1
|
Wang J, Liu S, Cao Y, Chen Y. Overcoming treatment resistance in cholangiocarcinoma: current strategies, challenges, and prospects. Front Cell Dev Biol 2024; 12:1408852. [PMID: 39156971 PMCID: PMC11327014 DOI: 10.3389/fcell.2024.1408852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
Significant advancements in our understanding and clinical treatment of cholangiocarcinoma (CCA) have been achieved over the past 5 years. Groundbreaking studies have illuminated the immune landscape and pathological characteristics of the tumor microenvironment in CCA. The development of immune- and metabolism-based classification systems has enabled a nuanced exploration of the tumor microenvironment and the origins of CCA, facilitating a detailed understanding of tumor progression modulation. Despite these insights, targeted therapies have not yet yielded satisfactory clinical results, highlighting the urgent need for innovative therapeutic strategies. This review delineates the complexity and heterogeneity of CCA, examines the current landscape of therapeutic strategies and clinical trials, and delves into the resistance mechanisms underlying targeted therapies. Finally, from a single-cell and spatial transcriptomic perspective, we address the challenge of therapy resistance, discussing emerging mechanisms and potential strategies to overcome this barrier and enhance treatment efficacy.
Collapse
Affiliation(s)
- Jiayi Wang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Siyan Liu
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yi Cao
- Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Kopsida M, Clavero AL, Khaled J, Balgoma D, Luna-Marco C, Chowdhury A, Nyman SS, Rorsman F, Ebeling Barbier C, Bergsten P, Lennernäs H, Hedeland M, Heindryckx F. Inhibiting the endoplasmic reticulum stress response enhances the effect of doxorubicin by altering the lipid metabolism of liver cancer cells. Mol Metab 2024; 79:101846. [PMID: 38030123 PMCID: PMC10755054 DOI: 10.1016/j.molmet.2023.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by a low and variable response to chemotherapeutic treatments. One contributing factor to the overall pharmacodynamics is the activation of endoplasmic reticulum (ER) stress pathways. This is a cellular stress mechanism that becomes activated when the cell's need for protein synthesis surpasses the ER's capacity to maintain accurate protein folding, and has been implicated in creating drug-resistance in several solid tumors. OBJECTIVE To identify the role of ER-stress and lipid metabolism in mediating drug response in HCC. METHODS By using a chemically-induced mouse model for HCC, we administered the ER-stress inhibitor 4μ8C and/or doxorubicin (DOX) twice weekly for three weeks post-tumor initiation. Histological analyses were performed alongside comprehensive molecular biology and lipidomics assessments of isolated liver samples. In vitro models, including HCC cells, spheroids, and patient-derived liver organoids were subjected to 4μ8C and/or DOX, enabling us to assess their synergistic effects on cellular viability, lipid metabolism, and oxygen consumption rate. RESULTS We reveal a pivotal synergy between ER-stress modulation and drug response in HCC. The inhibition of ER-stress using 4μ8C not only enhances the cytotoxic effect of DOX, but also significantly reduces cellular lipid metabolism. This intricate interplay culminates in the deprivation of energy reserves essential for the sustenance of tumor cells. CONCLUSIONS This study elucidates the interplay between lipid metabolism and ER-stress modulation in enhancing doxorubicin efficacy in HCC. This novel approach not only deepens our understanding of the disease, but also uncovers a promising avenue for therapeutic innovation. The long-term impact of our study could open the possibility of ER-stress inhibitors and/or lipase inhibitors as adjuvant treatments for HCC-patients.
Collapse
Affiliation(s)
- Maria Kopsida
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | | - Jaafar Khaled
- Department of Medical Cell Biology, Uppsala University, Sweden
| | - David Balgoma
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Sweden; Unidad de Excelencia, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | | | | | - Sofi Sennefelt Nyman
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden
| | - Fredrik Rorsman
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Sweden
| | - Hans Lennernäs
- Translational Drug Development and Discovery, Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | - Mikael Hedeland
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Sweden
| | | |
Collapse
|
3
|
Yu L, Shi Q, Zhang B, Xu J. Genetically modified mesenchymal stem cells promote spinal fusion through polarized macrophages. J Transl Med 2022; 102:312-319. [PMID: 34764437 PMCID: PMC8860744 DOI: 10.1038/s41374-021-00693-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023] Open
Abstract
Spinal fusion is an effective treatment for low back pain and typically applied with prosthetic fixation devices. Spinal fusion can be improved by transplantation of mesenchymal stem cells (MSCs) into the paraspinal muscle. However, in contrast to the direct contribution of MSCs to spinal fusion, the indirect effects of MSCs on spinal infusion have not been studied and were thus addressed here. The correlation between the outcome of spinal fusion and the local macrophage number, polarization and the levels of placental growth factor (PlGF) in patients was analyzed. MSCs were genetically modified to overexpress PlGF, and its effects on macrophage proliferation and polarization were analyzed in vitro in a transwell co-culture system, as well as in vivo in a mouse model for spinal fusion, for which the cells were bilaterally injected into paravertebral muscles of the mouse lumbar spine. The effects on spinal fusion were assessed by microcomputed tomography and a custom four-point bending apparatus for structural bending stiffness. Local macrophages were analyzed by flow cytometry. We found that posterior spinal fusion could be improved by PlGF-expressing MSCs, compared to the control MSCs, evident by significant improvement of bone bridging of the targeted vertebrae. Mechanistically, PlGF-expressing MSCs appeared to attract macrophages and induce their M2 polarization, which in turn promotes the bone formation. Together, our data suggest that PlGF-expressing MSCs may improve spinal fusion through macrophage recruitment and polarization.
