammalian homolog of Grainyhead in Drosophila, to be a novel transcription factor that regulates hTERT gene expression and enhances proliferation of normal human epidermal keratinocytes (NHEK). In the current study, we show that GRHL2 impairs keratinocyte differentiation through transcriptional inhibition of the genes clustered at the epidermal differentiation complex (EDC), located at chromosome 1q21. Gene expression profiling and subsequent in vitro assays revealed consistent downregulation of EDC genes, for example, IVL, KRT1, FLG, LCEs, and SPRRs, in NHEK expressing exogenous GRHL2. In vivo binding assay by chromatin immunoprecipitation revealed GRHL2 association at the promoter regions of its target genes, many of which belong to EDC. Exogenous GRHL2 expression also inhibited recruitment of histone demethylase Jmjd3 to the EDC gene promoters and enhanced the level of histone 3 Lys 27 trimethylation enrichment at these promoters. Survey of GRHL2 expression in human skin tissues demonstrated enhanced protein and mRNA levels in chronic skin lesions with impaired keratinocyte differentiation, for example, atopic dermatitis and psoriasis, compared with normal epidermis. These data indicate that GRHL2 impairs epidermal differentiation by inhibiting EDC gene expression through epigenetic mechanisms and support its role in the hyperproliferative skin diseases.
Collapse
Affiliation(s)
- W Chen
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Varma S, Cao Y, Tagne JB, Lakshminarayanan M, Li J, Friedman TB, Morell RJ, Warburton D, Kotton DN, Ramirez MI. The transcription factors Grainyhead-like 2 and NK2-homeobox 1 form a regulatory loop that coordinates lung epithelial cell morphogenesis and differentiation. J Biol Chem 2012; 287:37282-95. [PMID: 22955271 DOI: 10.1074/jbc.m112.408401] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Grainyhead family of transcription factors controls morphogenesis and differentiation of epithelial cell layers in multicellular organisms by regulating cell junction- and proliferation-related genes. Grainyhead-like 2 (Grhl2) is expressed in developing mouse lung epithelium and is required for normal lung organogenesis. The specific epithelial cells expressing Grhl2 and the genes regulated by Grhl2 in normal lungs are mostly unknown. In these studies we identified the NK2-homeobox 1 transcription factor (Nkx2-1) as a direct transcriptional target of Grhl2. By binding and transcriptional assays and by confocal microscopy we showed that these two transcription factors form a positive feedback loop in vivo and in cell lines and are co-expressed in lung bronchiolar and alveolar type II cells. The morphological changes observed in flattening lung alveolar type II cells in culture are associated with down-regulation of Grhl2 and Nkx2-1. Reduction of Grhl2 in lung epithelial cell lines results in lower expression levels of Nkx2-1 and of known Grhl2 target genes. By microarray analysis we identified that in addition to Cadherin1 and Claudin4, Grhl2 regulates other cell interaction genes such as semaphorins and their receptors, which also play a functional role in developing lung epithelium. Impaired collective cell migration observed in Grhl2 knockdown cell monolayers is associated with reduced expression of these genes and may contribute to the altered epithelial phenotype reported in Grhl2 mutant mice. Thus, Grhl2 functions at the nexus of a novel regulatory network, connecting lung epithelial cell identity, migration, and cell-cell interactions.
Collapse
Affiliation(s)
- Saaket Varma
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen L, Zhang Q, Chang W, Du Y, Zhang H, Cao G. Viral and host inflammation-related factors that can predict the prognosis of hepatocellular carcinoma. Eur J Cancer 2012; 48:1977-87. [DOI: 10.1016/j.ejca.2012.01.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/08/2012] [Accepted: 01/16/2012] [Indexed: 02/06/2023]
|
43
|
Copy number aberrations in combined hepatocellular carcinoma and cholangiocarcinoma. Exp Mol Pathol 2012; 92:281-6. [PMID: 22366251 DOI: 10.1016/j.yexmp.2012.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/04/2011] [Accepted: 01/31/2012] [Indexed: 02/08/2023]
Abstract
Combined hepatocellular carcinoma and cholangiocarcinoma (CHC) is a rare liver cancer which shares unequivocal features of both hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC). A greater awareness of genetic relationship between HCC and CC components is limited. To help characterize this rare liver neoplasm, we described clinicopathologic features and evaluated copy number (CN) changes in this study. A total of 13 cases of CHC were collected. Four paired HCC and CC components from four cases were first subject to genome-wide analysis. Nine target genes were subsequently selected for further analysis using quantitative polymerase chain reaction. The paired HCC and CC components in each case had a concordant trend of CN gain or loss in these nine genes. However, the magnitude of concordant CN gain or loss was different. There were significant differences of CN copies between HCC and CC in each case. We demonstrate genetic divergence between HCC and CC components in CHC.
