1
|
Heldens A, Casteleyn C, Onghena L, Antwi M, Neyt S, Descamps B, Vanhove C, Verhelst X, Raevens S, Van Vlierberghe H, Devisscher L, De Bruyne R, Junien JL, Wettstein G, Geerts A, Lefere S. The pan-PPAR agonist lanifibranor reduces portal pressure independent of fibrosis reduction through the splanchnic vasculature. Biomed Pharmacother 2025; 183:117826. [PMID: 39805191 DOI: 10.1016/j.biopha.2025.117826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/22/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025] Open
Abstract
Portal hypertension (PH) can cause severe complications in patients with advanced chronic liver disease (aCLD). The pan-peroxisome proliferator-activated receptor (pan-PPAR) agonist lanifibranor reduces portal pressure in preclinical models of aCLD. Since the effect on PH might be secondary to fibrosis improvement, we investigated the effect of lanifibranor on PH, hepatic and splanchnic angiogenesis in mouse models of fibrotic and prehepatic non-fibrotic PH. Mice with fibrotic PH (common bile duct ligation; CBDL) and prehepatic PH (partial portal vein ligation; PPVL) received daily lanifibranor/vehicle for 14 or 7 days, respectively. Hemodynamics, serum, hepatic and mesenteric histology, and hepatic, mesenteric and liver sinusoidal endothelial cells (LSEC) gene expression levels were analyzed. Vascular corrosion casts of the venous mesenteric and hepatic vasculature were analyzed using scanning electron microscopy and µCT. Portal pressure was increased in CBDL mice. Lanifibranor treatment demonstrated a dose-dependent trend towards decreasing the elevated portal pressure, and reduced fibrosis. Hepatic mRNA levels of inflammatory, fibrotic and angiogenic markers were significantly downregulated in lanifibranor-treated CBDL mice. LSEC dysfunction was improved by lanifibranor. Compared to CBDL mice, portal pressure was more extensively elevated in PPVL mice, which was significantly reduced by lanifibranor. Superior mesenteric artery blood flow, which was increased in vehicle-treated PPVL mice, tended to decrease by lanifibranor. The expansion of the mesenteric vasculature and mesenteric protein level of angiogenetic markers in PPVL mice were reduced after lanifibranor. In conclusion, lanifibranor improves PH, independently from fibrosis reduction, potentially through reducing the venous mesenteric vasculature expansion and intrahepatic angiogenesis, and ameliorating LSEC function.
Collapse
Affiliation(s)
- Anneleen Heldens
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Christophe Casteleyn
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Ghent University, Ghent, Belgium
| | - Louis Onghena
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium; Department of Human Structure and Repair, Department of Gastrointestinal Surgery, Ghent University, Ghent, Belgium
| | - Milton Antwi
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium; Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology unit, Ghent University, Ghent, Belgium; Translational Nuclear Receptor Research, Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sara Neyt
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Xavier Verhelst
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Sarah Raevens
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Hans Van Vlierberghe
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Lindsey Devisscher
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium; Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology unit, Ghent University, Ghent, Belgium
| | - Ruth De Bruyne
- Department of Internal Medicine and Pediatrics, Pediatric Gastroenterology, Hepatology and Nutrition, Ghent University, Ghent, Belgium
| | | | | | - Anja Geerts
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Sander Lefere
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
2
|
Wang X, Li J, Nong J, Deng X, Chen Y, Wu P, Huang X. Curcumol Attenuates Portal Hypertension and Collateral Shunting Via Inhibition of Extrahepatic Angiogenesis in Cirrhotic Rats. Biochem Genet 2025; 63:281-297. [PMID: 38438779 DOI: 10.1007/s10528-024-10684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024]
Abstract
Liver cirrhosis can cause disturbances in blood circulation in the liver, resulting in impaired portal blood flow and ultimately increasing portal venous pressure. Portal hypertension induces portal-systemic collateral formation and fatal complications. Extrahepatic angiogenesis plays a crucial role in the development of portal hypertension. Curcumol is a sesquiterpenoid derived from the rhizome of Curcumae Rhizoma and has been confirmed to alleviate liver fibrosis by inhibiting angiogenesis. Therefore, our study was designed to explore the effects of curcumol on extrahepatic angiogenesis and portal hypertension. To induce cirrhosis, Sprague Dawley rats underwent bile duct ligation (BDL) surgery. Rats received oral administration with curcumol (30 mg/kg/d) or vehicle (distilled water) starting on day 15 following surgery, when BDL-induced liver fibrosis had developed. The effect of curcumol was assessed on day 28, which is the typical time of BDL-induced cirrhosis. The results showed that curcumol markedly reduced portal pressure in cirrhotic rats. Curcumol inhibited abnormal splanchnic inflow, mitigated liver injury, improved liver fibrosis, and attenuated portal-systemic collateral shunting in cirrhotic rats. These protective effects were partially attributed to the inhibition on mesenteric angiogenesis by curcumol. Mechanically, curcumol partially reversed the BDL-induced activation of the JAK2/STAT3 signaling pathway in cirrhotic rats. Collectively, curcumol attenuates portal hypertension in liver cirrhosis by suppressing extrahepatic angiogenesis through inhibiting the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xinyuan Wang
- Development of Planning Division, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Juan Li
- Development of Pediatric, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Jiao Nong
- Development of Education, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Xin Deng
- Basic Medical College, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Yiping Chen
- Development of Emergency, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.28 Wangyuan Road, Qingxiu District, Nanning, 530000, China
| | - Peibin Wu
- Achievement Transformation and Social Service Office, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Xiabing Huang
- Development of Emergency, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.28 Wangyuan Road, Qingxiu District, Nanning, 530000, China.
| |
Collapse
|
3
|
Nesci A, Ruggieri V, Manilla V, Spinelli I, Santoro L, Di Giorgio A, Santoliquido A, Ponziani FR. Endothelial Dysfunction and Liver Cirrhosis: Unraveling of a Complex Relationship. Int J Mol Sci 2024; 25:12859. [PMID: 39684569 DOI: 10.3390/ijms252312859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Endothelial dysfunction (ED) is the in the background of multiple metabolic diseases and a key process in liver disease progression and cirrhosis decompensation. ED affects liver sinusoidal endothelial cells (LSECs) in response to different damaging agents, causing their progressive dedifferentiation, unavoidably associated with an increase in intrahepatic resistance that leads to portal hypertension and hyperdynamic circulation with increased cardiac output and low peripheral artery resistance. These changes are driven by a continuous interplay between different hepatic cell types, invariably leading to increased reactive oxygen species (ROS) formation, increased release of pro-inflammatory cytokines and chemokines, and reduced nitric oxide (NO) bioavailability, with a subsequent loss of proper vascular tone regulation and fibrosis development. ED evaluation is often accomplished by serum markers and the flow-mediated dilation (FMD) measurement of the brachial artery to assess its NO-dependent response to shear stress, which usually decreases in ED. In the context of liver cirrhosis, the ED assessment could help understand the complex hemodynamic changes occurring in the early and late stages of the disease. However, the instauration of a hyperdynamic state and the different NO bioavailability in intrahepatic and systemic circulation-often defined as the NO paradox-must be considered confounding factors during FMD analysis. The primary purpose of this review is to describe the main features of ED and highlight the key findings of the dynamic and intriguing relationship between ED and liver disease. We will also focus on the significance of FMD evaluation in this setting, pointing out its key role as a therapeutic target in the never-ending battle against liver cirrhosis progression.