Collapse
Affiliation(s)
- Luchao Yu
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Department of Orthopedic Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Qiang Shi
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Baokun Zhang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jianguang Xu
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
4
|
Drug Resistance and Endoplasmic Reticulum Stress in Hepatocellular Carcinoma. Cells 2022; 11:cells11040632. [PMID: 35203283 PMCID: PMC8870354 DOI: 10.3390/cells11040632] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide. It is usually diagnosed in an advanced stage and is characterized by a high intrinsic drug resistance, leading to limited chemotherapeutic efficacy and relapse after treatment. There is therefore a vast need for understanding underlying mechanisms that contribute to drug resistance and for developing therapeutic strategies that would overcome this. The rapid proliferation of tumor cells, in combination with a highly inflammatory microenvironment, causes a chronic increase of protein synthesis in different hepatic cell populations. This leads to an intensified demand of protein folding, which inevitably causes an accumulation of misfolded or unfolded proteins in the lumen of the endoplasmic reticulum (ER). This process is called ER stress and triggers the unfolded protein response (UPR) in order to restore protein synthesis or—in the case of severe or prolonged ER stress—to induce cell death. Interestingly, the three different arms of the ER stress signaling pathways have been shown to drive chemoresistance in several tumors and could therefore form a promising therapeutic target. This review provides an overview of how ER stress and activation of the UPR contributes to drug resistance in HCC.
Collapse
|
5
|
Aoki S, Inoue K, Klein S, Halvorsen S, Chen J, Matsui A, Nikmaneshi MR, Kitahara S, Hato T, Chen X, Kawakubo K, Nia HT, Chen I, Schanne DH, Mamessier E, Shigeta K, Kikuchi H, Ramjiawan RR, Schmidt TCE, Iwasaki M, Yau T, Hong TS, Quaas A, Plum PS, Dima S, Popescu I, Bardeesy N, Munn LL, Borad MJ, Sassi S, Jain RK, Zhu AX, Duda DG. Placental growth factor promotes tumour desmoplasia and treatment resistance in intrahepatic cholangiocarcinoma. Gut 2022; 71:185-193. [PMID: 33431577 PMCID: PMC8666816 DOI: 10.1136/gutjnl-2020-322493] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Intrahepatic cholangiocarcinoma (ICC)-a rare liver malignancy with limited therapeutic options-is characterised by aggressive progression, desmoplasia and vascular abnormalities. The aim of this study was to determine the role of placental growth factor (PlGF) in ICC progression. DESIGN We evaluated the expression of PlGF in specimens from ICC patients and assessed the therapeutic effect of genetic or pharmacologic inhibition of PlGF in orthotopically grafted ICC mouse models. We evaluated the impact of PlGF stimulation or blockade in ICC cells and cancer-associated fibroblasts (CAFs) using in vitro 3-D coculture systems. RESULTS PlGF levels were elevated in human ICC stromal cells and circulating blood plasma and were associated with disease progression. Single-cell RNA sequencing showed that the major impact of PlGF blockade in mice was enrichment of quiescent CAFs, characterised by high gene transcription levels related to the Akt pathway, glycolysis and hypoxia signalling. PlGF blockade suppressed Akt phosphorylation and myofibroblast activation in ICC-derived CAFs. PlGF blockade also reduced desmoplasia and tissue stiffness, which resulted in reopening of collapsed tumour vessels and improved blood perfusion, while reducing ICC cell invasion. Moreover, PlGF blockade enhanced the efficacy of standard chemotherapy in mice-bearing ICC. Conclusion PlGF blockade leads to a reduction in intratumorous hypoxia and metastatic dissemination, enhanced chemotherapy sensitivity and increased survival in mice-bearing aggressive ICC.
