1
|
Wang L, Lin Y, Yao Z, Babu N, Lin W, Chen C, Du L, Cai S, Pan Y, Xiong X, Ye Q, Ren H, Zhang D, Chen Y, Yeung SCJ, Bremer E, Zhang H. Targeting undruggable phosphatase overcomes trastuzumab resistance by inhibiting multi-oncogenic kinases. Drug Resist Updat 2024; 76:101118. [PMID: 39094301 DOI: 10.1016/j.drup.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
AIMS Resistance to targeted therapy is one of the critical obstacles in cancer management. Resistance to trastuzumab frequently develops in the treatment for HER2+ cancers. The role of protein tyrosine phosphatases (PTPs) in trastuzumab resistance is not well understood. In this study, we aim to identify pivotal PTPs affecting trastuzumab resistance and devise a novel counteracting strategy. METHODS Four public datasets were used to screen PTP candidates in relation to trastuzumab responsiveness in HER2+ breast cancer. Tyrosine kinase (TK) arrays were used to identify kinases that linked to protein tyrosine phosphate receptor type O (PTPRO)-enhanced trastuzumab sensitivity. The efficacy of small activating RNA (saRNA) in trastuzumab-conjugated silica nanoparticles was tested for PTPRO upregulation and resistance mitigation in cell models, a transgenic mouse model, and human cancer cell line-derived xenograft models. RESULTS PTPRO was identified as the key PTP which influences trastuzumab responsiveness and patient survival. PTPRO de-phosphorated several TKs, including the previously overlooked substrate ERBB3, thereby inhibiting multiple oncogenic pathways associated with drug resistance. Notably, PTPRO, previously deemed "undruggable," was effectively upregulated by saRNA-loaded nanoparticles. The upregulated PTPRO simultaneously inhibited ERBB3, ERBB2, and downstream SRC signaling pathways, thereby counteracting trastuzumab resistance. CONCLUSIONS Antibody-conjugated saRNA represents an innovative approach for targeting "undruggable" PTPs.
Collapse
Affiliation(s)
- Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China; Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Hematology, University of Groningen, University Medical Center Groningen, the Netherlands; Shantou University Medical College, Shantou, China
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China; Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Nipun Babu
- Shantou University Medical College, Shantou, China
| | - Wan Lin
- Shantou University Medical College, Shantou, China
| | | | - Liang Du
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Songwang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao Xiong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Qiantao Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Hongzheng Ren
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China; Department of Pathology, Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Dianzheng Zhang
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Yexi Chen
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin Bremer
- Department of Hematology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Hao Zhang
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
2
|
Xiao F, Zhu H, Xiong Y, Guo Y, Zhang Z, Zeng J, Xiao Y, Liao B, Shang X, Zhao S, Hu G, Huang K, Guo H. Positive feedback loop of c-myc/XTP6/NDH2/NF-κB to promote malignant progression in glioblastoma. J Exp Clin Cancer Res 2024; 43:187. [PMID: 38965580 PMCID: PMC11225266 DOI: 10.1186/s13046-024-03109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Recent studies have highlighted the significant role of the NF-κB signaling pathway in the initiation and progression of cancer. Furthermore, long noncoding RNAs (lncRNAs) have been identified as pivotal regulators in sustaining the NF-κB signaling pathway's functionality. Despite these findings, the underlying molecular mechanisms through which lncRNAs influence the NF-κB pathway remain largely unexplored. METHODS Bioinformatic analyses were utilized to investigate the differential expression and prognostic significance of XTP6. The functional roles of XTP6 were further elucidated through both in vitro and in vivo experimental approaches. To estimate the interaction between XTP6 and NDH2, RNA pulldown and RNA Immunoprecipitation (RIP) assays were conducted. The connection between XTP6 and the IκBα promoter was examined using Chromatin Isolation by RNA Purification (ChIRP) assays. Additionally, Chromatin Immunoprecipitation (ChIP) assays were implemented to analyze the binding affinity of c-myc to the XTP6 promoter, providing insights into the regulatory mechanisms at play. RESULTS XTP6 was remarkedly upregulated in glioblastoma multiforme (GBM) tissues and was connected with adverse prognosis in GBM patients. Our investigations revealed that XTP6 can facilitate the malignant progression of GBM both in vitro and in vivo. Additionally, XTP6 downregulated IκBα expression by recruiting NDH2 to the IκBα promoter, which resulted in elevated levels of H3K27me3, thereby reducing the transcriptional activity of IκBα. Moreover, the progression of GBM was further driven by the c-myc-mediated upregulation of XTP6, establishing a positive feedback loop with IκBα that perpetuated the activation of the NF-κB signaling pathway. Notably, the application of an inhibitor targeting the NF-κB signaling pathway effectively inhibited the continuous activation induced by XTP6, leading to a significant reduction in tumor formation in vivo. CONCLUSION The results reveal that XTP6 unveils an innovative epigenetic mechanism instrumental in the sustained activation of the NF-κB signaling pathway, suggesting a promising therapeutic target for the treatment of GBM.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yaping Xiong
- Departments of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yun Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jie Zeng
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yao Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Bin Liao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xuesong Shang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Siyi Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Guowen Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China.
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
3
|
Zhang H, Xiang L, Yuan H, Yu H. PTPRO inhibition ameliorates spinal cord injury through shifting microglial M1/M2 polarization via the NF-κB/STAT6 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167141. [PMID: 38565385 DOI: 10.1016/j.bbadis.2024.167141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Spinal cord injury (SCI) induces severe neuroinflammation, and subsequently neurological dysfunction. Activated microglia are critical for modulation of neuroinflammation. Protein tyrosine phosphatase receptor type O (PTPRO), a member of protein tyrosine phosphatases (PTPs), exerts a pro-inflammatory role in multiple human diseases; however, its role in SCI remains unclarified. Here, a T7 spinal cord compression injury model was established in Sprague-Dawley (SD) rats, and PTPRO expression was upregulated in injured spinal cord and microglia after SCI. Microglia M1 and M2 polarization in vitro were induced using LPS/IFN-γ and IL-4, respectively. PTPRO expression was elevated in M1-polarized microglia, and PTPRO downregulation mediated by PTPRO shRNA (shPTPRO) decreased CD86+ cell proportion, iNOS, TNF-α, IL-1β, and IL-6 levels, and p65 phosphorylation. PTPRO was downregulated in M2 microglia, and PTPRO upregulation by PTPRO overexpression plasmid (OE-PTPRO) reduced CD206+ cell percentage, Arg-1, IL-10, and TGF-β1 levels and STAT6 phosphorylation. Mechanistically, the transcription factor SOX4 elevated PTPRO expression and its promoter activity. SOX4 overexpression enhanced M1 polarization and p65 phosphorylation, while its knockdown promoted M2 polarization and STAT6 phosphorylation. PTPRO might mediate the function of SOX4 in BV2 microglia polarization. Furthermore, lentivirus-mediated downregulation of PTPRO following SCI improved locomotor functional recovery, demonstrated by elevated BBB scores, incline angle, consistent hindlimb coordination, and reduced lesion area and neuronal apoptosis. PTPRO downregulation promoted microglia M2 polarization, NF-κB inactivation and STAT6 activation after injury. In conclusion, PTPRO inhibition improves spinal cord injury through facilitating M2 microglia polarization via the NF-κB/STAT6 signaling pathway, which is probably controlled by SOX4.