Collapse
Affiliation(s)
- Antonio Nesci
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vittorio Ruggieri
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vittoria Manilla
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Irene Spinelli
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Santoro
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angela Di Giorgio
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angelo Santoliquido
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
4
|
Gan C, Yaqoob U, Lu J, Xie M, Anwar A, Jalan-Sakrikar N, Jerez S, Sehrawat TS, Navarro-Corcuera A, Kostallari E, Habash NW, Cao S, Shah VH. Liver sinusoidal endothelial cells contribute to portal hypertension through collagen type IV-driven sinusoidal remodeling. JCI Insight 2024; 9:e174775. [PMID: 38713515 PMCID: PMC11382879 DOI: 10.1172/jci.insight.174775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/25/2024] [Indexed: 05/09/2024] Open
Abstract
Portal hypertension (PHTN) is a severe complication of liver cirrhosis and is associated with intrahepatic sinusoidal remodeling induced by sinusoidal resistance and angiogenesis. Collagen type IV (COL4), a major component of basement membrane, forms in liver sinusoids upon chronic liver injury. However, the role, cellular source, and expression regulation of COL4 in liver diseases are unknown. Here, we examined how COL4 is produced and how it regulates sinusoidal remodeling in fibrosis and PHTN. Human cirrhotic liver sample RNA sequencing showed increased COL4 expression, which was further verified via immunofluorescence staining. Single-cell RNA sequencing identified liver sinusoidal endothelial cells (LSECs) as the predominant source of COL4 upregulation in mouse fibrotic liver. In addition, COL4 was upregulated in a TNF-α/NF-κB-dependent manner through an epigenetic mechanism in LSECs in vitro. Indeed, by utilizing a CRISPRi-dCas9-KRAB epigenome-editing approach, epigenetic repression of the enhancer-promoter interaction showed silencing of COL4 gene expression. LSEC-specific COL4 gene mutation or repression in vivo abrogated sinusoidal resistance and angiogenesis, which thereby alleviated sinusoidal remodeling and PHTN. Our findings reveal that LSECs promote sinusoidal remodeling and PHTN during liver fibrosis through COL4 deposition.
Collapse
Affiliation(s)
- Can Gan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Usman Yaqoob
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jianwen Lu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Man Xie
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Abid Anwar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sofia Jerez
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tejasav S Sehrawat
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nawras W Habash
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Sheng JY, Meng ZF, Li Q, Yang YS. Recent advances in promising drugs for primary prevention of gastroesophageal variceal bleeding with cirrhotic portal hypertension. Hepatobiliary Pancreat Dis Int 2024; 23:4-13. [PMID: 37580228 DOI: 10.1016/j.hbpd.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis. Although primary prevention drugs, including non-selective β-blockers, have effectively reduced the incidence of bleeding, their efficacy is limited due to side effects and related contraindications. With recent advances in precision medicine, precise drug treatment provides better treatment efficacy. DATA SOURCES Literature search was conducted in PubMed, MEDLINE and Web of Science for relevant articles published up to May 2022. Information on clinical trials was obtained from https://clinicaltrials.gov/ and http://www.chictr.org.cn/. RESULTS The in-depth understanding of the pathogenesis and advances of portal hypertension has enabled the discovery of multiple molecular targets for promising drugs. According to the site of action, these drugs could be classified into four classes: intrahepatic, extrahepatic, both intrahepatic and extrahepatic targets and others. All these classes of drugs offer advantages over traditional treatments in prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension. CONCLUSIONS This review classified and summarized the promising drugs, which prevent gastroesophageal variceal bleeding by targeting specific markers of pathogenesis of portal hypertension, demonstrating the significance of using the precision medicine strategy to discover and develop promising drugs for the primary prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.
Collapse
Affiliation(s)
- Ji-Yao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130041, China; Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, the Second Hospital of Jilin University, Changchun 130041, China
| | - Zi-Fan Meng
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130041, China; Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, the Second Hospital of Jilin University, Changchun 130041, China
| | - Qiao Li
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130041, China
| | - Yong-Sheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130041, China; Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, the Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
6
|
Staels B, Butruille L, Francque S. Treating NASH by targeting peroxisome proliferator-activated receptors. J Hepatol 2023; 79:1302-1316. [PMID: 37459921 DOI: 10.1016/j.jhep.2023.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 07/02/2023] [Indexed: 09/15/2023]
Abstract
The pathophysiology of non-alcoholic steatohepatitis (NASH) encompasses a complex set of intra- and extrahepatic driving mechanisms, involving numerous metabolic, inflammatory, vascular and fibrogenic pathways. The peroxisome proliferator-activated receptors (PPARs) α, β/δ and γ belong to the nuclear receptor family of ligand-activated transcription factors. Activated PPARs modulate target tissue transcriptomic profiles, enabling the body's adaptation to changing nutritional, metabolic and inflammatory environments. PPARs hence regulate several pathways involved in NASH pathogenesis. Whereas single PPAR agonists exert robust anti-NASH activity in several preclinical models, their clinical effects on histological endpoints of NASH resolution and fibrosis regression appear more modest. Simultaneous activation of several PPAR isotypes across different organs and within-organ cell types, resulting in pleiotropic actions, enhances the therapeutic potential of PPAR agonists as pharmacological agents for NASH and NASH-related hepatic and extrahepatic morbidity, with some compounds having already shown clinical efficacy on histological endpoints.
Collapse
Affiliation(s)
- Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sven Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, B-2650, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
7
|
Guixé‐Muntet S, Biquard L, Szabo G, Dufour J, Tacke F, Francque S, Rautou P, Gracia‐Sancho J. Review article: vascular effects of PPARs in the context of NASH. Aliment Pharmacol Ther 2022; 56:209-223. [PMID: 35661191 PMCID: PMC9328268 DOI: 10.1111/apt.17046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/04/2021] [Accepted: 05/08/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors known to regulate glucose and fatty acid metabolism, inflammation, endothelial function and fibrosis. PPAR isoforms have been extensively studied in metabolic diseases, including type 2 diabetes and cardiovascular diseases. Recent data extend the key role of PPARs to liver diseases coursing with vascular dysfunction, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). AIM This review summarises and discusses the pathobiological role of PPARs in cardiovascular diseases with a special focus on their impact and therapeutic potential in NAFLD and NASH. RESULTS AND CONCLUSIONS PPARs may be attractive for the treatment of NASH due to their liver-specific effects but also because of their efficacy in improving cardiovascular outcomes, which may later impact liver disease. Assessment of cardiovascular disease in the context of NASH trials is, therefore, of the utmost importance, both from a safety and efficacy perspective.
Collapse
Affiliation(s)
- Sergi Guixé‐Muntet
- Liver Vascular Biology Research GroupIDIBAPS Biomedical Research Institute & CIBEREHDBarcelonaSpain
| | - Louise Biquard
- Université de Paris, Inserm, CNRSCentre de recherche sur l'InflammationUMR1149ParisFrance
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Jean‐François Dufour
- Department of Visceral Surgery and Medicine & Department for Biomedical ResearchInselspital, University of BernBernSwitzerland
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCharité Universitätsmedizin Berlin, Campus Virchow‐Klinikum (CVK) and Campus Charité Mitte (CCM)BerlinGermany
| | - Sven Francque
- Department of Gastroenterology and HepatologyAntwerp University HospitalAntwerpBelgium,Translational Sciences in Inflammation and ImmunologyInflaMed Centre of Excellence, Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of AntwerpAntwerpBelgium
| | - Pierre‐Emmanuel Rautou
- Université de Paris, AP‐HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGESTCentre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE‐LIVER, Centre de recherche sur l'inflammationParisFrance
| | - Jordi Gracia‐Sancho
- Liver Vascular Biology Research GroupIDIBAPS Biomedical Research Institute & CIBEREHDBarcelonaSpain,Department of Visceral Surgery and Medicine & Department for Biomedical ResearchInselspital, University of BernBernSwitzerland
| |
Collapse
|
8
|
Liu SY, Huang CC, Huang SF, Liao TL, Kuo NR, Yang YY, Li TH, Liu CW, Hou MC, Lin HC. Pioglitazone Ameliorates Acute Endotoxemia-Induced Acute on Chronic Renal Dysfunction in Cirrhotic Ascitic Rats. Cells 2021; 10:3044. [PMID: 34831270 PMCID: PMC8616474 DOI: 10.3390/cells10113044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 01/23/2023] Open
Abstract
Endotoxemia-activated tumor necrosis factor (TNFα)/nuclear factor kappa B (NFκB) signals result in acute on chronic inflammation-driven renal dysfunction in advanced cirrhosis. Systemic activation of peroxisome proliferator-activated receptor gamma (PPARγ) with pioglitazone can suppress inflammation-related splanchnic and pulmonary dysfunction in cirrhosis. This study explored the mechanism and effects of pioglitazone treatment on the abovementioned renal dysfunction in cirrhotic rats. Cirrhotic ascitic rats were induced with renal dysfunction by bile duct ligation (BDL). Then, 2 weeks of pioglitazone treatment (Pio, PPAR gamma agonist, 12 mg/kg/day, using the azert osmotic pump) was administered from the 6th week after BDL. Additionally, acute lipopolysaccharide (LPS, Escherichia coli 0111:B4; Sigma, 0.1 mg/kg b.w, i.p. dissolved in NaCl 0.9%) was used to induce acute renal dysfunction. Subsequently, various circulating, renal arterial and renal tissue pathogenic markers were measured. Cirrhotic BDL rats are characterized by decreased mean arterial pressure, increased cardiac output and portal venous pressure, reduced renal arterial blood flow (RABF), increased renal vascular resistance (RVR), increased relative renal weight/hydroxyproline, downregulated renal PPARγ expression, upregulated renal inflammatory markers (TNFα, NFκB, IL-6, MCP-1), increased adhesion molecules (VCAM-1 and ICAM-1), increased renal macrophages (M1, CD68), and progressive renal dysfunction (increasing serum and urinary levels of renal injury markers (lipocalin-2 and IL-18)). In particular, acute LPS administration induces acute on chronic renal dysfunction (increasing serum BUN/creatinine, increasing RVR and decreasing RABF) by increased TNFα-NFκB-mediated renal inflammatory markers as well as renal M1 macrophage infiltration. In comparison with the BDL+LPS group, chronic pioglitazone pre-treatment prevented LPS-induced renal pathogenic changes in the BDL-Pio+LPS group. Activation of systemic, renal vessel and renal tissue levels of PPARγ by chronic pioglitazone treatment has beneficial effects on the endotoxemia-related TNFα/NFκB-mediated acute and chronic renal inflammation in cirrhosis. This study revealed that normalization of renal and renal arterial levels of PPARγ effectively prevented LPS-induced acute and chronic renal dysfunction in cirrhotic ascitic rats.