Collapse
Affiliation(s)
- Shuichi Aoki
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Koetsu Inoue
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Sebastian Klein
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Pathology, University Hospital Cologne, Cologne, Nordrhein-Westfalen, Germany
| | - Stefan Halvorsen
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jiang Chen
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,General Surgery, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aya Matsui
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mohammad R Nikmaneshi
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shuji Kitahara
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Anatomy and Developmental Biology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Tai Hato
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Thoracic Surgery, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Xianfeng Chen
- Oncology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Kazumichi Kawakubo
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hadi T Nia
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Bioengineering, Boston University, Boston, Massachusetts, USA
| | - Ivy Chen
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Research, STIMIT Corporation, Cambridge, Massachusetts, USA
| | - Daniel H Schanne
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emilie Mamessier
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Molecular Oncology, Cancer Research Center, Marseille, France
| | - Kohei Shigeta
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Surgery, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Hiroto Kikuchi
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Surgery, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Rakesh R Ramjiawan
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tyge CE Schmidt
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Masaaki Iwasaki
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Yau
- Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Theodore S Hong
- Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander Quaas
- Pathology, University Hospital Cologne, Cologne, Nordrhein-Westfalen, Germany
| | - Patrick S Plum
- Department of General, Visceral and Cancer Surgery, University of Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Simona Dima
- Center of Digestive Diseases and Liver Transplantation, Clinical Institute Fundeni, Bucuresti, Romania
| | - Irinel Popescu
- Center of Digestive Diseases and Liver Transplantation, Clinical Institute Fundeni, Bucuresti, Romania
| | - Nabeel Bardeesy
- Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lance L Munn
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Slim Sassi
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Orthopedics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rakesh K. Jain
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrew X Zhu
- Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA,Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | - Dan G Duda
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Liu ZL, Liu JH, Staiculescu D, Chen J. Combination of molecularly targeted therapies and immune checkpoint inhibitors in the new era of unresectable hepatocellular carcinoma treatment. Ther Adv Med Oncol 2021; 13:17588359211018026. [PMID: 34104226 PMCID: PMC8150670 DOI: 10.1177/17588359211018026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Multikinase inhibitors (MKIs) have been the only first-line treatment for advanced hepatocellular carcinoma (HCC) for more than a decade, until the approval of immune checkpoint inhibitors (ICIs). Moreover, the combination regimen of atezolizumab (anti-programmed cell death protein ligand 1 antibody) plus bevacizumab (anti-vascular endothelial growth factor monoclonal antibody) has recently been demonstrated to have superior efficacy when compared with sorafenib monotherapy. The remarkable efficacy has made this combination therapy the new standard treatment for advanced HCC. In addition to MKIs, many other molecularly targeted therapies are under investigation, some of which have shown promising results. Therefore, in the era of immuno-oncology, there is a significant rationale for testing the combinations of molecularly targeted therapies and ICIs. Indeed, numerous preclinical and clinical studies have shown the synergic antitumor efficacy of such combinations. In this review, we aim to summarize the current knowledge on the combination of molecularly targeted therapies and immune checkpoint therapies for HCC from both preclinical and clinical perspectives.
Collapse
Affiliation(s)
- Ze-Long Liu
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jing-Hua Liu
- Department of Hepatobiliary Surgery and Professor Cai’s Laboratory, Linyi People’s Hospital, Linyi, Shandong Province, China
| | - Daniel Staiculescu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, No. 3, East Qingchun Road, Hangzhou, Zhejiang Province, 310016, China
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
7
|
Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev Gastroenterol Hepatol 2021; 15:217-233. [PMID: 33131349 DOI: 10.1080/17474124.2021.1842732] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Persistent inflammation and hypoxia are strong stimulus for pathological angiogenesis and vascular remodeling, and are also the most important elements resulting in liver fibrosis. Sustained inflammatory process stimulates fibrosis to the end-point of cirrhosis and sinusoidal portal hypertension is an important feature of cirrhosis. Neovascularization plays a pivotal role in collateral circulation formation of portal vein, mesenteric congestion, and high perfusion. Imbalance of hepatic artery and portal vein blood flow leads to the increase of hepatic artery inflow, which is beneficial to the formation of nodules. Angiogenesis contributes to progression from liver fibrosis to cirrhosis and hepatocellular carcinoma (HCC) and anti-angiogenesis therapy can improve liver fibrosis, reduce portal pressure, and prolong overall survival of patients with HCC. Areas covers: This paper will try to address the difference of the morphological characteristics and mechanisms of neovascularization in the process from liver fibrosis to cirrhosis and HCC and further compare the different efficacy of anti-angiogenesis therapy in these three stages. Expert opinion: More in-depth understanding of the role of angiogenesis factors and the relationship between angiogenesis and other aspects of the pathogenesis and transformation may be the key to enabling future progress in the treatment of patients with liver fibrosis, cirrhosis, and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
8
|
Lian B, Wei H, Pan R, Sun J, Zhang B, Wu J, Li X, Tian G. Galactose Modified Liposomes for Effective Co-Delivery of Doxorubicin and Combretastatin A4. Int J Nanomedicine 2021; 16:457-467. [PMID: 33488080 PMCID: PMC7816220 DOI: 10.2147/ijn.s283793] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
Background Tumor angiogenesis plays a crucial role in tumor development, and recent efforts have been focused on combining proapoptotic and antiangiogenic activities to enhance antitumor therapy. Methods In this study, galactose-modified liposomes (Gal-LPs) were prepared for co-delivery of doxorubicin (DOX) and combretastatin A4 phosphate (CA4P). The co-cultured system composed of BEL-7402 and human umbilical vein endothelial cells (HUVEC) cells was established to effectively evaluate in vitro anti-tumor activity through cell viability and cell migration assay. Furthermore, both in vivo bio-distribution and anti-hepatoma effect of DOX&CA4P/Gal-LPs were investigated on H22 tumor cell-bearing mice. Results The results showed that DOX&CA4P/Gal-LPs were spherical with a mean particle size of 143 nm, and could readily be taken up by BEL-7402 cells. Compared with a mixture of free DOX and CA4P, the DOX&CA4P/Gal-LPs were more effective in inhibiting cell migration and exhibited stronger cytotoxicity against BEL-7402 cells alone or a co-cultured system. The in vitro studies showed that the co-cultured system was a more effective model to evaluate the anti-tumor activity of combination therapy. Moreover, DOX&CA4P/Gal-LPs exhibited a greater anti-hepatoma effect than other drug formulations, indicating that Gal-LPs could promote drug accumulation in the tumor region and improve the anti-tumor activity. Conclusion Gal-LPs co-loaded with chemotherapeutic and antiangiogenic drugs are a promising strategy for anti-hepatoma therapy.