Collapse
Affiliation(s)
- Haocong Zhang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Liangbi Xiang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Hong Yuan
- Department of Orthopaedics, The General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Hailong Yu
- Department of Orthopaedics, The General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
4
|
Qian B, Wang C, Li X, Ma P, Dong L, Shen B, Wu H, Li N, Kang K, Ma Y. PPARβ/δ activation protects against hepatic ischaemia-reperfusion injury. Liver Int 2023; 43:2808-2823. [PMID: 37833850 DOI: 10.1111/liv.15760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND AIMS Hepatic ischaemia/reperfusion injury (HIRI) is a pathophysiological process that occurs during the liver resection and transplantation. Reportedly, peroxisome proliferator-activated receptor β/δ (PPARβ/δ) can ameliorate kidney and myocardial ischaemia/reperfusion injury. However, the effect of PPARβ/δ in HIRI remains unclear. METHODS Mouse hepatic ischaemia/reperfusion (I/R) models were constructed for in vivo study. Primary hepatocytes and Kupffer cells (KCs) isolated from mice and cell anoxia/reoxygenation (A/R) injury model were constructed for in vitro study. Liver injury and inflammation were investigated. Small molecular compounds (GW0742 and GSK0660) and adenoviruses were used to interfere with PPARβ/δ. RESULTS We found that PPARβ/δ expression was increased in the I/R and A/R models. Overexpression of PPARβ/δ in hepatocytes alleviated A/R-induced cell apoptosis, while knockdown of PPARβ/δ in hepatocytes aggravated A/R injury. Activation of PPARβ/δ by GW0742 protected against I/R-induced liver damage, inflammation and cell death, whereas inhibition of PPARβ/δ by GSK0660 had the opposite effects. Consistent results were obtained in mouse I/R models through the tail vein injection of adenovirus-mediated PPARβ/δ overexpression or knockdown vectors. Furthermore, knockdown and overexpression of PPARβ/δ in KCs aggravated and ameliorated A/R-induced hepatocyte injury, respectively. Gene ontology and gene set enrichment analysis showed that PPARβ/δ deletion was significantly enriched in the NF-κB pathway. PPARβ/δ inhibited the expression of p-IKBα and p-P65 and decreased NF-κB activity. CONCLUSIONS PPARβ/δ exerts anti-inflammatory and anti-apoptotic effects on HIRI by inhibiting the NF-κB pathway, and hepatocytes and KCs may play a synergistic role in this phenomenon. Thus, PPARβ/δ is a potential therapeutic target for HIRI.
Collapse
Affiliation(s)
- Baolin Qian
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaozhuang Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Panfei Ma
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liqian Dong
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Benqiang Shen
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huibo Wu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nana Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Kang
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Ma
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Genome-wide association study biomarkers in T-cell mediated rejection: selective effect according to the Banff classification. J Nephrol 2022; 36:809-815. [PMID: 35947357 DOI: 10.1007/s40620-022-01419-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND A genome-wide association study (GWAS) in kidney transplant recipients reported the association of two polymorphisms located in the PTPRO gene and upstream of the CCDC67 (DEUP1) gene with increased risk of acute T cell-mediated rejection (TCMR). We aimed at replicating the assessment of mentioned associations and additionally ascertaining the influence of treatment and clinical features of the patients. METHODS The polymorphisms, PTPRO-rs7976329 and CCDC67-rs10765602 were genotyped by TaqMan chemistry in 641 consecutive kidney transplant recipients. The diagnosis of rejection was confirmed by biopsy and categorized according to the Banff classification. Associations were evaluated by Chi-square test or Fisher's exact test when necessary and multivariate logistic regression. RESULTS Considering the GWAS study we only replicated the association of the PTPRO-rs7976329*C allele in the Banff grade < II subjects. However, the homozygous mutant genotypes of both polymorphism seemed to increase the risk of TCMR Banff grade < II in the overall cohort and after stratification by Thymoglobulin induction therapy. In the multivariate analysis, we confirmed the association of PTPRO-rs7976329 with TCMR Banff grade < II, independently of the Thymoglobulin induction therapy and of CCDC67-rs10765602 only in the group of patients not receiving Thymoglobulin induction therapy. No association of these polymorphisms with TCMR Banff grade ≥ II was observed in either the overall cohort or in the subgroups stratified by Thymoglobulin therapy. CONCLUSIONS Our study shows that the increased risk of TCMR related to polymorphisms PTPRO-rs7976329 and CCDC67-rs10765602 previously reported in a GWAS was replicated only in homozygous patients who presented TCMR Banff grade < II and for the minor allele of either polymorphism.
Collapse
|
6
|
Huang Z, Pu J, Luo Y, Fan J, Li K, Peng D, Zong K, Zhou B, Guan X, Zhou F. FAM49B, restrained by miR-22, relieved hepatic ischemia/reperfusion injury by inhibiting TRAF6/IKK signaling pathway in a Rac1-dependent manner. Mol Immunol 2022; 143:135-146. [PMID: 35131594 DOI: 10.1016/j.molimm.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
Hepatic ischemia/reperfusion (I/R) injury plays a pivotal pathogenic role in trauma, hepatectomy, and liver transplantation. However, the whole mechanism remains undescribed. The objective of this study is to investigate the internal mechanism by which microRNA-22 (miR-22) targets family with sequence similarity 49 member B (FAM49B), thus aggravating hepatic I/R injury. Here, we found that miR-22 was upregulated while FAM49B was reduced in hepatic I/R injury. Inhibition of miR-22 in vitro was able to intensify expression of FAM49B, thus reducing phosphorylation of inhibitors of nuclear factor kappa-B kinase (IKK) and downstream pro-inflammatory proteins. A dual luciferase reporter assay indicated that miR-22 directly targeted FAM49B. Remission of hepatic pathologic alterations, apoptosis, and release of cytokines derived from constraints of miR-22 were abolished in vivo by repressing FAM49B. Further interference of Ras-related C3 botulinum toxin substrate 1 (Rac1) reversed the function of FAM49B inhibition, thus achieving anti-inflammatory consequences.