Collapse
Affiliation(s)
- Szu-Yu Liu
- Department of Medical Education, Medical Innovation and Research Office (MIRO), Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-Y.L.); (C.-C.H.); (N.-R.K.)
- Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-F.H.); (M.-C.H.)
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (T.-L.L.); (T.-H.L.); (C.-W.L.)
| | - Chia-Chang Huang
- Department of Medical Education, Medical Innovation and Research Office (MIRO), Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-Y.L.); (C.-C.H.); (N.-R.K.)
- Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-F.H.); (M.-C.H.)
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (T.-L.L.); (T.-H.L.); (C.-W.L.)
| | - Shiang-Fen Huang
- Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-F.H.); (M.-C.H.)
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (T.-L.L.); (T.-H.L.); (C.-W.L.)
| | - Tsai-Ling Liao
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (T.-L.L.); (T.-H.L.); (C.-W.L.)
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 11217, Taiwan
| | - Nai-Rong Kuo
- Department of Medical Education, Medical Innovation and Research Office (MIRO), Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-Y.L.); (C.-C.H.); (N.-R.K.)
- Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-F.H.); (M.-C.H.)
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (T.-L.L.); (T.-H.L.); (C.-W.L.)
| | - Ying-Ying Yang
- Department of Medical Education, Medical Innovation and Research Office (MIRO), Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-Y.L.); (C.-C.H.); (N.-R.K.)
- Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-F.H.); (M.-C.H.)
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (T.-L.L.); (T.-H.L.); (C.-W.L.)
| | - Tzu-Hao Li
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (T.-L.L.); (T.-H.L.); (C.-W.L.)
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Foundation, Taipei 11217, Taiwan
| | - Chih-Wei Liu
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (T.-L.L.); (T.-H.L.); (C.-W.L.)
| | - Ming-Chih Hou
- Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-F.H.); (M.-C.H.)
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (T.-L.L.); (T.-H.L.); (C.-W.L.)
| | - Han-Chieh Lin
- Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-F.H.); (M.-C.H.)
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (T.-L.L.); (T.-H.L.); (C.-W.L.)
| |
Collapse
|
9
|
Queck A, Uschner FE, Ferstl PG, Schulz M, Brol MJ, Praktiknjo M, Schierwagen R, Klein S, Strassburg CP, Meyer C, Jansen C, Berres ML, Trebicka J. Role of circulating angiogenin levels in portal hypertension and TIPS. PLoS One 2021; 16:e0256473. [PMID: 34432848 PMCID: PMC8386873 DOI: 10.1371/journal.pone.0256473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Background Pathogenesis of portal hypertension is multifactorial and includes pathologic intrahepatic angiogenesis, whereby TIPS insertion is an effective therapy of portal hypertension associated complications. While angiogenin is a potent contributor to angiogenesis in general, little is known about its impact on TIPS function over time. Methods In a total of 118 samples from 47 patients, angiogenin concentrations were measured in portal and inferior caval vein plasma at TIPS insertion (each blood compartment n = 23) or angiographic intervention after TIPS (each blood compartment n = 36) and its relationship with patient outcome was investigated. Results Angiogenin levels in the inferior caval vein were significantly higher compared to the portal vein (P = 0.048). Ten to 14 days after TIPS, inferior caval vein angiogenin level correlated inversely with the portal systemic pressure gradient (P<0.001), measured invasively during control angiography. Moreover, patients with TIPS revision during this angiography, showed significantly lower angiogenin level in the inferior caval vein compared to patients without TIPS dysfunction (P = 0.01). Conclusion In cirrhosis patients with complications of severe portal hypertension, circulating levels of angiogenin are derived from the injured liver. Moreover, angiogenin levels in the inferior caval vein after TIPS may predict TIPS dysfunction.
Collapse
Affiliation(s)
- Alexander Queck
- Department of Internal Medicine 1, University Hospital, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Frank E. Uschner
- Department of Internal Medicine 1, University Hospital, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Philip G. Ferstl
- Department of Internal Medicine 1, University Hospital, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Martin Schulz
- Department of Internal Medicine 1, University Hospital, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Maximilian J. Brol
- Department of Internal Medicine 1, University Hospital, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Michael Praktiknjo
- Department of Internal Medicine I, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Robert Schierwagen
- Department of Internal Medicine 1, University Hospital, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Sabine Klein
- Department of Internal Medicine 1, University Hospital, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Christian P. Strassburg
- Department of Internal Medicine I, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Carsten Meyer
- Department of Radiology, University Hospital, University Bonn, Bonn, Germany
| | - Christian Jansen
- Department of Internal Medicine I, University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | - Jonel Trebicka
- Department of Internal Medicine 1, University Hospital, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
- * E-mail:
| |
Collapse
|
10
|
Iwakiri Y, Trebicka J. Portal hypertension in cirrhosis: Pathophysiological mechanisms and therapy. JHEP Rep 2021; 3:100316. [PMID: 34337369 PMCID: PMC8318926 DOI: 10.1016/j.jhepr.2021.100316] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Portal hypertension, defined as increased pressure in the portal vein, develops as a consequence of increased intrahepatic vascular resistance due to the dysregulation of liver sinusoidal endothelial cells (LSECs) and hepatic stellate cells (HSCs), frequently arising from chronic liver diseases. Extrahepatic haemodynamic changes contribute to the aggravation of portal hypertension. The pathogenic complexity of portal hypertension and the unsuccessful translation of preclinical studies have impeded the development of effective therapeutics for patients with cirrhosis, while counteracting hepatic and extrahepatic mechanisms also pose a major obstacle to effective treatment. In this review article, we will discuss the following topics: i) cellular and molecular mechanisms of portal hypertension, focusing on dysregulation of LSECs, HSCs and hepatic microvascular thrombosis, as well as changes in the extrahepatic vasculature, since these are the major contributors to portal hypertension; ii) translational/clinical advances in our knowledge of portal hypertension; and iii) future directions.