Collapse
Affiliation(s)
- Bo Lian
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Hua Wei
- Department of Endocrinology, ShouGuang Peoples' Hospital, Weifang 262700, People's Republic of China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Jingui Sun
- Department of Oncology, ShouGuang Peoples' Hospital, Weifang 262700, People's Republic of China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Xiujie Li
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Guixiang Tian
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, People's Republic of China
| |
Collapse
|
9
|
Lebellec L, Bertucci F, Tresch-Bruneel E, Bompas E, Toiron Y, Camoin L, Mir O, Laurence V, Clisant S, Decoupigny E, Blay JY, Goncalves A, Penel N. Circulating vascular endothelial growth factor (VEGF) as predictive factor of progression-free survival in patients with advanced chordoma receiving sorafenib: an analysis from a phase II trial of the french sarcoma group (GSF/GETO). Oncotarget 2018; 7:73984-73994. [PMID: 27659533 PMCID: PMC5342029 DOI: 10.18632/oncotarget.12172] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/13/2016] [Indexed: 12/23/2022] Open
Abstract
Background Patients with advanced chordoma are often treated with tyrosine kinase inhibitors without any predictive factor to guide decision. We report herein an ancillary analysis of the the Angionext phase II trial (NCT 00874874). Results From May 2011 to January 2014, 26 were sampled. The 9-month PFS rate was 72.9% (95%-CI: 45.9-87.9). During sorafenib treatment, a significant increase in PlGF (18.4 vs 43.8 pg/mL, p<0.001) was noted along with a non-significant increase in VEGF (0.7 vs 1.0 ng/mL, p=0.07). VEGF at D1 >1.04 ng/mL (HR=12.5, 95%-CI: 1.37-114, p=0.025) and VEGF at D7 >1.36 ng/mL (HR=10.7, 95%-CI: 1.16-98, p=0.037) were associated with shorter PFS. The 9-month PFS rate was 92.3% (95%-CI: 56.6-98.9) when VEGF at D1 was ≤1.04 ng/mL versus 23.3% (95%-CI: 1.0-63.2) when >1.04 ng/mL. Patients and Methods Chordoma patients were treated with sorafenib 800 mg/day for 9 months, unless earlier occurrence of progression or toxicities. Six biomarkers (sE-Selectin, VEGF, VEGF-C, placental growth factor (PlGF), Thrombospondin, Stem Cell Factor (SCF)) were measured at baseline (day 1: D1) and day 7 (D7). Conclusion High levels of VEGF was associated with poor outcome.
Collapse
Affiliation(s)
- Loic Lebellec
- Department of Medical Oncology, Centre Oscar Lambret, Lille, France
| | - François Bertucci
- Department of Medical Oncology, Institut Paoli-Calmette, Marseille, France
| | | | - Emmanuelle Bompas
- Department of Medical Oncology, Centre René Gauducheau, Nantes, France
| | - Yves Toiron
- Department of Molecular Pharmacology, Cancer Research Center of Marseille, Institut Paoli Calmettes, Marseille, France
| | - Luc Camoin
- Department of Molecular Pharmacology, Cancer Research Center of Marseille, Institut Paoli Calmettes, Marseille, France
| | - Olivier Mir
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | | | - Stephanie Clisant
- Clinical Research Unit, Centre Oscar Lambret, Lille, France.,SIRIC OncoLille, Clinical Research and Methodological Platform, Lille, France
| | | | - Jean-Yves Blay
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Anthony Goncalves
- Department of Molecular Pharmacology, Cancer Research Center of Marseille, Institut Paoli Calmettes, Marseille, France
| | - Nicolas Penel
- Department of Medical Oncology, Centre Oscar Lambret, Lille, France.,SIRIC OncoLille, Clinical Research and Methodological Platform, Lille, France
| |
Collapse
|
10
|
Li X, Jin Q, Yao Q, Zhou Y, Zou Y, Li Z, Zhang S, Tu C. Placental Growth Factor Contributes to Liver Inflammation, Angiogenesis, Fibrosis in Mice by Promoting Hepatic Macrophage Recruitment and Activation. Front Immunol 2017; 8:801. [PMID: 28744285 PMCID: PMC5504098 DOI: 10.3389/fimmu.2017.00801] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022] Open
Abstract
Placental growth factor (PlGF), a member of the vascular endothelial growth factor (VEGF) family, mediates wound healing and inflammatory responses, exerting an effect on liver fibrosis and angiogenesis; however, the precise mechanism remains unclear. The aims of this study are to identify the role of PlGF in liver inflammation and fibrosis induced by bile duct ligation (BDL) in mice and to reveal the underlying molecular mechanism. PlGF small interfering RNA (siRNA) or non-targeting control siRNA was injected by tail vein starting 2 days after BDL. Liver inflammation, fibrosis, angiogenesis, macrophage infiltration, and hepatic stellate cells (HSCs) activation were examined. Our results showed that PlGF was highly expressed in fibrotic livers and mainly distributed in activated HSCs and macrophages. Furthermore, PlGF silencing strongly reduced the severity of liver inflammation and fibrosis, and inhibited the activation of HSCs. Remarkably, PlGF silencing also attenuated BDL-induced hepatic angiogenesis, as evidenced by attenuated liver endothelial cell markers CD31 and von Willebrand factor immunostaining and genes or protein expression. Interestingly, these pathological ameliorations by PlGF silencing were due to a marked reduction in the numbers of intrahepatic F4/80+, CD68+, and Ly6C+ cell populations, which were reflected by a lower expression of these macrophage marker molecules in fibrotic livers. In addition, knockdown of PlGF by siRNA inhibited macrophages activation and substantially suppressed the expression of pro-inflammatory cytokines and chemokines in fibrotic livers. Mechanistically, evaluation of cultured RAW 264.7 cells revealed that VEGF receptor 1 (VEGFR1) mainly involved in mediating the role of PlGF in macrophages recruitment and activation, since using VEGFR1 neutralizing antibody blocking PlGF/VEGFR1 signaling axis significantly inhibited macrophages migration and inflammatory responses. Together, these findings indicate that PlGF plays an important role in liver inflammation, angiogenesis, and fibrosis by promoting hepatic macrophage recruitment and activation, and suggest that blockage of PlGF could be a promising novel therapy for chronic fibrotic liver diseases.