Collapse
|
44
|
Liao CJ, Wu TI, Huang YH, Chang TC, Wang CS, Tsai MM, Lai CH, Liang Y, Jung SM, Lin KH. Glucose-regulated protein 58 modulates cell invasiveness and serves as a prognostic marker for cervical cancer. Cancer Sci 2011; 102:2255-63. [DOI: 10.1111/j.1349-7006.2011.02102.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
45
|
A whole-genome RNAi screen identifies an 8q22 gene cluster that inhibits death receptor-mediated apoptosis. Proc Natl Acad Sci U S A 2011; 108:E943-51. [PMID: 21949371 DOI: 10.1073/pnas.1100132108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Deregulation of apoptosis is a common occurrence in cancer, for which emerging oncology therapeutic agents designed to engage this pathway are undergoing clinical trials. With the aim of uncovering strategies to activate apoptosis in cancer cells, we used a pooled shRNA screen to interrogate death receptor signaling. This screening approach identified 16 genes that modulate the sensitivity to ligand induced apoptosis, with several genes exhibiting frequent overexpression and/or copy number gain in cancer. Interestingly, two of the top hits, EDD1 and GRHL2, are found 50 kb apart on chromosome 8q22, a region that is frequently amplified in many cancers. By using a series of silencing and overexpression studies, we show that EDD1 and GRHL2 suppress death-receptor expression, and that EDD1 expression is elevated in breast, pancreas, and lung cancer cell lines resistant to death receptor-mediated apoptosis. Supporting the relevance of EDD1 and GRHL2 as therapeutic candidates to engage apoptosis in cancer cells, silencing the expression of either gene sensitizes 8q22-amplified breast cancer cell lines to death receptor induced apoptosis. Our findings highlight a mechanism by which cancer cells may evade apoptosis, and therefore provide insight in the search for new targets and functional biomarkers for this pathway.
Collapse
|
46
|
Verstrepen L, Verhelst K, Carpentier I, Beyaert R. TAX1BP1, a ubiquitin-binding adaptor protein in innate immunity and beyond. Trends Biochem Sci 2011; 36:347-54. [DOI: 10.1016/j.tibs.2011.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 03/19/2011] [Accepted: 03/22/2011] [Indexed: 12/18/2022]
|
47
|
Pyrgaki C, Liu A, Niswander L. Grainyhead-like 2 regulates neural tube closure and adhesion molecule expression during neural fold fusion. Dev Biol 2011; 353:38-49. [PMID: 21377456 DOI: 10.1016/j.ydbio.2011.02.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/16/2011] [Accepted: 02/16/2011] [Indexed: 02/05/2023]
Abstract
Defects in closure of embryonic tissues such as the neural tube, body wall, face and eye lead to severe birth defects. Cell adhesion is hypothesized to contribute to closure of the neural tube and body wall; however, potential molecular regulators of this process have not been identified. Here we identify an ENU-induced mutation in mice that reveals a molecular pathway of embryonic closure. Line2F homozygous mutant embryos fail to close the neural tube, body wall, face, and optic fissure, and they also display defects in lung and heart development. Using a new technology of genomic sequence capture and high-throughput sequencing of a 2.5Mb region of the mouse genome, we discovered a mutation in the grainyhead-like 2 gene (Grhl2). Microarray analysis revealed Grhl2 affects the expression of a battery of genes involved in cell adhesion and E-cadherin protein is drastically reduced in tissues that require Grhl2 function. The tissue closure defects in Grhl2 mutants are similar to that of AP-2α null mutants and AP-2α has been shown to bind to the promoter of E-cadherin. Therefore, we tested for a possible interaction between these genes. However, we find that Grhl2 and AP-2α do not regulate each other's expression, E-cadherin expression is normal in AP-2α mutants during neural tube closure, and Grhl2;AP-2α trans-heterozygous embryos are morphologically normal. Taken together, our studies point to a complex regulation of neural tube fusion and highlight the importance of comparisons between these two models to understand more fully the molecular pathways of embryonic tissue closure.