Collapse
Key Words
- ACE2, angiogenesis-converting enzyme 2
- ACLF, acute-on-chronic liver failure
- AT1R, angiotensin II type I receptor
- CCL2, chemokine (C-C motif) ligand 2
- CCl4, carbon tetrachloride
- CLD, chronic liver disease
- CSPH, clinically significant portal hypertension
- Dll4, delta like canonical Notch ligand 4
- ECM, extracellular matrix
- EUS, endoscopic ultrasound
- FXR
- FXR, farnesoid X receptor
- HCC, hepatocellular carcinoma
- HRS, hepatorenal syndrome
- HSC
- HSCs, hepatic stellate cells
- HVPG, hepatic venous pressure gradient
- Hsp90, heat shock protein 90
- JAK2, Janus kinase 2
- KO, knockout
- LSEC
- LSEC, liver sinusoidal endothelial cells
- MLCP, myosin light-chain phosphatase
- NET, neutrophil extracellular trap
- NO
- NO, nitric oxide
- NSBB
- NSBBs, non-selective beta blockers
- PDE, phosphodiesterase
- PDGF, platelet-derived growth factor
- PIGF, placental growth factor
- PKG, cGMP-dependent protein kinase
- Rho-kinase
- TIPS
- TIPS, transjugular intrahepatic portosystemic shunt
- VCAM1, vascular cell adhesion molecule 1
- VEGF
- VEGF, vascular endothelial growth factor
- angiogenesis
- eNOS, endothelial nitric oxide synthase
- fibrosis
- liver stiffness
- statins
- β-Arr2, β-arrestin 2
- β1-AR, β1-adrenergic receptor
- β2-AR, β2-adrenergic receptor
Collapse
Affiliation(s)
- Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Frankfurt, Germany
- European Foundation for the Study of Chronic Liver Failure-EF Clif, Barcelona, Spain
| |
Collapse
|
11
|
Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev Gastroenterol Hepatol 2021; 15:217-233. [PMID: 33131349 DOI: 10.1080/17474124.2021.1842732] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Persistent inflammation and hypoxia are strong stimulus for pathological angiogenesis and vascular remodeling, and are also the most important elements resulting in liver fibrosis. Sustained inflammatory process stimulates fibrosis to the end-point of cirrhosis and sinusoidal portal hypertension is an important feature of cirrhosis. Neovascularization plays a pivotal role in collateral circulation formation of portal vein, mesenteric congestion, and high perfusion. Imbalance of hepatic artery and portal vein blood flow leads to the increase of hepatic artery inflow, which is beneficial to the formation of nodules. Angiogenesis contributes to progression from liver fibrosis to cirrhosis and hepatocellular carcinoma (HCC) and anti-angiogenesis therapy can improve liver fibrosis, reduce portal pressure, and prolong overall survival of patients with HCC. Areas covers: This paper will try to address the difference of the morphological characteristics and mechanisms of neovascularization in the process from liver fibrosis to cirrhosis and HCC and further compare the different efficacy of anti-angiogenesis therapy in these three stages. Expert opinion: More in-depth understanding of the role of angiogenesis factors and the relationship between angiogenesis and other aspects of the pathogenesis and transformation may be the key to enabling future progress in the treatment of patients with liver fibrosis, cirrhosis, and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
12
|
Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease - A practical approach for translational research. J Hepatol 2020; 73:423-440. [PMID: 32330604 DOI: 10.1016/j.jhep.2020.04.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Animal models are crucial for improving our understanding of human pathogenesis, enabling researchers to identify therapeutic targets and test novel drugs. In the current review, we provide a comprehensive summary of the most widely used experimental models of chronic liver disease, starting from early stages of fatty liver disease (non-alcoholic and alcoholic) to steatohepatitis, advanced cirrhosis and end-stage primary liver cancer. We focus on aspects such as reproducibility and practicality, discussing the advantages and weaknesses of available models for researchers who are planning to perform animal studies in the near future. Additionally, we summarise current and prospective models based on human tissue bioengineering.
Collapse
Affiliation(s)
- Yulia A Nevzorova
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University, Madrid, Spain; 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Zoe Boyer-Diaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain
| | - Francisco Javier Cubero
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain.
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
13
|
Ramirez-Pedraza M, Fernández M. Interplay Between Macrophages and Angiogenesis: A Double-Edged Sword in Liver Disease. Front Immunol 2019; 10:2882. [PMID: 31921146 PMCID: PMC6927291 DOI: 10.3389/fimmu.2019.02882] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
During chronic liver disease, macrophages support angiogenesis, not only by secreting proangiogenic growth factors and matrix-remodeling proteases, but also by physically interacting with the sprouting vasculature to assist the formation of complex vascular networks. In the liver, macrophages acquire specific characteristics becoming Kupffer cells and working to ensure protection and immunotolerance. Angiogenesis is another double-edged sword in health and disease and it is the biggest ally of macrophages allowing its dissemination. Angiogenesis and fibrosis may occur in parallel in several tissues as macrophages co-localize with newly formed vessels and secrete cytokines, interleukins, and growth factors that will activate other cell types in the liver such as hepatic stellate cells and liver sinusoidal endothelial cells, promoting extracellular matrix accumulation and fibrogenesis. Vascular endothelial growth factor, placental growth factor, and platelet-derived growth factor are the leading secreted factors driving pathological angiogenesis and consequently increasing macrophage infiltration. Tumor development in the liver has been widely linked to macrophage-mediated chronic inflammation in which epidermal growth factors, STAT3 and NF-kβ are some of the most relevant signaling molecules involved. In this article, we review the link between macrophages and angiogenesis at molecular and cellular levels in chronic liver disease.
Collapse
Affiliation(s)
- Marta Ramirez-Pedraza
- Angiogenesis in Liver Disease Research Group, IDIBAPS Biomedical Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Mercedes Fernández
- Angiogenesis in Liver Disease Research Group, IDIBAPS Biomedical Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Hepatic and Digestive Disease (CIBEREHD), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Radwan RR, Hasan HF. Pioglitazone ameliorates hepatic damage in irradiated rats via regulating anti-inflammatory and antifibrogenic signalling pathways. Free Radic Res 2019; 53:748-757. [PMID: 31146611 DOI: 10.1080/10715762.2019.1624742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatic irradiation during radiotherapy is associated with liver damage. The current study was designed to investigate the possible modulatory effects of pioglitazone against γ irradiation-induced hepatic damage in rats. Animals were exposed to a single dose of 6 Gy and received pioglitazone (10 mg/kg/day) orally for 4 weeks starting on the same day of irradiation. Results showed that irradiation increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities as well as serum triglyceride (TG) and total cholesterol (TC) levels. Furthermore, it elevated inflammatory mediators; tumour necrosis factor alpha (TNF-α), interleukin-6 (IL-6); nuclear factor kappa B (NF-κB) and inducible nitric oxide synthase (iNOS) in hepatic tissues. Moreover, it increased levels of serum fibrotic markers; hyaluronic acid (HA), laminin (LN), and type III procollagen (PCIII). Additionally, hepatic fibrotic markers; transforming growth factor-β1 (TGF-β1) and hydroxyproline (HP) levels were elevated. Histological analysis of H&E and MT staining of liver sections exhibited cellular infiltration and fibrous deposition in irradiated rats. It was observed that pioglitazone modulated the described deviations. In conclusion, pioglitazone could serve as a promising therapeutic tool for attenuating radiation-induced liver injury in patients with radiotherapy which might be attributed to its anti-inflammatory and antifibrotic activities.
Collapse
Affiliation(s)
- Rasha R Radwan
- a Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Nasr City , Egypt
| | - Hesham F Hasan
- b Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority , Cairo , Egypt
| |
Collapse
|
15
|
Deng W, Duan M, Qian B, Zhu Y, Lin J, Zheng L, Zhang C, Qi X, Luo M. NADPH oxidase 1/4 inhibition attenuates the portal hypertensive syndrome via modulation of mesenteric angiogenesis and arterial hyporeactivity in rats. Clin Res Hepatol Gastroenterol 2019; 43:255-265. [PMID: 30413372 DOI: 10.1016/j.clinre.2018.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/25/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
AIM NADPH oxidase (NOX)-derived reactive oxygen species (ROS) plays key roles in the development of portal hypertension (PHT) and represents a potential therapeutic method. The objective of this study was to investigate whether pharmacological inhibition of NADPH oxidase activity could ameliorate PHT in rats. METHOD PHT model was established by partial portal vein ligation (PPVL). Rats were treated with 30 mg/kg GKT137831 (the most specific Nox1/4 inhibitor) or vehicle daily by gavage for 14 days beginning at the day of PPVL or sham operation (SO). Hemodynamics, severity of portal-systemic shunting, vascular contractility, vascular endothelial growth factor (VEGF), VEGFR-2, CD31, AKT, phospho-AKT (p-AKT, at Ser473), endothelial nitric oxide synthase (eNOS), and phospho-eNOS (p-eNOS, at Ser1177) expressions were evaluated. Nitric oxide (NO) production and oxidative stress in mesenteric arteries, and hydrogen peroxide (H2O2) in both mesenteric tissues and arteries were measured. RESULT Inhibition of NOX1/4 with GKT137831 significantly decreased cardiac index, increased portal flow resistance, reduced portal pressure (PP), portal blood flow, mesenteric angiogenesis and portal-systemic shunting (PSS) in PPVL rats. GKT137831 reduced the production of H2O2, down regulated mesenteric angiogenesis markers (CD31, vascular endothelial growth factor (VEGF) and VEGFR-2 expression. Compared with controls), the mesenteric artery contraction to norepinephrine (NE) was impaired in PPVL rats, which was reversed by exposure to GKT137831. In addition, GKT137831 markedly decrease NADPH oxidase activity and ROS production in mesenteric arteries, and reduced NO production by decreasing the level of phosphor-AKT and eNOS. CONCLUSION Inhibition of NOX1/4 decreased PP, ameliorated hyperdynamic circulation, mesenteric angiogenesis and arterial hyporesonse in portal hypertensive rats. Pharmacological inhibition of NOX1/4 activity may be a potential treatment for PHT-related complications.