Collapse
Affiliation(s)
- Zuotian Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junliang Pu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunhai Luo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Fan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kaili Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dadi Peng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kezhen Zong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Baoyong Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Fachun Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Ding Y, Ouyang Z, Zhang C, Zhu Y, Xu Q, Sun H, Qu J, Sun Y. Tyrosine phosphatase SHP2 exacerbates psoriasis-like skin inflammation in mice via ERK5-dependent NETosis. MedComm (Beijing) 2022; 3:e120. [PMID: 35281792 PMCID: PMC8906448 DOI: 10.1002/mco2.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease, often accompanied by increased infiltration of immune cells, especially neutrophils. However, the detailed mechanism of the neutrophil function in psoriasis progression remains unclear. Here, we found that both Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) and neutrophils were highly correlated to developing psoriasis by single-cell ribonucleic acid (RNA) sequencing and experiment verification. The deficiency of SHP2 in neutrophils significantly alleviated psoriasis-like phenotype in an imiquimod-induced murine model. Interestingly, high levels of neutrophil extracellular traps (NETs) were produced in the inflamed lesions of psoriatic patients. In addition, imiquimod-induced psoriasis-like symptoms were remarkably ameliorated in peptidyl arginine deiminase 4 (PAD4) knockout mice, which cannot form NETs. Mechanistically, RNA-seq analysis revealed that SHP2 promoted the formation of NETs in neutrophils via the ERK5 pathway. Functionally, this mechanism resulted in the infiltration of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, IL-17A, and CXCL-15, which enhances the inflammatory response in skin lesions and reinforces the cross-talk between neutrophils and keratinocytes, ultimately aggravating psoriasis. Our findings uncover a role for SHP2 in NET release and subsequent cell death known as NETosis in the progression of psoriasis and suggest that SHP2 may be a promising therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Yan Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
| | - Zijun Ouyang
- Institute of Marine Biomedicine, School of Food and DrugShenzhen PolytechnicShenzhenGuangdongChina
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
| | - Yuyu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
| | - Haiyan Sun
- Institute of Marine Biomedicine, School of Food and DrugShenzhen PolytechnicShenzhenGuangdongChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life SciencesNanjing UniversityNanjingChina
- Chemistry and Biomedicine Innovation Center (ChemBIC)Nanjing UniversityNanjingChina
| |
Collapse
|
8
|
MiR-6869-5p Induces M2 Polarization by Regulating PTPRO in Gestational Diabetes Mellitus. Mediators Inflamm 2021; 2021:6696636. [PMID: 34007244 PMCID: PMC8110425 DOI: 10.1155/2021/6696636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/10/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
The role of microRNA (miRNA) in gestational diabetes mellitus has been widely investigated during the last decade. However, the altering effect of miR-6869-5p on immunity and placental microenvironment in gestational diabetes mellitus is largely unknown. In our study, the expression of miR-6869-5p was documented to be significantly decreased in placenta-derived mononuclear macrophages, which was also negatively related to PTPRO. Besides, PTPRO was negatively regulated by miR-6869-5p in placenta-derived mononuclear macrophages. In vitro, miR-6869-5p inhibited macrophage proliferation demonstrated by EdU and CCK-8 experiments. The inflammatory response in macrophages was also significantly inhibited by miR-6869-5p, which could regulate PTPRO as a target documented by luciferase reporter assay. Moreover, miR-6869-5p promoted M2 macrophage polarization and thus restrain inflammation. Accordingly, miR-6869-5p is involved in maintaining placental microenvironment balance by preventing from inflammation and inducing M2 macrophages in gestational diabetes mellitus.
Collapse
|
9
|
Hao M, Guo M, Yan R. Protein tyrosine phosphatase receptor-type O expression as a prognostic marker in patients with acute coronary syndrome undergoing percutaneous coronary intervention: A prospective study. Exp Ther Med 2021; 21:435. [PMID: 33777188 PMCID: PMC7967798 DOI: 10.3892/etm.2021.9852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/10/2020] [Indexed: 11/26/2022] Open
Abstract
Optimal clinical indicators are crucial for evaluating the prognosis of patients with acute coronary syndrome (ACS). In the present study, the potential prognostic value of protein tyrosine phosphatase receptor-type O (PTPRO) expression in the peripheral blood mononuclear cells of patients with ACS undergoing percutaneous coronary intervention (PCI) was investigated. Patients diagnosed with ACS were prospectively recruited, and PTPRO expression in mononuclear cells separated from peripheral blood was assessed by western blotting. The prognosis was judged by the occurrence of major adverse cardiovascular events. Cox regression analyses were performed to assess the association between PTPRO expression and prognosis. In the enrolled 185 patients with ACS, PTPRO expression was lower after PCI compared with that before PCI (P<0.05). Although the pre-PCI PTPRO expression did not differ significantly between the good and poor prognosis groups, PTPRO expression after PCI was significantly lower in the good prognosis group compared with the poor prognosis group (P<0.05). The area under the receiver operating characteristic curve for the prognostic value of post-PCI PTPRO expression was significantly greater than that for pre-PCI PTPRO expression (P<0.05). Cox regression analysis identified high post-PCI PTPRO expression as an independent risk factor for poor prognosis in patients with ACS (P<0.05), and further analysis indicated that the post-PCI PTPRO expression level was associated with the prognosis of patients with ACS (P<0.05). PTPRO expression in peripheral blood mononuclear cells after PCI is associated with the prognosis of patients with ACS, with high PTPRO expression indicating a high risk of poor prognosis in patients with ACS.
Collapse
Affiliation(s)
- Minghui Hao
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University of Medical Sciences, Beijing 101100, P.R. China
| | - Ming Guo
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University of Medical Sciences, Beijing 101100, P.R. China
| | - Rui Yan
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University of Medical Sciences, Beijing 101100, P.R. China
| |
Collapse
|
10
|
Xu X, Zhang Z, Lu Y, Sun Q, Liu Y, Liu Q, Tian W, Yin Y, Yu H, Sun B. ARRB1 ameliorates liver ischaemia/reperfusion injury via antagonizing TRAF6-mediated Lysine 6-linked polyubiquitination of ASK1 in hepatocytes. J Cell Mol Med 2020; 24:7814-7828. [PMID: 32445435 PMCID: PMC7348167 DOI: 10.1111/jcmm.15412] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/14/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatic ischaemia/reperfusion (I/R) injury is a major clinical problem during liver surgical procedures, which usually lead to early transplantation failure and higher organ rejection rate, and current effective therapeutic strategies are still limited. Therefore, in‐depth exploring of the molecular mechanisms underlying liver I/R injury is key to the development of new therapeutic methods. β‐arrestins are multifunctional proteins serving as important signalling scaffolds in numerous physiopathological processes, including liver‐specific diseases. However, the role and underlying mechanism of β‐arrestins in hepatic I/R injury remain largely unknown. Here, we showed that only ARRB1, but not ARRB2, was down‐regulated during liver I/R injury. Hepatocyte‐specific overexpression of ARRB1 significantly ameliorated liver damage, as demonstrated by decreases in serum aminotransferases, hepatocellular necrosis and apoptosis, infiltrating inflammatory cells and secretion of pro‐inflammatory cytokines relative to control mice, whereas experiments with ARRB1 knockout mice gotten opposite effects. Mechanistically, ARRB1 directly interacts with ASK1 in hepatocytes and inhibits its TRAF6‐mediated Lysine 6‐linked polyubiquitination, which then prevents the activation of ASK1 and its downstream signalling pathway during hepatic I/R injury. In addition, inhibition of ASK1 remarkably abolished the disruptive effect result from ARRB1 deficiency in liver I/R injury in vivo, indicating that ASK1 was required for ARRB1 function in hepatic I/R injury. In conclusion, we proposed that ARRB1 is a novel protective regulator during liver I/R injury, and modulation of the regulatory axis between ARRB1 and ASK1 could be a novel therapeutic strategy to prevent this pathological process.