Collapse
Affiliation(s)
- Xi Li
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianwen Jin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Yi Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Yanting Zou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Zheng Li
- Laboratory Animal Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuncai Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Chuantao Tu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| |
Collapse
|
11
|
Li X, Yao QY, Liu HC, Jin QW, Xu BL, Zhang SC, Tu CT. Placental growth factor silencing ameliorates liver fibrosis and angiogenesis and inhibits activation of hepatic stellate cells in a murine model of chronic liver disease. J Cell Mol Med 2017; 21:2370-2385. [PMID: 28378526 PMCID: PMC5618674 DOI: 10.1111/jcmm.13158] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/13/2017] [Indexed: 01/18/2023] Open
Abstract
Placental growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family and is involved in pathological angiogenesis associated with chronic liver diseases. However, the precise mechanisms underlying PlGF signalling contributing to liver fibrosis and angiogenesis remain largely unexplored. This study aimed to assess the effect of reducing PlGF expression using small interfering RNA (siRNA) on experimental liver fibrosis and angiogenesis, and to elucidate the underlying molecular mechanisms. Fibrosis was induced in mice by carbon tetrachloride (CCl4) for 8 weeks, and mice were treated with PlGF siRNA or non‐targeting control siRNA starting two weeks after initiating CCl4 injections. The results showed that PlGF was highly expressed in cirrhotic human and mice livers; which mainly distributed in activated hepatic stellate cells (HSCs). PlGF silencing robustly reduced liver inflammation, fibrosis, intrahepatic macrophage recruitment, and inhibited the activation of HSCs in vivo. Moreover, PlGF siRNA‐treated fibrotic mice showed diminished hepatic microvessel density and angiogenic factors, such as hypoxia‐inducible factor‐1α (HIF‐1α), VEGF and VEGF receptor‐1. Moreover, down‐regulation of PlGF with siRNA in HSCs inhibited the activation and proliferation of HSCs. Mechanistically, overexpression of PlGF in activated HSCs was induced by hypoxia dependent on HIF‐1α, and PlGF induces HSC activation and proliferation via activation the phosphatidylinositol 3‐kinase (PI3K)/Akt signalling pathways. These findings indicate that PlGF plays an important role in liver fibrosis‐associated angiogenesis and that blockage of PlGF could be an effective strategy for chronic liver disease.