Collapse
Affiliation(s)
- Wensheng Deng
- Department of Liver surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
| | - Ming Duan
- Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, PR China
| | - Binbin Qian
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, PR China
| | - Yiming Zhu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, PR China
| | - Jiayun Lin
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, PR China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, PR China
| | - Chihao Zhang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, PR China
| | - Xiaoliang Qi
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, PR China.
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, PR China.
| |
Collapse
|
16
|
Gracia-Sancho J, Marrone G, Fernández-Iglesias A. Hepatic microcirculation and mechanisms of portal hypertension. Nat Rev Gastroenterol Hepatol 2019; 16:221-234. [PMID: 30568278 DOI: 10.1038/s41575-018-0097-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver microcirculatory milieu, mainly composed of liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs) and hepatic macrophages, has an essential role in liver homeostasis, including in preserving hepatocyte function, regulating the vascular tone and controlling inflammation. Liver microcirculatory dysfunction is one of the key mechanisms that promotes the progression of chronic liver disease (also termed cirrhosis) and the development of its major clinical complication, portal hypertension. In the present Review, we describe the current knowledge of liver microcirculatory dysfunction in cirrhotic portal hypertension and appraise the preclinical models used to study the liver circulation. We also provide a comprehensive summary of the promising therapeutic options to target the liver microvasculature in cirrhosis.
Collapse
Affiliation(s)
- Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain. .,Hepatology, Department of Biomedical Research, Inselspital, Bern University, Bern, Switzerland.
| | - Giusi Marrone
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| |
Collapse
|
17
|
Xu W, Liu P, Mu YP. Research progress on signaling pathways in cirrhotic portal hypertension. World J Clin Cases 2018; 6:335-343. [PMID: 30283796 PMCID: PMC6163134 DOI: 10.12998/wjcc.v6.i10.335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/27/2018] [Accepted: 08/04/2018] [Indexed: 02/05/2023] Open
Abstract
Portal hypertension (PHT) is an important consequence of liver cirrhosis, which can lead to complications that adversely affect a patient’s quality of life and survival, such as upper gastrointestinal bleeding, ascites, and portosystemic encephalopathy. In recent years, advances in molecular biology have led to major discoveries in the pathological processes of PHT, including the signaling pathways that may be involved: PI3K-AKT-mTOR, RhoA/Rho-kinase, JAK2/STAT3, and farnesoid X receptor. However, the pathogenesis of PHT is complex and there are numerous pathways involved. Therefore, the targeting of signaling pathways for medical management is lagging. This article summarizes the progress that has been made in understanding the signaling pathways in PHT, and provides ideas for treatment of the disorder.
Collapse
Affiliation(s)
- Wen Xu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai University of TCM, Shanghai 201203, China
- Clinical key laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Ping Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai University of TCM, Shanghai 201203, China
- Clinical key laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Yong-Ping Mu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai University of TCM, Shanghai 201203, China
- Clinical key laboratory of TCM of Shanghai, Shanghai 201203, China
| |
Collapse
|
18
|
Garbuzenko DV, Arefyev NO, Kazachkov EL. Antiangiogenic therapy for portal hypertension in liver cirrhosis: Current progress and perspectives. World J Gastroenterol 2018; 24:3738-3748. [PMID: 30197479 PMCID: PMC6127663 DOI: 10.3748/wjg.v24.i33.3738] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Developing medicines for hemodynamic disorders that are characteristic of cirrhosis of the liver is a relevant problem in modern hepatology. The increase in hepatic vascular resistance to portal blood flow and subsequent hyperdynamic circulation underlie portal hypertension (PH) and promote its progression, despite the formation of portosystemic collaterals. Angiogenesis and vascular bed restructurization play an important role in PH pathogenesis as well. In this regard, strategic directions in the therapy for PH in cirrhosis include selectively decreasing hepatic vascular resistance while preserving or increasing portal blood flow, and correcting hyperdynamic circulation and pathological angiogenesis. The aim of this review is to describe the mechanisms of angiogenesis in PH and the methods of antiangiogenic therapy. The PubMed database, the Google Scholar retrieval system, and the reference lists from related articles were used to search for relevant publications. Articles corresponding to the aim of the review were selected for 2000-2017 using the keywords: “liver cirrhosis”, “portal hypertension”, “pathogenesis”, “angiogenesis”, and “antiangiogenic therapy”. Antiangiogenic therapy for PH was the inclusion criterion. In this review, we have described angiogenesis inhibitors and their mechanism of action in relation to PH. Although most of them were studied only in animal experiments, this selective therapy for abnormally growing newly formed vessels is pathogenetically reasonable to treat PH and associated complications.
Collapse
Affiliation(s)
| | - Nikolay Olegovich Arefyev
- Department of Pathological Anatomy and Forensic Medicine, South Ural State Medical University, Chelyabinsk 454092, Russia
| | - Evgeniy Leonidovich Kazachkov
- Department of Pathological Anatomy and Forensic Medicine, South Ural State Medical University, Chelyabinsk 454092, Russia
| |
Collapse
|
19
|
Königshofer P, Brusilovskaya K, Schwabl P, Podesser BK, Trauner M, Reiberger T. Invasive Hemodynamic Characterization of the Portal-hypertensive Syndrome in Cirrhotic Rats. J Vis Exp 2018. [PMID: 30124644 DOI: 10.3791/57261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This is a detailed protocol describing invasive hemodynamic measurements in cirrhotic rats for the characterization of portal hypertensive syndrome. Portal hypertension (PHT) due to cirrhosis is responsible for the most severe complications in patients with liver disease. The full picture of the portal hypertensive syndrome is characterized by increased portal pressure (PP) due to the increased intrahepatic vascular resistance (IHVR), hyperdynamic circulation, and increased splanchnic blood flow. Progressive splanchnic arterial vasodilation and increased cardiac output with elevated heart rate (HR) but low arterial pressure characterizes the portal hypertensive syndrome. Novel therapies are currently being developed that aim to decrease PP by either targeting IHVR or increased splanchnic blood flow - but side effects on systemic hemodynamics may occur. Thus, a detailed characterization of portal venous, splanchnic, and systemic hemodynamic parameters, including measurement of PP, portal venous blood flow (PVBF), mesenteric arterial blood flow, mean arterial pressure (MAP), and HR is needed for preclinical evaluation of the efficacy of novel treatments for PHT. Our video article provides the reader with a structured protocol for performing invasive hemodynamic measurements in cirrhotic rats. In particular, we describe the catheterization of the femoral artery and the portal vein via an ileocolic vein and the measurement of portal venous and splanchnic blood flow via perivascular Doppler-ultrasound flow probes. Representative results of different rat models of PHT are shown.
Collapse
Affiliation(s)
- Philipp Königshofer
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria
| | - Ksenia Brusilovskaya
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria
| | - Philipp Schwabl
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Center of Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria;
| |
Collapse
|
20
|
Königshofer P, Brusilovskaya K, Schwabl P, Reiberger T. Animal models of portal hypertension. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1019-1030. [PMID: 30055295 DOI: 10.1016/j.bbadis.2018.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Chronic liver diseases ultimately lead to cirrhosis and portal hypertension (PHT). Indeed, PHT is a major cause of severe complications, while medical treatment is limited to non-selective beta blockers. Sophisticated animal models are needed to investigate novel treatment options for different etiologies of liver disease, effective anti-fibrotic agents as well as vasoactive drugs against PHT. In this review, we present some of the most common animal models of liver disease and PHT - including pre-hepatic, intra-hepatic and post-hepatic PHT in rodents. Methodology for induction, considerations for disease etiology, advantages and limitations and practical issues of these animal models are discussed. The appropriate and sensible use of animal models in preclinical research supporting the 3R concept of replacement, reduction and refinement is highlighted.