Collapse
Affiliation(s)
- Xiaoliang Xu
- School of Medicine, Southeast University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zechuan Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yijun Lu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qikai Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qiaoyu Liu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenfang Tian
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yin Yin
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hailong Yu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Beicheng Sun
- School of Medicine, Southeast University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
11
|
Jin K, Liu Y, Shi Y, Zhang H, Sun Y, Zhangyuan G, Wang F, Yu W, Wang J, Tao X, Chen X, Zhang W, Sun B. PTPROt aggravates inflammation by enhancing NF-κB activation in liver macrophages during nonalcoholic steatohepatitis. Am J Cancer Res 2020; 10:5290-5304. [PMID: 32373213 PMCID: PMC7196286 DOI: 10.7150/thno.42658] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/16/2020] [Indexed: 01/02/2023] Open
Abstract
Rationale: Inflammation plays a crucial role in the progression of nonalcoholic steatohepatitis (NASH). Protein tyrosine phosphatase receptor type O truncated isoform (PTPROt) is an integral membrane protein that has been identified in osteoclasts, macrophages, and B lymphocytes. However, its relationship between inflammation and NASH is largely unknown. Herein, we aimed to study the function of PTPROt in NASH progression. Methods: We established a NASH mouse model in wild-type (WT), PTPRO knockout mice by western diet (WD) and methionine-choline-deficient diet (MCD). In addition, MCD-induced NASH model was established in BMT mice. Moreover, we determined the expression of PTPROt in liver macrophages in human subjects without steatosis, with simple steatosis, and with NASH to confirm the relationship between PTPROt and NASH. In vitro assays were also performed to study the molecular role of PTPROt in NASH progression. Results: Human samples and animal model results illustrated that PTPROt is increased in liver macrophages during NASH progression and is positively correlated with the degree of NASH. Our animal model also showed that PTPROt in liver macrophages can enhance the activation of the NF-κB signaling pathway, which induces the transcription of genes involved in the inflammatory response. Moreover, PTPROt promotes the transcription of pro-oxidant genes and inhibits antioxidant and protective genes via increased activation of the NF-κB signaling pathway, thereby causing an increased level of reactive oxygen species (ROS) and damaged mitochondria. This triggers the NLRP3-IL1β axis and causes a heightened inflammatory response. Notably, PTPROt partially limits inflammation and ROS production by promoting mitophagy, which participates in a negative feedback loop in this model. Conclusions: Our data strongly indicate that PTPROt plays a dual role in inflammation via the NF-κB signaling pathway in liver macrophages during NASH. Further studies are required to explore therapeutic strategies and prevention of this common liver disease through PTPROt.
Collapse
|
12
|
Guo W, Fang H, Cao S, Chen S, Li J, Shi J, Tang H, Zhang Y, Wen P, Zhang J, Wang Z, Shi X, Pang C, Yang H, Hu B, Zhang S. Six-Transmembrane Epithelial Antigen of the Prostate 3 Deficiency in Hepatocytes Protects the Liver Against Ischemia-Reperfusion Injury by Suppressing Transforming Growth Factor-β-Activated Kinase 1. Hepatology 2020; 71:1037-1054. [PMID: 31393024 PMCID: PMC7155030 DOI: 10.1002/hep.30882] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion (I/R) injury remains a major challenge affecting the morbidity and mortality of liver transplantation. Effective strategies to improve liver function after hepatic I/R injury are limited. Six-transmembrane epithelial antigen of the prostate 3 (Steap3), a key regulator of iron uptake, was reported to be involved in immunity and apoptotic processes in various cell types. However, the role of Steap3 in hepatic I/R-induced liver damage remains largely unclear. APPROACH AND RESULTS In the present study, we found that Steap3 expression was significantly up-regulated in liver tissue from mice subjected to hepatic I/R surgery and primary hepatocytes challenged with hypoxia/reoxygenation insult. Subsequently, global Steap3 knockout (Steap3-KO) mice, hepatocyte-specific Steap3 transgenic (Steap3-HTG) mice, and their corresponding controls were subjected to partial hepatic warm I/R injury. Hepatic histology, the inflammatory response, and apoptosis were monitored to assess liver damage. The molecular mechanisms of Steap3 function were explored in vivo and in vitro. The results demonstrated that, compared with control mice, Steap3-KO mice exhibited alleviated liver damage after hepatic I/R injury, as shown by smaller necrotic areas, lower serum transaminase levels, decreased apoptosis rates, and reduced inflammatory cell infiltration, whereas Steap3-HTG mice had the opposite phenotype. Further molecular experiments showed that Steap3 deficiency could inhibit transforming growth factor-β-activated kinase 1 (TAK1) activation and downstream c-Jun N-terminal kinase (JNK) and p38 signaling during hepatic I/R injury. CONCLUSIONS Steap3 is a mediator of hepatic I/R injury that functions by regulating inflammatory responses as well as apoptosis through TAK1-dependent activation of the JNK/p38 pathways. Targeting hepatocytes, Steap3 may be a promising approach to protect the liver against I/R injury.
Collapse
Affiliation(s)
- Wen‐Zhi Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Hong‐Bo Fang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Sheng‐Li Cao
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - San‐Yang Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Jie Li
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Ji‐Hua Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Hong‐Wei Tang
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Yi Zhang
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Pei‐Hao Wen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Jia‐Kai Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Zhi‐Hui Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Xiao‐Yi Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Chun Pang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Han Yang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Bo‐Wen Hu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Shui‐Jun Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| |
Collapse
|
13
|
Ren X, Chen C, Luo Y, Liu M, Li Y, Zheng S, Ye H, Fu Z, Li M, Li Z, Chen R. lncRNA-PLACT1 sustains activation of NF-κB pathway through a positive feedback loop with IκBα/E2F1 axis in pancreatic cancer. Mol Cancer 2020; 19:35. [PMID: 32085715 PMCID: PMC7033942 DOI: 10.1186/s12943-020-01153-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/13/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The activation of NF-κB signaling pathway is regarded as the dominant process that correlates with tumorigenesis. Recently, increasing evidence shows that long noncoding RNAs (lncRNAs) play crucial roles in sustaining the NF-κB signaling pathway. However, the underlying mechanisms have not yet been elucidated. METHODS The expression and clinical features of PLACT1 were analyzed in a 166-case cohort of PDAC by qRT-PCR and in situ hybridization. The functional role of PLACT1 was evaluated by both in vitro and in vivo experiments. Chromatin isolation by RNA purification assays were utilized to examine the interaction of PLACT1 with IκBα promoter. RESULTS We identified a novel lncRNA-PLACT1, which was significantly upregulated in tumor tissues and correlated with progression and poor survival in PDAC patients. Moreover, PLACT1 promoted the proliferation and invasion of PDAC cells in vitro. Consistently, PLACT1 overexpression fostered the progression of PDAC both in orthotopic and lung metastasis mice models. Mechanistically, PLACT1 suppressed IκBα expression by recruiting hnRNPA1 to IκBα promoter, which led to increased H3K27me3 that decreased the transcriptional level of IκBα. Furthermore, E2F1-mediated overexpression of PLACT1 modulated the progression of PDAC by sustained activation of NF-κB signaling pathway through forming a positive feedback loop with IκBα. Importantly, administration of the NF-κB signaling pathway inhibitor significantly suppressed PLACT1-induced sustained activation of NF-κB signaling pathway, leading to reduced tumorigenesis in vivo. CONCLUSIONS Our findings suggest that PLACT1 provides a novel epigenetic mechanism involved in constitutive activation of NF-κB signaling pathway and may represent a new therapeutic target of PDAC.