Collapse
Affiliation(s)
- Xi Li
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qun-Yan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University and Shanghai Institute of Liver Diseases, Shanghai, China
| | - Hong-Chun Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University and Shanghai Institute of Liver Diseases, Shanghai, China
| | - Qian-Wen Jin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University and Shanghai Institute of Liver Diseases, Shanghai, China
| | - Bei-Li Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University and Shanghai Institute of Liver Diseases, Shanghai, China
| | - Shun-Cai Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University and Shanghai Institute of Liver Diseases, Shanghai, China
| | - Chuan-Tao Tu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University and Shanghai Institute of Liver Diseases, Shanghai, China
| |
Collapse
|
12
|
Antiangiogenic and antihepatocellular carcinoma activities of the Juniperus chinensis extract. Altern Ther Health Med 2016; 16:277. [PMID: 27502492 PMCID: PMC4977662 DOI: 10.1186/s12906-016-1250-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/26/2016] [Indexed: 12/12/2022]
Abstract
Background To identify a novel therapeutic agent for hepatocellular carcinoma (HCC), for which no promising therapeutic agent exists, we screened a panel of plants and found that Juniperus chinensis exhibited potential antiangiogenic and anti-HCC activities. We further investigated the antiangiogenic and anti-HCC effects of the active ingredient of J. chinensis extract, CBT-143-S-F6F7, both in vitro and in vivo. Methods A tube formation assay conducted using human umbilical vein endothelial cells (HUVECs) was first performed to identify the active ingredient of CBT-143-S-F6F7. A series of angiogenesis studies, including HUVEC migration, Matrigel plug, and chorioallantoic membrane (CAM) assays, were then performed to confirm the effects of CBT-143-S-F6F7 on angiogenesis. The effects of CBT-143-S-F6F7 on tumor growth were investigated using a subcutaneous and orthotopic mouse model of HCC. In vitro studies were performed to investigate the effects of CBT-143-S-F6F7 on the cell cycle and apoptosis in HCC cells. Moreover, protein arrays for angiogenesis and apoptosis were used to discover biomarkers that may be influenced by CBT-143-S-F6F7. Finally, nuclear magnetic resonance analysis was conducted to identify the compounds of CBT-143-S-F6F7. Results CBT-143-S-F6F7 showed significantly antiangiogenic activity in various assays, including HUVEC tube formation and migration, CAM, and Matrigel plug assays. In in vivo studies, gavage with CBT-143-S-F6F7 significantly repressed subcutaneous Huh7 tumor growth in severe combined immunodeficient (SCID) mice, and prolonged the survival of orthotopic Huh7 tumor-bearing SCID mice (a 40 % increase in median survival duration compared with the vehicle-treated mice). Immunohistochemical staining of subcutaneous Huh7 tumors in CBT-143-S-F6F7-treated mice showed a significantly decrease in the cell cycle regulatory protein cyclin D1, cellular proliferation marker Ki-67, and endothelial marker CD31. CBT-143-S-F6F7 caused arrest of the G2/M phase and induced Huh7 cell apoptosis, possibly contributing to the inhibition of HCC tumors. Protein array analysis revealed that several angiogenic and antiapoptotic factors were suppressed in CBT-143-S-F6F7-treated Huh7 cells. Finally, five compounds from CBT-143-S-F6F7 were identified. Conclusions According to these results, we report for the first time the antiangiogenic and anti-HCC activities of CBT-143-S-F6F7, the active fractional extract of J. chinensis. We believe that CBT-143-S-F6F7 warrants further evaluation as a new anti-HCC drug. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1250-6) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
MiR-101 targets DUSP1 to regulate the TGF-β secretion in sorafenib inhibits macrophage-induced growth of hepatocarcinoma. Oncotarget 2016; 6:18389-405. [PMID: 26158762 PMCID: PMC4621898 DOI: 10.18632/oncotarget.4089] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/18/2015] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC)-associated macrophages accelerate tumor progression via growth factor release. Therefore, tumor-associated macrophages (TAMs)-initiated signaling cascades are potential therapeutic targets. To better understand anticancer effects of systemic HCC therapy, we studied sorafenib's effect on macrophage function, focusing on macrophage-related growth factor secretion. We found that dual specificity phosphatase 1 (DUSP1) is a direct target of miR-101. Transfection of miR-101 reduced DUSP1 induction in M2 macrophages and prolonged ERK1/2, p38 and JNK activation, whereas inhibition of miR-101 enhanced DUSP1 expression and decreased ERK1/2, p38 and JNK activation. miR-101 expression was decreased by sorafenib, and inhibition of PI3K/AKT blocked induction of miR-101 by LPS in M2 cells. M2 cells with greater TGF-β and CD206 mRNA expression compared to M1 cells had increased hepatoma growth, metastases and EMT. Sorafenib inhibited miR-101 expression and enhanced DUSP1 expression and lowered TGF-β and CD206 release in M2 cells, slowing macrophage-driven HCC. Our studies demonstrate miR-101 regulates macrophage innate immune responses to LPS via targeting DUSP1. Sorafenib alters macrophage polarization, reduces TGF-β driven cancer growth, metastases and EMT in vitro, and partially inhibits macrophage activation in vivo. Thus, macrophage modulation might explain the anticancer effects of sorafenib.
Collapse
|
14
|
Doi T, Lee KH, Kim TM, Ohtsu A, Kim TY, Ikeda M, Yoh K, Gallo Stampino C, Hirohashi T, Suzuki A, Fujii Y, Andrew Williams J, Bang YJ. A phase I study of the human anti-activin receptor-like kinase 1 antibody PF-03446962 in Asian patients with advanced solid tumors. Cancer Med 2016; 5:1454-63. [PMID: 27075560 PMCID: PMC4944871 DOI: 10.1002/cam4.724] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 12/15/2022] Open
Abstract
Preclinical studies suggest that ALK-1 signaling mediates a complementary angiogenesis pathway activated upon development of resistance to vascular endothelial growth factor (VEGF)-targeted therapies. Inhibition of ALK-1 signaling may lead to disruption of tumor angiogenesis and growth. We report findings from a multicenter, open-label, phase I study of the fully human anti-ALK-1 mAb PF-03446962 conducted in Japan and South Korea, in Asian patients with advanced solid tumors. The dose escalation Part 1 of the study was based on a standard 3 + 3 design (n = 16). In Part 2, patients were treated with PF-03446962 at 7 and 10 mg/kg (10/cohort), including patients with disease progression following prior VEGF receptor (R)-targeted therapy. Primary objectives were determination of the maximum tolerated dose (MTD) and recommended phase II dose (RP2D). Secondary objectives included safety, pharmacokinetics, pharmacodynamics, and antitumor activity of PF-03446962. No dose-limiting toxicity (DLT) was noted in the 12 DLT-evaluable patients. Treatment was well tolerated. The MTD for biweekly intravenous administration was estimated to be 10 mg/kg and the RP2D 7 mg/kg. Treatment-related grades 1-3 thrombocytopenia was experienced by 27.8% patients. The most frequent nonhematologic treatment-related AEs were grades 1-2 pyrexia and epistaxis. Four patients (3/4 with hepatocellular carcinoma) developed telangiectasia suggesting vascular targeting and in vivo ALK-1 inhibition by PF-03446962. Stable disease for 12 weeks or more was observed in 25.7% of patients and in 44.4% of those with hepatocellular carcinoma. ALK-1 inhibition by PF-03446962 may represent a novel antiangiogenic strategy for patients with advanced solid malignancies complementary to current treatment with VEGF(R)-targeted inhibitors or chemotherapy.