Collapse
Affiliation(s)
- P Königshofer
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - K Brusilovskaya
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - P Schwabl
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - T Reiberger
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Zhong W, Jin W, Xu S, Wu Y, Luo S, Liang M, Chen L. Pioglitazone Induces Cardiomyocyte Apoptosis and Inhibits Cardiomyocyte Hypertrophy Via VEGFR-2 Signaling Pathway. Arq Bras Cardiol 2018; 111:162-169. [PMID: 29972411 PMCID: PMC6122905 DOI: 10.5935/abc.20180108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/14/2018] [Indexed: 01/02/2023] Open
Abstract
Background Pioglitazone has been widely used as an insulin-sensitizing agent for
improving glycemic control in patients with type 2 diabetes mellitus.
However, cardiovascular risk and protective effects of pioglitazone remain
controversial. Objectives In this study, we investigated whether pioglitazone affects cardiomyocyte
apoptosis and hypertrophy by regulating the VEGFR-2 signaling pathway. Methods Cardiomyocytes were enzymatically isolated from 1- to 3-day-old
Sprague-Dawley rat ventricles. Effects of pioglitazone and the
VEGFR-2-selective inhibitor apatinib on cardiomyocyte apoptotic rate was
determined using flow cytometry, and hypertrophy was evaluated using
[3H]-leucine incorporation. The protein expressions of
unphosphorylated and phosphorylated VEGFR-2, Akt, P53, and mTOR were
determined by Western-Blotting. Analysis of variance (ANOVA) was used to
assess the differences between groups. Results Pioglitazone and VEGFR-2-selective inhibitor apatinib reduced rat
cardiomyocyte viability and cardiomyocyte hypertrophy induced by angiotensin
II in vitro. Furthermore, in the same in vitro model, pioglitazone and
apatinib significantly increased the expression of Bax and phosphorylated
P53 and decreased the expression of phosphorylated VEGFR-2, Akt, and mTOR,
which promote cardiomyocyte hypertrophy. Conclusions These findings indicate that pioglitazone induces cardiomyocyte apoptosis and
inhibits cardiomyocyte hypertrophy by modulating the VEGFR-2 signaling
pathway.
Collapse
Affiliation(s)
- Wenliang Zhong
- Department of Cardiology, The First Hospital of Nanping City, affiliated to Fujian Medical University, Nanping, Fujian - China.,Department of Cardiology, Union Hospital, Fujian Medical University, Fuzhou, Fujian - China
| | - Wen Jin
- Cardiovascular Department, Guangdong N°.2 Provincial People's Hospital, Guangzhou, Guangdong - China
| | - Shanghua Xu
- Department of Cardiology, The First Hospital of Nanping City, affiliated to Fujian Medical University, Nanping, Fujian - China
| | - Yanqing Wu
- Department of Cardiology, The First Hospital of Nanping City, affiliated to Fujian Medical University, Nanping, Fujian - China
| | - Shunxiang Luo
- Department of Cardiology, The First Hospital of Nanping City, affiliated to Fujian Medical University, Nanping, Fujian - China
| | - Minlie Liang
- Department of Cardiology, The First Hospital of Nanping City, affiliated to Fujian Medical University, Nanping, Fujian - China
| | - Lianglong Chen
- Department of Cardiology, Union Hospital, Fujian Medical University, Fuzhou, Fujian - China
| |
Collapse
|
22
|
Beneficial Effects of the Peroxisome Proliferator-Activated Receptor α/γ Agonist Aleglitazar on Progressive Hepatic and Splanchnic Abnormalities in Cirrhotic Rats with Portal Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1608-1624. [DOI: 10.1016/j.ajpath.2018.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
|
23
|
Schwabl P, Brusilovskaya K, Supper P, Bauer D, Königshofer P, Riedl F, Hayden H, Fuchs CD, Stift J, Oberhuber G, Aschauer S, Bonderman D, Gnad T, Pfeifer A, Uschner FE, Trebicka J, Rohr-Udilova N, Podesser BK, Peck-Radosavljevic M, Trauner M, Reiberger T. The soluble guanylate cyclase stimulator riociguat reduces fibrogenesis and portal pressure in cirrhotic rats. Sci Rep 2018; 8:9372. [PMID: 29921982 PMCID: PMC6008436 DOI: 10.1038/s41598-018-27656-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023] Open
Abstract
In cirrhotic patients, portal hypertension (PHT) deteriorates survival, yet treatment options are limited. A major contributor to increased intrahepatic vasoconstriction in PHT is dysfunctional nitric-oxide signaling. Soluble guanylate cyclase (sGC) is the receptor of nitric-oxide and can be stimulated by riociguat. Riociguat is approved for pulmonary hypertension but has not been studied in liver cirrhosis. In this study we assessed the effects of riociguat on PHT and liver fibrosis in cholestatic (bile duct ligation, BDL) and toxic (carbon-tetrachloride, CCl4) rat models. In cirrhotic livers sGC expression was upregulated. In BDL rats, riociguat reduced liver fibrosis and decreased portal pressure without affecting systemic hemodynamics. In an early BDL disease stage, riociguat decreased bile duct proliferation, improved sinusoidal vascular dysfunction and inhibited angiogenesis. In advanced BDL riociguat exhibited anti-inflammatory effects. In CCl4 rats the beneficial effects of riociguat treatment were less pronounced and confined to an early disease stage. Similarly, in patients with cholestatic cirrhosis and PHT nitrates (that induce sGC activity) decreased portal pressure more effectively than in patients with non-cholestatic etiology. We also found an improvement of transaminases in patients with pulmonary hypertension receiving riociguat. Our findings support the clinical development of sGC stimulators in patients with cirrhotic PHT.
Collapse
Affiliation(s)
- Philipp Schwabl
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Vienna, Austria
| | - Ksenia Brusilovskaya
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Vienna, Austria
| | - Paul Supper
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Vienna, Austria
| | - David Bauer
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Vienna, Austria
| | - Philipp Königshofer
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Vienna, Austria
| | - Florian Riedl
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Vienna, Austria
| | - Hubert Hayden
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Vienna, Austria
| | - Claudia Daniela Fuchs
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Judith Stift
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Georg Oberhuber
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Stefan Aschauer
- Division of Cardiology, Dept. of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Diana Bonderman
- Division of Cardiology, Dept. of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | | | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- Department of Gastroenterology, Odense Hospital, University of Southern Denmark, Odense, Denmark
- European Foundation of the Study of Chronic Liver Failure - EF CLIF, Barcelona, Spain
- Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Nataliya Rohr-Udilova
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Vienna, Austria
| | - Bruno Karl Podesser
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Markus Peck-Radosavljevic
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
- Vienna Hepatic Hemodynamic Laboratory, Vienna, Austria.
| |
Collapse
|
24
|
MUW researcher of the month. Wien Klin Wochenschr 2018; 130:410-411. [DOI: 10.1007/s00508-018-1353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Abstract
Portal hypertension develops as a result of increased intrahepatic vascular resistance often caused by chronic liver disease that leads to structural distortion by fibrosis, microvascular thrombosis, dysfunction of liver sinusoidal endothelial cells (LSECs), and hepatic stellate cell (HSC) activation. While the basic mechanisms of LSEC and HSC dysregulation have been extensively studied, the role of microvascular thrombosis and platelet function in the pathogenesis of portal hypertension remains to be clearly characterized. As a secondary event, portal hypertension results in splanchnic and systemic arterial vasodilation, leading to the development of a hyperdynamic circulatory syndrome and subsequently to clinically devastating complications including gastroesophageal varices and variceal hemorrhage, hepatic encephalopathy from the formation of portosystemic shunts, ascites, and renal failure due to the hepatorenal syndrome. This review article discusses: (1) mechanisms of sinusoidal portal hypertension, focusing on HSC and LSEC biology, pathological angiogenesis, and the role of microvascular thrombosis and platelets, (2) the mesenteric vasculature in portal hypertension, and (3) future directions for vascular biology research in portal hypertension.