Collapse
Affiliation(s)
- Xiaofan Ren
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, 107th Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong province, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, 107th Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong province, People's Republic of China
| | - Changhao Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, 107th Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong province, People's Republic of China. .,Department of Urology, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, 107th Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong province, 510120, People's Republic of China.
| | - Yuming Luo
- Department of Hepatopancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107th Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong province, People's Republic of China
| | - Mingyang Liu
- Department of Medicine, Department of Surgery, the University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1262A, Oklahoma City, OK, 73104, USA
| | - Yuting Li
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, 107th Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong province, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, 107th Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong province, People's Republic of China
| | - Shangyou Zheng
- Department of Hepatopancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107th Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong province, People's Republic of China
| | - Huilin Ye
- Department of Hepatopancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107th Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong province, People's Republic of China
| | - Zhiqiang Fu
- Department of Hepatopancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107th Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong province, People's Republic of China
| | - Min Li
- Department of Medicine, Department of Surgery, the University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1262A, Oklahoma City, OK, 73104, USA.
| | - Zhihua Li
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, 107th Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong province, 510120, People's Republic of China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, 107th Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong province, People's Republic of China.
| | - Rufu Chen
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106th of 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province, 510080, People's Republic of China.
| |
Collapse
|
14
|
de Bruin RG, Vogel G, Prins J, Duijs JMJG, Bijkerk R, van der Zande HJP, van Gils JM, de Boer HC, Rabelink TJ, van Zonneveld AJ, van der Veer EP, Richard S. Targeting the RNA-Binding Protein QKI in Myeloid Cells Ameliorates Macrophage-Induced Renal Interstitial Fibrosis. EPIGENOMES 2020; 4:epigenomes4010002. [PMID: 34968236 PMCID: PMC8594696 DOI: 10.3390/epigenomes4010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
In the pathophysiologic setting of acute and chronic kidney injury, the excessive activation and recruitment of blood-borne monocytes prompts their differentiation into inflammatory macrophages, a process that leads to progressive glomerulosclerosis and interstitial fibrosis. Importantly, this differentiation of monocytes into macrophages requires the meticulous coordination of gene expression at both the transcriptional and post-transcriptional level. The transcriptomes of these cells are ultimately determined by RNA-binding proteins such as QUAKING (QKI), that define their pre-mRNA splicing and mRNA transcript patterns. Using two mouse models, namely (1) quaking viable mice (qkv) and (2) the conditional deletion in the myeloid cell lineage using the lysozyme 2-Cre (QKIFL/FL;LysM-Cre mice), we demonstrate that the abrogation of QKI expression in the myeloid cell lineage reduces macrophage infiltration following kidney injury induced by unilateral urethral obstruction (UUO). The qkv and QKIFL/FL;LysM-Cre mice both showed significant diminished interstitial collagen deposition and fibrosis in the UUO-damaged kidney, as compared to wild-type littermates. We show that macrophages isolated from QKIFL/FL;LysM-Cre mice are associated with defects in pre-mRNA splicing. Our findings demonstrate that reduced expression of the alternative splice regulator QKI in the cells of myeloid lineage attenuates renal interstitial fibrosis, suggesting that inhibition of this splice regulator may be of therapeutic value for certain kidney diseases.
Collapse
Affiliation(s)
- Ruben G. de Bruin
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, QC H3T 1E2, Canada;
| | - Gillian Vogel
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, QC H3T 1E2, Canada;
| | - Jurrien Prins
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Jacques M. J. G. Duijs
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Roel Bijkerk
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Hendrik J. P. van der Zande
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Janine M. van Gils
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Hetty C. de Boer
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Ton J. Rabelink
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Eric P. van der Veer
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
- Correspondence: (E.P.v.d.V.); (S.R.)
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, QC H3T 1E2, Canada;
- Correspondence: (E.P.v.d.V.); (S.R.)
| |
Collapse
|
15
|
lncRNA AK054386 Functions as a ceRNA to Sequester miR-199 and Induce Sustained Endoplasmic Reticulum Stress in Hepatic Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8189079. [PMID: 31827704 PMCID: PMC6885273 DOI: 10.1155/2019/8189079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/17/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022]
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a very complex pathological process that is often associated with liver trauma and surgery, especially liver transplantation surgery. Although endoplasmic reticulum stress (ERS) plays a role in this process, the posttranscriptional regulators and the underlying mechanisms are still unclear. Here, we report that the lncRNA AK054386 was increased in hepatic IRI models. Furthermore, AK054386 can act as a “competing endogenous RNA (ceRNA)” and regulate ERS-related factors by binding and sequestering miR-199, which was shown to inhibit ERS in our previous report. Increased expression of AK054386, which might be mediated by activated NF-κB, resulted in sustained ERS and increased cell apoptosis and death in hepatic IRI mouse and cellular models. In contrast, AK054386 inhibition had protective effects on these models. Our data indicate that AK054386 and miR-199 are critical players in hepatic IRI, and we broadened the scope regarding ceRNA mechanisms. We hope that our results will improve the understanding of hepatic IRI and may provide potential therapeutic targets.
Collapse
|
16
|
Soares ROS, Losada DM, Jordani MC, Évora P, Castro-E-Silva O. Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. Int J Mol Sci 2019; 20:ijms20205034. [PMID: 31614478 PMCID: PMC6834141 DOI: 10.3390/ijms20205034] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) permeates a variety of diseases and is a ubiquitous concern in every transplantation proceeding, from whole organs to modest grafts. Given its significance, efforts to evade the damaging effects of both ischemia and reperfusion are abundant in the literature and they consist of several strategies, such as applying pre-ischemic conditioning protocols, improving protection from preservation solutions, thus providing extended cold ischemia time and so on. In this review, we describe many of the latest pharmacological approaches that have been proven effective against IRI, while also revisiting well-established concepts and presenting recent pathophysiological findings in this ever-expanding field. A plethora of promising protocols has emerged in the last few years. They have been showing exciting results regarding protection against IRI by employing drugs that engage several strategies, such as modulating cell-surviving pathways, evading oxidative damage, physically protecting cell membrane integrity, and enhancing cell energetics.
Collapse
Affiliation(s)
| | - Daniele M Losada
- Department of Anatomic Pathology, Faculty of Medical Sciences, University of Campinas, 13083-970 Campinas, Brazil.
| | - Maria C Jordani
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Paulo Évora
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| | - Orlando Castro-E-Silva
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| |
Collapse
|
17
|
Sun Q, He Q, Xu J, Liu Q, Lu Y, Zhang Z, Xu X, Sun B. Guanine nucleotide-binding protein G(i)α2 aggravates hepatic ischemia-reperfusion injury in mice by regulating MLK3 signaling. FASEB J 2019; 33:7049-7060. [PMID: 30840837 DOI: 10.1096/fj.201802462r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) injury is a major challenge in liver resection and transplantation surgeries. Previous studies have revealed that guanine nucleotide-binding protein G(i)α2 (GNAI2) was involved in the progression of myocardial and cerebral I/R injury, but the role and function of GNAI2 in hepatic I/R have not been elucidated. The hepatocyte-specific GNAI2 knockout (GNAI2hep-/-) mice were generated and subjected to hepatic I/R injury. Primary hepatocytes isolated from GNAI2hep-/- and GNAI2flox/flox mice were cultured and challenged to hypoxia-reoxygenation insult. The specific function of GNAI2 in I/R-triggered hepatic injury and the underlying molecular mechanism were explored by various phenotypic analyses and molecular biology methods. In this study, we demonstrated that hepatic GNAI2 expression was significantly increased in liver transplantation patients and wild-type mice after hepatic I/R. Interestingly, hepatocyte-specific GNAI2 deficiency attenuated I/R-induced liver damage, inflammation cytokine expression, macrophage/neutrophil infiltration, and hepatocyte apoptosis in vivo and in vitro. Mechanistically, up-regulation of GNAI2 phosphorylates mixed-lineage protein kinase 3 (MLK3) through direct binding, which exacerbated hepatic I/R damage via MAPK and NF-κB pathway activation. Furthermore, blocking MLK3 signaling reversed GNAI2-mediated hepatic I/R injury. Our study firstly identifies GNAI2 as a promising target for prevention of hepatic I/R-induced injury and related liver diseases.-Sun, Q., He, Q., Xu, J., Liu, Q., Lu, Y., Zhang, Z., Xu, X., Sun, B. Guanine nucleotide-binding protein G(i)α2 aggravates hepatic ischemia-reperfusion injury in mice by regulating MLK3 signaling.