Collapse
Affiliation(s)
- Toshihiko Doi
- National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Kyung-Hun Lee
- Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Tae-Min Kim
- Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Atsushi Ohtsu
- National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Tae Yong Kim
- Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Masafumi Ikeda
- National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Kiyotaka Yoh
- National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Corrado Gallo Stampino
- Pfizer Global Oncology Research and Development, Via Anna Maria Mozzoni, 12, Milan, 20152, Italy
| | | | - Akiyuki Suzuki
- Pfizer Japan, 3-22-7 Yoyogi, Shibuya-ku, Tokyo, 151-8589, Japan
| | - Yosuke Fujii
- Pfizer Japan, 3-22-7 Yoyogi, Shibuya-ku, Tokyo, 151-8589, Japan
| | | | - Yung-Jue Bang
- Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| |
Collapse
|
15
|
Vandewynckel YP, Laukens D, Devisscher L, Bogaerts E, Paridaens A, Van den Bussche A, Raevens S, Verhelst X, Van Steenkiste C, Jonckx B, Libbrecht L, Geerts A, Carmeliet P, Van Vlierberghe H. Placental growth factor inhibition modulates the interplay between hypoxia and unfolded protein response in hepatocellular carcinoma. BMC Cancer 2016; 16:9. [PMID: 26753564 PMCID: PMC4707726 DOI: 10.1186/s12885-015-1990-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. We previously showed that the inhibition of placental growth factor (PlGF) exerts antitumour effects and induces vessel normalisation, possibly reducing hypoxia. However, the exact mechanism underlying these effects remains unclear. Because hypoxia and endoplasmic reticulum stress, which activates the unfolded protein response (UPR), have been implicated in HCC progression, we assessed the interactions between PlGF and these microenvironmental stresses. Methods PlGF knockout mice and validated monoclonal anti-PlGF antibodies were used in a diethylnitrosamine-induced mouse model for HCC. We examined the interactions among hypoxia, UPR activation and PlGF induction in HCC cells. Results Both the genetic and pharmacological inhibitions of PlGF reduced the chaperone levels and the activation of the PKR-like endoplasmic reticulum kinase (PERK) pathway of the UPR in diethylnitrosamine-induced HCC. Furthermore, we identified that tumour hypoxia was attenuated, as shown by reduced pimonidazole binding. Interestingly, hypoxic exposure markedly activated the PERK pathway in HCC cells in vitro, suggesting that PlGF inhibition may diminish PERK activation by improving oxygen delivery. We also found that PlGF expression is upregulated by different chemical UPR inducers via activation of the inositol-requiring enzyme 1 pathway in HCC cells. Conclusions PlGF inhibition attenuates PERK activation, likely by tempering hypoxia in HCC via vessel normalisation. The UPR, in turn, is able to regulate PlGF expression, suggesting the existence of a feedback mechanism for hypoxia-mediated UPR that promotes the expression of the angiogenic factor PlGF. These findings have important implications for our understanding of the effect of therapies normalising tumour vasculature. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1990-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yves-Paul Vandewynckel
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Debby Laukens
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Lindsey Devisscher
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Eliene Bogaerts
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Annelies Paridaens
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Anja Van den Bussche
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Sarah Raevens
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Xavier Verhelst
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Christophe Van Steenkiste
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | | | - Louis Libbrecht
- Department of Pathology, Ghent University Hospital, Ghent, Belgium.
| | - Anja Geerts
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Centre, KU Leuven, Leuven, Belgium. .,Laboratory of Angiogenesis & Neurovascular Link, Vesalius Research Centre, VIB, Leuven, Belgium.