Collapse
Affiliation(s)
- Matthew McConnell
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, 1080 LMP, 333 Cedar St., New Haven, CT, 06520, USA
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, 1080 LMP, 333 Cedar St., New Haven, CT, 06520, USA.
| |
Collapse
|
26
|
Therapeutic siRNA targeting endothelial KDR decreases portosystemic collateralization in portal hypertension. Sci Rep 2017; 7:14791. [PMID: 29093528 PMCID: PMC5665956 DOI: 10.1038/s41598-017-14818-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/13/2017] [Indexed: 02/08/2023] Open
Abstract
Development of portosystemic collateral vessels and gastroesophageal varices is responsible for the most serious clinical consequences of portal hypertension, but effective clinical therapies are limited. Here we developed and investigated the therapeutic potential of an innovative liposomally-formulated short-interfering RNA (siRNA) technology based on clinical stage components, capable to attenuate production of the endothelial kinase insert domain receptor (KDR), which controls portosystemic collateralization and contributes to disease progression and aggravation. These siRNAs were first validated in vitro, and then, their therapeutic potential on portosystemic collateralization and pathological angiogenesis was tested in vivo in mouse models of portal hypertension (portal vein-ligation). siRNAKDR-lipoplexes efficiently transported siRNAKDR to vascular endothelial cells in mesenteric microvenules and portal vein of portal hypertensive mice, where collaterogenesis and angiogenesis take place. This systemic treatment significantly downregulated pathological KDR overexpression, without causing complete KDR knockout, preserving homeostatic baseline KDR levels and thus limiting adverse effects. siRNAKDR-lipoplex-induced endothelial-specific KDR knockdown drastically reduced by 73% the portosystemic collateralization, and impaired the pathologic angiogenic potential of vascular endothelial cells at different levels (cell proliferation, sprouting and remodeling). Targeting endothelial KDR with therapeutic siRNAKDR-lipoplexes could be a promising and plausible treatment modality for attenuating the formation of portosystemic collaterals in a clinical setting.
Collapse
|
27
|
Schwabl P, Laleman W. Novel treatment options for portal hypertension. Gastroenterol Rep (Oxf) 2017; 5:90-103. [PMID: 28533907 PMCID: PMC5421460 DOI: 10.1093/gastro/gox011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 03/12/2017] [Indexed: 12/13/2022] Open
Abstract
Portal hypertension is most frequently associated with cirrhosis and is a major driver for associated complications, such as variceal bleeding, ascites or hepatic encephalopathy. As such, clinically significant portal hypertension forms the prelude to decompensation and impacts significantly on the prognosis of patients with liver cirrhosis. At present, non-selective β-blockers, vasopressin analogues and somatostatin analogues are the mainstay of treatment but these strategies are far from satisfactory and only target splanchnic hyperemia. In contrast, safe and reliable strategies to reduce the increased intrahepatic resistance in cirrhotic patients still represent a pending issue. In recent years, several preclinical and clinical trials have focused on this latter component and other therapeutic avenues. In this review, we highlight novel data in this context and address potentially interesting therapeutic options for the future.
Collapse
Affiliation(s)
- Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wim Laleman
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Schwabl P, Hambruch E, Seeland BA, Hayden H, Wagner M, Garnys L, Strobel B, Schubert TL, Riedl F, Mitteregger D, Burnet M, Starlinger P, Oberhuber G, Deuschle U, Rohr-Udilova N, Podesser BK, Peck-Radosavljevic M, Reiberger T, Kremoser C, Trauner M. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. J Hepatol 2017; 66:724-733. [PMID: 27993716 DOI: 10.1016/j.jhep.2016.12.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/27/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Steroidal farnesoid X receptor (FXR) agonists demonstrated potent anti-fibrotic activities and lowered portal hypertension in experimental models. The impact of the novel non-steroidal and selective FXR agonist PX20606 on portal hypertension and fibrosis was explored in this study. METHODS In experimental models of non-cirrhotic (partial portal vein ligation, PPVL, 7days) and cirrhotic (carbon tetrachloride, CCl4, 14weeks) portal hypertension, PX20606 (PX,10mg/kg) or the steroidal FXR agonist obeticholic acid (OCA,10mg/kg) were gavaged. We then measured portal pressure, intrahepatic vascular resistance, liver fibrosis and bacterial translocation. RESULTS PX decreased portal pressure in non-cirrhotic PPVL (12.6±1.7 vs. 10.4±1.1mmHg; p=0.020) and cirrhotic CCl4 (15.2±0.5 vs. 11.8±0.4mmHg; p=0.001) rats. In PPVL animals, we observed less bacterial translocation (-36%; p=0.041), a decrease in lipopolysaccharide binding protein (-30%; p=0.024) and splanchnic tumour necrosis factor α levels (-39%; p=0.044) after PX treatment. In CCl4 rats, PX decreased fibrotic Sirius Red area (-43%; p=0.005), hepatic hydroxyproline (-66%; p<0.001), and expression of profibrogenic proteins (Col1a1, α smooth muscle actin, transforming growth factor β). CCl4-PX rats had significantly lower transaminase levels and reduced hepatic macrophage infiltration. Moreover, PX induced sinusoidal vasodilation (upregulation of cystathionase, dimethylaminohydrolase (DDAH)1, endothelial nitric oxide synthase (eNOS), GTP-cyclohydrolase1) and reduced intrahepatic vasoconstriction (downregulation of endothelin-1, p-Moesin). In cirrhosis, PX improved endothelial dysfunction (decreased von-Willebrand factor) and normalized overexpression of vascular endothelial growth factor, platelet-derived growth factor and angiopoietins. While short-term 3-day PX treatment reduced portal pressure (-14%; p=0.041) by restoring endothelial function, 14week PX therapy additionally inhibited sinusoidal remodelling and decreased portal pressure to a greater extent (-22%; p=0.001). In human liver sinusoidal endothelial cells, PX increased eNOS and DDAH expression. CONCLUSIONS The non-steroidal FXR agonist PX20606 ameliorates portal hypertension by reducing liver fibrosis, vascular remodelling and sinusoidal dysfunction. LAY SUMMARY The novel drug PX20606 activates the bile acid receptor FXR and shows beneficial effects in experimental liver cirrhosis: In the liver, it reduces scarring and inflammation, and also widens blood vessels. Thus, PX20606 leads to an improved blood flow through the liver and decreases hypertension of the portal vein. Additionally, PX20606 improves the altered intestinal barrier and decreases bacterial migration from the gut.
Collapse
Affiliation(s)
- Philipp Schwabl
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Eva Hambruch
- Phenex Pharmaceuticals, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Berit A Seeland
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Hubert Hayden
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Wagner
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Garnys
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bastian Strobel
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Tim-Lukas Schubert
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Florian Riedl
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Dieter Mitteregger
- Vienna Medical Innovation Center (VMIC), Group Practice LABORS.at, Vienna, Austria
| | - Michael Burnet
- Synovo GmbH, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany
| | | | - Georg Oberhuber
- Dept. of Pathology, Medical University of Vienna, Vienna, Austria
| | - Ulrich Deuschle
- Phenex Pharmaceuticals, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Nataliya Rohr-Udilova
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Dept. of Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Markus Peck-Radosavljevic
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Claus Kremoser
- Phenex Pharmaceuticals, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Michael Trauner
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
29
|
Wang Y, Qiu J, Luo S, Xie X, Zheng Y, Zhang K, Ye Z, Liu W, Gregersen H, Wang G. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis. Regen Biomater 2016; 3:257-67. [PMID: 27482467 PMCID: PMC4966293 DOI: 10.1093/rb/rbw021] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022] Open
Abstract
Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Shisui Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Xiang Xie
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Yiming Zheng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Kang Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Wanqian Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Hans Gregersen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| |
Collapse
|
30
|
Zhang Y, Ding HG. Prevention and treatment of cirrhotic portal hypertension: New cellular and molecular targets. Shijie Huaren Xiaohua Zazhi 2016; 24:2950-2956. [DOI: 10.11569/wcjd.v24.i19.2950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cirrhotic portal hypertension results from a variety of pathological conditions including decreased expression of endothelial NO synthase and lysyl oxidase-like 2, newly formed vessels and pathological hepatic sinusoid reconstruction. Dark chocolate, coffee and green tea polyphenol can improve endothelial dysfunction and inhibit angiogenesis and thus may be new options for treating and preventing the progression of cirrhotic portal hypertension.
Collapse
|
31
|
Garbuzenko DV. [Aspects of pathogenetc pharmacotherapy for portal hypertension in liver cirrhosis]. TERAPEVT ARKH 2016; 88:101-108. [PMID: 27135108 DOI: 10.17116/terarkh2016888101-108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The review of literature considers the principles of medical treatment for portal hypertension in liver cirrhosis, which are based on the current views of its development mechanisms. It describes both current pharmacotherapy methods for portal hypertension and drugs, the efficacy of which is being investigated.