Collapse
Affiliation(s)
- Qikai Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qifeng He
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jianbo Xu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qiaoyu Liu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yijun Lu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zechuan Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoliang Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Beicheng Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
18
|
Huang S, Ju W, Zhu Z, Han M, Sun C, Tang Y, Hou Y, Zhang Z, Yang J, Zhang Y, Wang L, Lin F, Chen H, Xie R, Zhu C, Wang D, Wu L, Zhao Q, Chen M, Zhou Q, Guo Z, He X. Comprehensive and combined omics analysis reveals factors of ischemia-reperfusion injury in liver transplantation. Epigenomics 2019; 11:527-542. [PMID: 30700158 DOI: 10.2217/epi-2018-0189] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To explore molecular mechanisms underlying liver ischemia-reperfusion injury (IRI). MATERIALS & METHODS Four Gene Expression Omnibus datasets comprising liver transplantation data were collected for a comprehensive analysis. A proteomic analysis was performed and used for correlations analysis with transcriptomic. RESULTS & CONCLUSION Ten differentially expressed genes were co-upregulated in four Gene Expression Omnibus datasets, including ATF3, CCL4, DNAJB1, DUSP5, JUND, KLF6, NFKBIA, PLAUR, PPP1R15A and TNFAIP3. The combined analysis demonstrated ten coregulated genes/proteins, including HBB, HBG2, CA1, SLC4A1, PLIN2, JUNB, HBA1, MMP9, SLC2A1 and PADI4. The coregulated differentially expressed genes and coregulated genes/proteins formed a tight interaction network and could serve as the core factors underlying IRI. Comprehensive and combined omics analyses revealed key factors underlying liver IRI, and thus having potential clinical significance.
Collapse
Affiliation(s)
- Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Zebin Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Ming Han
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Yuchen Hou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Zhiheng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Jie Yang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Linhe Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Fanxiong Lin
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Haitian Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Rongxing Xie
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Caihui Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Qi Zhou
- Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, Guangdong 516081, PR China.,Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| |
Collapse
|
19
|
Chies AB, Nakazato PCG, Spadella MA, Zorzi P, Gomes MCJ, D'Albuquerque LAC, Castro-E-Silva O. Rivastigmine prevents injury induced by ischemia and reperfusion in rat liver. Acta Cir Bras 2018; 33:775-784. [PMID: 30328909 DOI: 10.1590/s0102-865020180090000005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/23/2018] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To evaluate whether pre-treatment with rivastigmine is able to attenuate the I/R induced lesions in rat liver. METHODS SHAM animals or those submitted to I/R, non-treated or pre-treated with rivastigminine (2mg/kg) either 50 or 15 minutes before ischemia, were used. After I/R protocol, these animals were killed and their livers were harvested to measurement of the mitochondrial swelling as well as the malondialdehyde (MDA), nitrite and nitrate tissue concentration. Blood was also harvested for serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) determinations. RESULTS I/R promoted a significant increase of mitochondrial swelling in the studied animals. This increase of mitochondrial swelling was partially prevented by rivastigmine, but only if administered 50 minutes before ischemia. No significant modification of MDA, nitrite or nitrate tissue concentrations was observed in consequence of I/R, followed or not by rivastigmine treatments. In addition, I/R elevated both AST and ALT. These elevations of serum enzymes were not reversed by the different rivastigmine treatments. CONCLUSIONS Rivastigmine administered 50 minutes before ischemia attenuates I/R-induced mitochondrial swelling, that indicates liver injury. This protective effect may be related to a greater stimulation of α7nAChR present in the Kupffer cells by the non-methabolized ACh, leading to an attenuation of I/R-induced inflammation.
Collapse
Affiliation(s)
- Agnaldo Bruno Chies
- PhD, Laboratory of Pharmacology, Marilia Medical School, Marilia-SP, Brazil. Conception and design of the study, analysis and interpretation of data, statistical analysis, manuscript writing
| | - Paula Carolina Grande Nakazato
- Graduate student, Marilia Medical School, Marilia-SP, Brazil. Conception and design of the study, technical procedures, acquisition of data
| | - Maria Angélica Spadella
- PhD, Human Embryology Laboratory, Marilia Medical School, Marilia-SP, Brazil. Conception and design of the study, manuscript preparation
| | - Patrícia Zorzi
- Graduate student, Faculdade de Medicina de Ribeirao Preto, Universidade de São Paulo (FMRP-USP), Ribeirao Preto-SP, Brazil. Technical procedures, acquisition of data
| | - Maria Cecília Jordani Gomes
- Master, Biochemistry, Division of Digestive Surgery, Department of Surgery and Anatomy, FMRP-USP, Ribeirao Preto-SP, Brazil. Technical procedures; acquisition, analysis and interpretation of data; statistical analysis, critical revision
| | | | - Orlando Castro-E-Silva
- PhD, Full Professor, Department of Surgery and Anatomy, Ribeirao Preto Medical School, and Department of Gastroenterology, Sao Paulo Medical School, USP. Conception and design of the study, analysis and interpretation of data, critical revision, final approval
| |
Collapse
|
20
|
Liu Y, Zhang W, Cheng Y, Miao C, Gong J, Wang M. Activation of PPARγ by Curcumin protects mice from ischemia/reperfusion injury induced by orthotopic liver transplantation via modulating polarization of Kupffer cells. Int Immunopharmacol 2018; 62:270-276. [PMID: 30036770 DOI: 10.1016/j.intimp.2018.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023]
Abstract
Curcumin shows protective effects on various diseases due to its anti-inflammatory and anti-oxidative functions; however, its effect on organ transplantation has not been fully elucidated. To understand its role in liver ischemia/reperfusion (I/R) injury, we studied its impact on orthotopic liver transplantation (OLT) and Kupffer cells (KCs) polarization and its underlying mechanisms. We first investigated the reactive oxygen species (ROS) accumulation and cytokines profile of KCs, intracellular ROS and the mRNA level of pro-inflammatory cytokines were downregulated while the mRNA level of anti-inflammatory cytokine was upregulated by the pretreatment of Curcumin; Then the liver injury was detected by histopathological examination and liver function. Pretreatment with Curcumin significantly alleviated liver injury while improving liver function and overall post-transplantation survival compared with the control groups. The Western blotting showed that Curcumin inhibited the function of KCs via down-regulating the nuclear factor κb (NF-κb) signaling pathway by activating peroxisome proliferator-activated receptor γ (PPARγ) and flow cytometry revealed that Curcumin suppressed pro-inflammatory phenotype (M1) of KCs while promoting its anti-inflammatory phenotype (M2) polarization. These results showed that Curcumin may exert positive effects on I/R injury after OLT through activating PPARγ by inhibiting the activation of NF-κb pathway and remodeling the polarization of KCs. This may reveal a potential therapy for I/R injury after liver transplantation.