Collapse
Affiliation(s)
- Christina Pyrgaki
- HHMI, Department of Pediatrics, Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus and The Children's Hospital, Aurora, CO 80045, USA
| | | | | |
Collapse
|
48
|
Zhou L, Zhou W, Wu L, Yu X, Xing C, Zheng S. The association of frequent allelic loss on 17p13.1 with early metastatic recurrence of hepatocellular carcinoma after liver transplantation. J Surg Oncol 2011; 102:802-8. [PMID: 20886556 DOI: 10.1002/jso.21743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Identification and characterization of loss of heterozygosity (LOH) can determine putative tumor suppressor genes (TSGs) and provide a variety of molecular markers for hepatocellular carcinoma (HCC). This study aimed to investigate LOH status on chromosomes 4q, 6q, 8p, 9p, and 17p, and to explore their clinical significances in HCC post-liver transplantation. METHODS A total of 37 patients with HCC who underwent liver transplantation were enrolled. LOH was examined using 34 microsatellite markers located on 4q13-3q5, 6q27, 8p22-p23, 9p21-p22, and 17p12-p13. RESULTS The frequency of LOH at each microsatellite locus ranged from 23% to 75%, with a mean value of 53.1%. Frequencies of LOH on 4q, 6q, 8p, 9p, and 17p were 62% (23 of 37), 30% (11 of 37), 49% (18 of 37), 46% (16 of 35), and 68% (25 of 37), respectively. LOHs on certain chromosomal regions were significantly associated with age, AFP level, tumor size, tumor multiplicity, histological grade, and metastatic recurrence. CONCLUSIONS LOH on 17p13.1 correlated to metastatic HCC recurrence, while LOH on 4q and 8p was found to be associated with progression of HCC. Thus, potential novel biomarkers or TSGs for prognosis and treatment of HCC may harbor on these regions.
Collapse
Affiliation(s)
- Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
49
|
Chen W, Dong Q, Shin KH, Kim RH, Oh JE, Park NH, Kang MK. Grainyhead-like 2 enhances the human telomerase reverse transcriptase gene expression by inhibiting DNA methylation at the 5'-CpG island in normal human keratinocytes. J Biol Chem 2010; 285:40852-63. [PMID: 20938050 DOI: 10.1074/jbc.m110.103812] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently identified Grainyhead-like 2 (GRHL2) as a novel transcription factor that binds to and regulates the activity of the human telomerase reverse transcriptase (hTERT) gene promoter. In this study, we investigated the biological functions of GRHL2 and the molecular mechanism underlying hTERT gene regulation by GRHL2. Retroviral transduction of GRHL2 in normal human keratinocytes (NHK) led to a significant extension of replicative life span, whereas GRHL2 knockdown notably repressed telomerase activity and cell proliferation. Using promoter magnetic precipitation coupled with Western blotting, we confirmed the binding of GRHL2 to the hTERT promoter and mapped the minimal binding region at -53 to -13 of the promoter. Furthermore, mutation analysis revealed the three nucleotides from -21 to -19 to be critical for GRHL2 binding. Because hTERT expression is regulated in part by DNA methylation, we determined the effects of GRHL2 on the methylation status of the hTERT promoter. Senescent NHK exhibited hypermethylation of the CpG island, which occurred with the loss of hTERT expression. On the contrary, the promoter remained hypomethylated in GRHL2-transduced NHK, irrespective of cell proliferation status. Also, knockdown of endogenous GRHL2 led to hypermethylation of the promoter. These results indicate that GRHL2 regulates the hTERT expression through an epigenetic mechanism and controls the cellular life span.
Collapse
Affiliation(s)
- Wei Chen
- School of Dentistry, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Tada M, Omata M. Another key molecule for pathogenesis of hepatocellular carcinoma. J Gastroenterol Hepatol 2009; 24:1803-4. [PMID: 20002936 DOI: 10.1111/j.1440-1746.2009.06150.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|