Collapse
Affiliation(s)
- D V Garbuzenko
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| |
Collapse
|
32
|
Garbuzenko DV. Contemporary concepts of the medical therapy of portal hypertension under liver cirrhosis. World J Gastroenterol 2015; 21:6117-6126. [PMID: 26034348 PMCID: PMC4445090 DOI: 10.3748/wjg.v21.i20.6117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/20/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023] Open
Abstract
Severe complications of liver cirrhosis are mostly related to portal hypertension. At the base of the pathogenesis of portal hypertension is the increase in hepatic vascular resistance to portal blood flow with subsequent development of hyperdynamic circulation, which, despite of the formation of collateral circulation, promotes progression of portal hypertension. An important role in its pathogenesis is played by the rearrangement of vascular bed and angiogenesis. As a result, strategic directions of the therapy of portal hypertension under liver cirrhosis include selectively decreasing hepatic vascular resistance with preserving or increasing portal blood flow, and correcting hyperdynamic circulation and pathological angiogenesis, while striving to reduce the hepatic venous pressure gradient to less than 12 mmHg or 20% of the baseline. Over the last years, substantial progress in understanding the pathophysiological mechanisms of hemodynamic disorders under liver cirrhosis has resulted in the development of new drugs for their correction. Although the majority of them have so far been investigated only in animal experiments, as well as at the molecular and cellular level, it might be expected that the introduction of the new methods in clinical practice will increase the efficacy of the conservative approach to the prophylaxis and treatment of portal hypertension complications. The purpose of the review is to describe the known methods of portal hypertension pharmacotherapy and discuss the drugs that may affect the basic pathogenetic mechanisms of its development.
Collapse
|
33
|
Inhibition of Janus kinase-2 signalling pathway ameliorates portal hypertensive syndrome in partial portal hypertensive and liver cirrhosis rats. Dig Liver Dis 2015; 47:315-23. [PMID: 25637451 DOI: 10.1016/j.dld.2014.12.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/17/2014] [Accepted: 12/31/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS JAK2/STAT3 signalling promotes fibrosis, angiogenesis and inflammation in many diseases; however, the role of this pathway in portal hypertension remains obscure. This study aimed to explore the function of JAK2/STAT3 signalling in portal hypertension and estimate the potential therapeutic effect of treatment with the specific inhibitor AG490. METHODS Rats induced by partial portal vein ligation and common bile duct ligation were treated with AG490 for two weeks. Haemodynamic parameters were assessed. The levels of phospho-STAT3 protein and related cytokines were detected by western blotting of splanchnic organs. Liver, spleen and intestine characterization was performed using histological analyses. Peripheral blood cell counts were also detected. RESULTS High levels of phospho-STAT3 protein were detected in portal hypertensive rats. AG490 effectively inhibited JAK2/STAT3 signalling and its downstream cytokines and provided protective effects by decreasing splanchnic neovascularization and inflammation and by attenuating portal pressure and hyperdynamic splanchnic circulation. In cirrhosis rats, AG490 inhibited intrahepatic fibrosis, angiogenesis and inflammation. AG490 improved the peripheral blood cell counts and the splenomegaly observed in these rats. CONCLUSIONS JAK2/STAT3 signalling is essential in portal hypertension, and targeting JAK2/STAT3 may be a promising therapy to treat this condition.
Collapse
|
34
|
Vairappan B. Endothelial dysfunction in cirrhosis: Role of inflammation and oxidative stress. World J Hepatol 2015; 7:443-459. [PMID: 25848469 PMCID: PMC4381168 DOI: 10.4254/wjh.v7.i3.443] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/08/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023] Open
Abstract
This review describes the recent developments in the pathobiology of endothelial dysfunction (ED) in the context of cirrhosis with portal hypertension and defines novel strategies and potential targets for therapy. ED has prognostic implications by predicting unfavourable early hepatic events and mortality in patients with portal hypertension and advanced liver diseases. ED characterised by an impaired bioactivity of nitric oxide (NO) within the hepatic circulation and is mainly due to decreased bioavailability of NO and accelerated degradation of NO with reactive oxygen species. Furthermore, elevated inflammatory markers also inhibit NO synthesis and causes ED in cirrhotic liver. Therefore, improvement of NO availability in the hepatic circulation can be beneficial for the improvement of endothelial dysfunction and associated portal hypertension in patients with cirrhosis. Furthermore, therapeutic agents that are identified in increasing NO bioavailability through improvement of hepatic endothelial nitric oxide synthase (eNOS) activity and reduction in hepatic asymmetric dimethylarginine, an endogenous modulator of eNOS and a key mediator of elevated intrahepatic vascular tone in cirrhosis would be interesting therapeutic approaches in patients with endothelial dysfunction and portal hypertension in advanced liver diseases.
Collapse
|
35
|
Iwakiri Y, Shah V, Rockey DC. Vascular pathobiology in chronic liver disease and cirrhosis - current status and future directions. J Hepatol 2014; 61:912-24. [PMID: 24911462 PMCID: PMC4346093 DOI: 10.1016/j.jhep.2014.05.047] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/12/2022]
Abstract
Chronic liver disease is associated with remarkable alterations in the intra- and extrahepatic vasculature. Because of these changes, the fields of liver vasculature and portal hypertension have recently become closely integrated within the broader vascular biology discipline. As developments in vascular biology have evolved, a deeper understanding of vascular processes has led to a better understanding of the mechanisms of the dynamic vascular changes associated with portal hypertension and chronic liver disease. In this context, hepatic vascular cells, such as sinusoidal endothelial cells and pericyte-like hepatic stellate cells, are closely associated with one another, where they have paracrine and autocrine effects on each other and themselves. These cells play important roles in the pathogenesis of liver fibrosis/cirrhosis and portal hypertension. Further, a variety of signaling pathways have recently come to light. These include growth factor pathways involving cytokines such as transforming growth factor β, platelet derived growth factor, and others as well as a variety of vasoactive peptides and other molecules. An early and consistent feature of liver injury is the development of an increase in intra-hepatic resistance; this is associated with changes in hepatic vascular cells and their signaling pathway that cause portal hypertension. A critical concept is that this process aggregates signals to the extrahepatic circulation, causing derangement in this system's cells and signaling pathways, which ultimately leads to the collateral vessel formation and arterial vasodilation in the splanchnic and systemic circulation, which by virtue of the hydraulic derivation of Ohm's law (pressure = resistance × flow), worsens portal hypertension. This review provides a detailed review of the current status and future direction of the basic biology of portal hypertension with a focus on the physiology, pathophysiology, and signaling of cells within the liver, as well as those in the mesenteric vascular circulation. Translational implications of recent research and the future directions that it points to are also highlighted.
Collapse
Affiliation(s)
- Yasuko Iwakiri
- The Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Vijay Shah
- The Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Don C Rockey
- The Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
36
|
Angiogenesis-related biomarkers in patients with alcoholic liver disease: their association with liver disease complications and outcome. Mediators Inflamm 2014; 2014:673032. [PMID: 24959006 PMCID: PMC4052180 DOI: 10.1155/2014/673032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis is believed to be implicated in the pathogenesis of alcoholic liver disease (ALD). We aimed to explore the usefulness and accuracy of plasma angiogenic biomarkers for noninvasive evaluation of the severity of liver failure and ALD outcome. One hundred and forty-seven patients with ALD were prospectively enrolled and assessed based on their (1) gender, (2) age, (3) severity of liver dysfunction according to the Child-Turcotte-Pugh and MELD scores, and (4) the presence of ALD complications. Plasma levels of vascular endothelial growth factor (VEGF-A) and angiopoietins 1 and 2 (Ang1 and Ang2) were investigated using ELISAs. Multivariable logistic regression was applied in order to select independent predictors of advanced liver dysfunction and the disease complications. Significantly higher concentrations of Ang2 and VEGF-A in ALD patients as compared to controls were found. There was no difference in Ang1 levels in both groups. A positive correlation of Ang2 levels with INR (Rho 0.66; P < 0.0001) and its inverse correlation with plasma albumin levels (Rho –0.62; P < 0.0001) were found. High Ang2 concentrations turned out to be an independent predictor of severe liver dysfunction, as well as hepatic encephalopathy and renal impairment. Ang2 possessed the highest diagnostic and prognostic potential among three studied angiogenesis-related molecules.
Collapse
|