Collapse
Affiliation(s)
- Yan Liu
- Department of Gastroenterology, The Fifth People's Hospital of Chengdu, Chengdu, 611130, PR China
| | - Wenfeng Zhang
- Department of Hepatobiliary Surgery and Chongqing Key Laboratory of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yao Cheng
- Department of Hepatobiliary Surgery and Chongqing Key Laboratory of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Chunmu Miao
- Department of Hepatobiliary Surgery and Chongqing Key Laboratory of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Jianping Gong
- Department of Hepatobiliary Surgery and Chongqing Key Laboratory of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Menghao Wang
- Department of Hepatobiliary Surgery and Chongqing Key Laboratory of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
21
|
He X, Guo Z, Zhao Q, Ju W, Wang D, Wu L, Yang L, Ji F, Tang Y, Zhang Z, Huang S, Wang L, Zhu Z, Liu K, Zhu Y, Gao Y, Xiong W, Han M, Liao B, Chen M, Ma Y, Zhu X, Huang W, Cai C, Guan X, Li XC, Huang J. The first case of ischemia-free organ transplantation in humans: A proof of concept. Am J Transplant 2018; 18:737-744. [PMID: 29127685 DOI: 10.1111/ajt.14583] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/10/2017] [Accepted: 11/02/2017] [Indexed: 01/25/2023]
Abstract
Ischemia and reperfusion injury (IRI) is an inevitable event in conventional organ transplant procedure and is associated with significant mortality and morbidity post-transplantation. We hypothesize that IRI is avoidable if the blood supply for the organ is not stopped, thus resulting in optimal transplant outcomes. Here we described the first case of a novel procedure called ischemia-free organ transplantation (IFOT) for patients with end-stage liver disease. The liver graft with severe macrovesicular steatosis was donated from a 25-year-old man. The recipient was a 51-year-old man with decompensated liver cirrhosis and hepatocellular carcinoma. The graft was procured, preserved, and implanted under continuous normothermic machine perfusion. The recipient did not suffer post-reperfusion syndrome or vasoplegia after revascularization of the allograft. The liver function test and histological study revealed minimal hepatocyte, biliary epithelium and vascular endothelium injury during preservation and post-transplantation. The inflammatory cytokine levels were much lower in IFOT than those in conventional procedure. Key pathways involved in IRI were not activated after allograft revascularization. No rejection, or vascular or biliary complications occurred. The patient was discharged on day 18 post-transplantation. This marks the first case of IFOT in humans, offering opportunities to optimize transplant outcomes and maximize donor organ utilization.
Collapse
Affiliation(s)
- Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Lu Yang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei Ji
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhiheng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Linhe Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zebin Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Kunpeng Liu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yanling Zhu
- Department of Cardiopulmonary Bypass, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifang Gao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Wei Xiong
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Han
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Bing Liao
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaofeng Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changjie Cai
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xian Chang Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China.,Immunobiology and Transplant Science Center Houston Methodist Research Institute, Houston, TX, USA
| | - Jiefu Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
22
|
Zhou Y, Zhang J, Lei B, Liang W, Gong J, Zhao C, Yu J, Li X, Tang B, Yuan S. DADLE improves hepatic ischemia/reperfusion injury in mice via activation of the Nrf2/HO‑1 pathway. Mol Med Rep 2017; 16:6214-6221. [PMID: 28901476 DOI: 10.3892/mmr.2017.7393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/11/2017] [Indexed: 11/06/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury is a common pathophysiological process that occurs following liver surgery, which is associated with oxidative stress, and can cause acute liver injury and lead to liver failure. Recently, the development of drugs for the prevention of hepatic I/R injury has garnered interest in the field of liver protection research. Previous studies have demonstrated that [D‑Ala2, D‑Leu5]‑Enkephalin (DADLE) exerts protective effects against hepatic I/R injury. To further clarify the specific mechanism underlying the effects of DADLE on hepatic I/R injury, the present study aimed to observe the effects of various doses of DADLE on hepatic I/R injury in mice. The results indicated that DADLE, at a concentration of 5 mg/kg, significantly reduced the levels of alanine aminotransferase and aspartate aminotransferase in the serum, and the levels of malondialdehyde in the liver homogenate. Conversely, the levels of glutathione, catalase and superoxide dismutase in the liver homogenate were increased. In addition, DADLE was able to promote nuclear factor, erythroid 2 like 2 (Nrf2) nuclear translocation and upregulate the expression of heme oxygenase (HO)‑1, which is a factor downstream of Nrf2, thus improving hepatic I/R injury in mice. In conclusion, the present study demonstrated that DADLE was able to significantly improve hepatic I/R injury in mice, and the specific mechanism may be associated with the Nrf2/HO‑1 signaling pathway.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Jing Zhang
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Biao Lei
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Wenjin Liang
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Jianhua Gong
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Chuanxiang Zhao
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Jidong Yu
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Xuan Li
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Shengguang Yuan
- Department of Hepatobiliary Surgery and Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
23
|
Qing T, Yamin Z, Guijie W, Yan J, Zhongyang S. STAT6 silencing induces hepatocellular carcinoma-derived cell apoptosis and growth inhibition by decreasing the RANKL expression. Biomed Pharmacother 2017; 92:1-6. [DOI: 10.1016/j.biopha.2017.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 12/22/2022] Open
|
24
|
He N, Jia JJ, Li JH, Zhou YF, Lin BY, Peng YF, Chen JJ, Chen TC, Tong RL, Jiang L, Xie HY, Zhou L, Zheng SS. Remote ischemic perconditioning prevents liver transplantation-induced ischemia/reperfusion injury in rats: Role of ROS/RNS and eNOS. World J Gastroenterol 2017; 23:830-841. [PMID: 28223727 PMCID: PMC5296199 DOI: 10.3748/wjg.v23.i5.830] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/08/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the underlying mechanisms of the protective role of remote ischemic perconditioning (RIPerC) in rat liver transplantation.
METHODS Sprague-Dawley rats were subjected to sham, orthotopic liver transplantation (OLT), ischemic postconditioning (IPostC) or RIPerC. After 3 h reperfusion, blood samples were taken for measurement of alanine aminotransferase, aspartate aminotransferase, creatinine (Cr) and creatinine kinase-myocardial band (CK-MB). The liver lobes were harvested for the following measurements: reactive oxygen species (ROS), H2O2, mitochondrial membrane potential (ΔΨm) and total nitric oxide (NO). These measurements were determined using an ROS/H2O2, JC1 and Total NOx Assay Kit, respectively. Endothelial NO synthase (eNOS) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting, and peroxynitrite was semi-quantified by western blotting of 3-nitrotyrosine.
RESULTS Compared with the OLT group, the grafts subjected to RIPerC showed significantly improved liver and remote organ functions (P < 0.05). ROS (P < 0.001) including H2O2 (P < 0.05) were largely elevated in the OLT group as compared with the sham group, and RIPerC (P < 0.05) reversed this trend. The collapse of ΔΨm induced by OLT ischemia/reperfusion (I/R) injury was significantly attenuated in the RIPerC group (P < 0.001). A marked increase of NO content and phosphoserine eNOS, both in protein and mRNA levels, was observed in liver graft of the RIPerC group as compared with the OLT group (P < 0.05). I/R-induced 3-nitrotyrosine content was significantly reduced in the RIPerC group as compared with the OLT group (P < 0.05). There were no significant differences between the RIPerC and IPostC groups for all the results except Cr. The Cr level was lower in the RIPerC group than in the IPostC group (P < 0.01).
CONCLUSION Liver graft protection by RIPerC is similar to or better than that of IPostC, and involves inhibition of oxidative stress and up-regulation of the PI3K/Akt/eNOS/NO pathway.