| | - Hans Van Vlierberghe
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| |
Collapse
|
16
|
Time-dependent effect of hypoxia on tumor progression and liver progenitor cell markers in primary liver tumors. PLoS One 2015; 10:e0119555. [PMID: 25793288 PMCID: PMC4368520 DOI: 10.1371/journal.pone.0119555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/14/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND & AIMS Expression of liver progenitor cell (LPC) characteristics has been proposed as a negative prognostic marker in primary liver tumors. Hypoxia has been linked to activation of the Notch pathway which is responsible for activation and proliferation of LPCs and hypoxia-induced LPC activation has been shown in hepatocellular carcinoma. Our aim was to elucidate the time-dependent effects of hypoxia on the LPC niche in hepatocellular carcinoma which could aid in determining a safe time frame for use of hypoxia inducing therapies. METHODS We used dimethyloxaloylglycine to mimic a hypoxic reaction in mice by stabilizing hypoxia-inducible factor 1 alpha at three distinct time points in diethylnitrosamine induced hepatocarcinogenesis. LPC, metastasis and Notch pathway markers were determined by quantitative PCR and (immune)histochemistry (heamatoxillin-eosin, reticulin, Sirius red and cytokeratin 19 staining). RESULTS Activating the hypoxia inducible pathway early in hepatocarcinogenesis resulted in an increased incidence of both cholangioma and hepatocellular lesions, associated with high expression of LPC, metastatic and Notch pathway markers. Adversely, activating the hypoxic response during tumor development resulted in decreased incidence of hepatocellular lesions and increased cholangioma incidence, with an unaltered gene expression profile of LPC-, Notch pathway- and metastatic markers. A hypoxic insult at advanced stages of hepatocarcinogenesis severely increased the expression of LPC characteristics, however without increased expression of actors of the Notch pathway and metastatic markers and minor changes in incidence of hepatocellular and cholangioma lesions. CONCLUSION Our results indicate that increased hypoxia at the onset of tumor development has detrimental effects on tumor progression; patients with HCC developed in a background of fibrosis/cirrhosis might therefore represent a more difficult treatment group. In contrast, hypoxia during tumor development appears to favor tumor outcome, highlighting the importance of early detection. Finally, hypoxia in advanced stages resulted in increased expression of LPC characteristics indicating poor outcome.
Collapse
|
17
|
Heindryckx F, Gerwins P. Targeting the tumor stroma in hepatocellular carcinoma. World J Hepatol 2015; 7:165-176. [PMID: 25729472 PMCID: PMC4342599 DOI: 10.4254/wjh.v7.i2.165] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/30/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide. In ninety percent of the cases it develops as a result of chronic liver damage and it is thus a typical inflammation-related cancer characterized by the close relation between the tumor microenvironment and tumor cells. The stromal environment consists out of several cell types, including hepatic stellate cells, macrophages and endothelial cells. They are not just active bystanders in the pathogenesis of HCC, but play an important and active role in tumor initiation, progression and metastasis. Furthermore, the tumor itself influences these cells to create a background that is beneficial for sustaining tumor growth. One of the key players is the hepatic stellate cell, which is activated during liver damage and differentiates towards a myofibroblast-like cell. Activated stellate cells are responsible for the deposition of extracellular matrix, increase the production of angiogenic factors and stimulate the recruitment of macrophages. The increase of angiogenic factors (which are secreted by macrophages, tumor cells and activated stellate cells) will induce the formation of new blood vessels, thereby supplying the tumor with more oxygen and nutrients, thus supporting tumor growth and offering a passageway in the circulatory system. In addition, the secretion of chemokines by the tumor cells leads to the recruitment of tumor associated macrophages. These tumor associated macrophages are key actors of cancer-related inflammation, being the main type of inflammatory cells infiltrating the tumor environment and exerting a tumor promoting effect by secreting growth factors, stimulating angiogenesis and influencing the activation of stellate cells. This complex interplay between the several cell types involved in liver cancer emphasizes the need for targeting the tumor stroma in HCC patients.
Collapse
|
18
|
|
19
|
Bogaerts E, Heindryckx F, Vandewynckel YP, Van Grunsven LA, Van Vlierberghe H. The roles of transforming growth factor-β, Wnt, Notch and hypoxia on liver progenitor cells in primary liver tumours (Review). Int J Oncol 2014; 44:1015-22. [PMID: 24504124 PMCID: PMC3977811 DOI: 10.3892/ijo.2014.2286] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/28/2013] [Indexed: 12/11/2022] Open
Abstract
Primary liver tumours have a high incidence and mortality. The most important forms are hepatocellular carcinoma and intrahepatic cholangiocarcinoma, both can occur together in the mixed phenotype hepatocellular-cholangiocarcinoma. Liver progenitor cells (LPCs) are bipotential stem cells activated in case of severe liver damage and are capable of forming both cholangiocytes and hepatocytes. Possibly, alterations in Wnt, transforming growth factor-β, Notch and hypoxia pathways in these LPCs can cause them to give rise to cancer stem cells, capable of driving tumourigenesis. In this review, we summarize and discuss current knowledge on the role of these pathways in LPC activation and differentiation during hepatocarcinogenesis.
Collapse
Affiliation(s)
- Eliene Bogaerts
- Department of Gastroenterology and Hepatology, 1K12, Ghent University Hospital, 9000 Gent, Belgium
| | - Femke Heindryckx
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Yves-Paul Vandewynckel
- Department of Gastroenterology and Hepatology, 1K12, Ghent University Hospital, 9000 Gent, Belgium
| | - Leo A Van Grunsven
- Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Hans Van Vlierberghe
- Department of Gastroenterology and Hepatology, 1K12, Ghent University Hospital, 9000 Gent, Belgium
| |
Collapse
|