Collapse
|
25
|
Blocking Notch signal in myeloid cells alleviates hepatic ischemia reperfusion injury by repressing the activation of NF-κB through CYLD. Sci Rep 2016; 6:32226. [PMID: 27680285 PMCID: PMC5041084 DOI: 10.1038/srep32226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/04/2016] [Indexed: 01/22/2023] Open
Abstract
Ischemia-reperfusion (I/R) is a major reason of hepatocyte injury during liver surgery and transplantation. Myeloid cells including macrophages and neutrophils play important roles in sustained tissue inflammation and damage, but the mechanisms regulating myeloid cells activity have been elusive. In this study, we investigate the role of Notch signaling in myeloid cells during hepatic I/R injury by using a mouse model of myeloid specific conditional knockout of RBP-J. Myeloid-specific RBP-J deletion alleviated hepatic I/R injury. RBP-J deletion in myeloid cells decreased hepatocytes apoptosis after hepatic I/R injury. Furthermore, myeloid-specific RBP-J deletion led to attenuated inflammation response in liver after I/R injury. Consistently, Notch blockade reduced the production of inflammatory cytokines by macrophages in vitro. We also found that blocking Notch signaling reduced NF-κB activation and increased cylindromatosis (CYLD) expression and knockdown of CYLD rescued reduction of inflammatory cytokines induced by Notch blockade in macrophages during I/R injury in vitro. On the other hand, activation of Notch signaling in macrophages led to increased inflammatory cytokine production and NF-κB activation and decreased CYLD expression in vitro. These data suggest that activation of Notch signaling in myeloid cells aggravates I/R injury, by enhancing the inflammation response by NF-κB through down regulation of CYLD.
Collapse
|
26
|
Zhu J, Zhang B, Song W, Zhang X, Wang L, Yin B, Zhu F, Yu C, Li H. A literature review on the role of miR-370 in disease. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
Hou J, Deng L, Zhuo H, Lin Z, Chen Y, Jiang R, Chen D, Zhang X, Huang X, Sun B. PTPROt maintains T cell immunity in the microenvironment of hepatocellular carcinoma. J Mol Cell Biol 2015; 7:338-50. [PMID: 26117839 DOI: 10.1093/jmcb/mjv047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/19/2015] [Indexed: 12/13/2022] Open
Abstract
Intratumoral T cells play a central role in anti-tumor immunity, and the balance between T effector cells (Teff) and regulatory T cells (Treg) affects the prognosis of cancer patients. However, educated by tumor microenvironment, T cells frequently fail in their responsibility. In this study, we aimed to investigate the role of truncated isoform of protein tyrosine phosphatase receptor-type O (PTPROt) in T cell-mediated anti-tumor immunity. We recruited 70 hepatocellular carcinoma (HCC) patients and 30 healthy volunteers for clinical investigation, and analyzed cellular tumor immunity by using ptpro(-/-) C57BL/6 mice and NOD/SCID mice. PTPROt expression was significantly downregulated in human HCC-infiltrating T cells due to the hypoxia microenvironment; PTPROt expression highly correlated with the intratumoral Teff/Treg ratio and clinicopathologic characteristics. Moreover, PTPROt deficiency attenuated T cell-mediated anti-tumor immunity and remarkably promoted mouse HCC growth. Mechanistically, deletion of PTPROt decreased Teff quantity and quality through phosphorylation of lymphocyte-specific tyrosine kinase, but increased Treg differentiation through phosphorylation of signal transducer and activator of transcription 5. In support of the Teff/Treg homeostasis, PTPROt serves as an important tumor suppressor in HCC microenvironment.
Collapse
Affiliation(s)
- Jiajie Hou
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China Present address: Liver Transplantation Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lei Deng
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Han Zhuo
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhe Lin
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Chen
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Runqiu Jiang
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Dianyu Chen
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xudong Zhang
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xingxu Huang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Beicheng Sun
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Solutions to the discrepancies in the extent of liver damage following ischemia/reperfusion in standard mouse models. J Hepatol 2015; 62:975-7. [PMID: 25529620 DOI: 10.1016/j.jhep.2014.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023]
|
29
|
Xu D, Wang X, Yan S, Yin Y, Hou J, Wang X, Sun B. Interaction of PTPRO and TLR4 signaling in hepatocellular carcinoma. Tumour Biol 2014; 35:10267-73. [PMID: 25034527 DOI: 10.1007/s13277-014-2302-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/01/2014] [Indexed: 12/15/2022] Open
Abstract
Protein tyrosine phosphatase receptor type O (PTPRO) has been identified as a tumor suppressor in a number of cancers including hepatocellular carcinoma (HCC). Toll-like receptor 4 (TLR4) plays diverse roles in HCC tumorigenesis and progression. The association between PTPRO and TLR4 signaling in HCC remains largely unknown. We aimed to clarify the interaction between PTPRO and TLR4 in HCC. Surprisingly, we found reduced and positive-related expression of TLR4 and PTPRO in 84 human HCC specimens. Increased TLR4 expression and activity was found in PTPRO-overexpressed HCC cells stimulated with lipopolysaccharide (LPS). The feedback regulation of PTPRO and TLR4 was dependent on nuclear factor-κB (NF-κB) activation, as suggested by NF-κB inhibition and luciferase reporter assay. Our study suggests that the effect of PTPRO on TLR4 signaling is dependent on NF-κB pathway, suggesting an interesting PTPRO/TLR4/NF-κB signaling feedback loop in HCC carcinogenesis and progression.
Collapse
Affiliation(s)
- Donghua Xu
- Department of Rheumatology, the First Affiliated Hospital, Nanjing Medical University, 210029, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Lei YC, Luo P, Li W. Carbamazepine protects the liver against ischemia/reperfusion injury in mice. Shijie Huaren Xiaohua Zazhi 2013; 21:3617-3622. [DOI: 10.11569/wcjd.v21.i33.3617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effects of carbamazepine (CBZ) on hepatic ischemia/reperfusion (I/R) injury in mice.
METHODS: Hepatic ischemia in male Balb/c mice was induced by occluding the portal triad for 1 h, and reperfusion was initiated by removing a microvascular clamp. Mice were randomly assigned to three groups (n = 6 for each group): I/R group as control, CBZ treatment group, and CBZ plus chloroquine (CQ) group. Serum ALT/AST levels at different time points were measured using biochemical methods. Hepatic morphological changes at 6 h after I/R were assessed by HE staining, and hepatocyte high mobility group box 1 (HMGB1) cytoplasmic translocation was detected by immunohistochemistry. Expression of Caspase3, Atg7, Beclin-1 and light chain 3 Ⅱ (LC3Ⅱ) in liver tissue was analyzed by Western blot.
RESULTS: CBZ blocked the depletion of Atg7 and Beclin-1 and LC3II expression after reperfusion. CBZ treatment decreased ALT/AST levels significantly 2, 6 and 12 h after I/R compared with the I/R group (all P < 0.01). Expression of Caspase3 in liver tissue and hepatocyte HMGB1 cytoplasmic translocation at 6 h after I/R were also decreased significantly in the CBZ group (both P < 0.01). CQ antagonized the effect of CBZ in decreasing ALT/AST levels, Caspase3 expression and hepatocyte HMGB1 cytoplasmic translocation.
CONCLUSION: CBZ protects the liver against I/R injury in mice.
Collapse
|