1
|
Zhang Z, Dong C, Zhao S, Si Z, Zheng W, Wang K, Sun C, Song Z, Gao W. Myosin Light Chain 9 Mediates Graft Fibrosis After Pediatric Liver Transplantation Through TLR4/MYD88/NF-κB Signaling. Cell Mol Gastroenterol Hepatol 2025:101453. [PMID: 39778656 DOI: 10.1016/j.jcmgh.2024.101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND & AIMS The incidence of graft fibrosis is elevated after pediatric liver transplantation (pLT) and is influenced by cold ischemic time (CIT). Myosin light chain 9 (MYL9), a member of the myosin family, could act on hepatic stellate cells (HSCs) and induce a transition to active phase. We hypothesized that cold ischemic injury could stimulate MYL9 expression and lead to graft fibrosis. METHODS We tested the hypothesis by analyzing multi-omics data from human protocol liver biopsy samples 2 years after LT, performing rat LT with different CIT and conducting in vitro studies in HSC cell lines with MYL9 knockdown and overexpression. RESULTS Clinically, CIT is an independent risk factor for graft fibrosis after pLT. Omics analysis identified MYL9 as a prominent contributor in graft fibrosis. MYL9 is strongly correlated with liver fibrosis grade and the progression of fibrosis. The study of rat LT model demonstrated MYL9 expression increases with the prolongation of CIT, and its role is specific to transplant setting. Mechanistically, in vitro experiments with HSCs exposed to hypoxia/reoxygenation revealed a substantial decrease in HSCs activation after MYL9 knockdown. Conversely, overexpression of MYL9 significantly enhanced the activation of HSCs. Subsequent transcriptome sequencing of HSCs with MYL9 knockdown unveiled that MYL9 primarily functions through the TLR4/MYD88/NF-κB signaling pathway. Liver graft fibrosis was ameliorated when toll like receptor 4 signaling was inhibited in rats. CONCLUSIONS Our findings demonstrate that prolonged CIT up-regulates the expression of MYL9 in liver graft after LT. MYL9 activates HSCs and promotes fibrosis through a TLR4/MYD88/NF-κB signaling dependent manner.
Collapse
Affiliation(s)
- Zhixin Zhang
- Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, China; Tianjin Key Laboratory of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China
| | - Chong Dong
- Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, China; Tianjin Key Laboratory of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China
| | - Shengqiao Zhao
- Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, China; Tianjin Key Laboratory of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China
| | - Zhuyuan Si
- Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, China; Tianjin Key Laboratory of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China
| | - Weiping Zheng
- Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, China; Tianjin Key Laboratory of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China
| | - Kai Wang
- Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, China; Tianjin Key Laboratory of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China
| | - Chao Sun
- Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, China; Tianjin Key Laboratory of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China.
| | - Zhuolun Song
- Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, China; Tianjin Key Laboratory of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China.
| | - Wei Gao
- Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, China; Tianjin Key Laboratory of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
2
|
Cillo U, Lonati C, Bertacco A, Magnini L, Battistin M, Borsetto L, Dazzi F, Al-Adra D, Gringeri E, Bacci ML, Schlegel A, Dondossola D. A proof-of-concept study in small and large animal models for coupling liver normothermic machine perfusion with mesenchymal stromal cell bioreactors. Nat Commun 2025; 16:283. [PMID: 39746966 PMCID: PMC11697227 DOI: 10.1038/s41467-024-55217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
To fully harness mesenchymal-stromal-cells (MSCs)' benefits during Normothermic Machine Perfusion (NMP), we developed an advanced NMP platform coupled with a MSC-bioreactor and investigated its bio-molecular effects and clinical feasibility using rat and porcine models. The study involved three work packages: 1) Development (n = 5): MSC-bioreactors were subjected to 4 h-liverless perfusion; 2) Rat model (n = 10): livers were perfused for 4 h on the MSC-bioreactor-circuit or with the standard platform; 3) Porcine model (n = 6): livers were perfused using a clinical device integrated with a MSC-bioreactor or in its standard setup. MSCs showed intact stem-core properties after liverless-NMP. Liver NMP induced specific, liver-tailored, changes in MSCs' secretome. Rat livers exposed to bioreactor-based perfusion produced more bile, released less damage and pro-inflammatory biomarkers, and showed improved mithocondrial function than those subjected to standard NMP. MSC-bioreactor integration into a clinical device resulted in no machine failure and perfusion-related injury. This proof-of-concept study presents a novel MSC-based liver NMP platform that could reduce the deleterious effects of ischemia/reperfusion before transplantation.
Collapse
Affiliation(s)
- Umberto Cillo
- Hepato-Biliary-Pancreatic Surgery and Liver Transplant Unit, General Surgery 2, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy.
| | - Alessandra Bertacco
- Hepato-Biliary-Pancreatic Surgery and Liver Transplant Unit, General Surgery 2, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Lucrezia Magnini
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Lara Borsetto
- Hepato-Biliary-Pancreatic Surgery and Liver Transplant Unit, General Surgery 2, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Francesco Dazzi
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - David Al-Adra
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Enrico Gringeri
- Hepato-Biliary-Pancreatic Surgery and Liver Transplant Unit, General Surgery 2, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Schlegel
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
- Transplantation Center, Digestive Disease and Surgery Institute, Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy
| |
Collapse
|
3
|
Fan L, Xia H, Peng G, Wang W, Fu Z, Ye Q. A Novel Machine Perfusion System for Enhancing Hepatic Microcirculation Perfusion. Artif Organs 2024. [PMID: 39740084 DOI: 10.1111/aor.14930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Machine perfusion is a promising strategy for safeguarding liver transplants donated after cardiac death (DCD). In this study, we developed and validated a novel machine perfusion approach for mitigating risk factors and salvaging severe DCD livers. METHODS A novel hypothermic oxygenated perfusion (HOPE) system was developed, incorporating two pumps and an elastic water sac to emulate the functionality of the cardiac cycle. Compared to conventional systems (HOPE S1 and S2), the novel HOPE system (HOPE S3) was evaluated in rats, utilizing healthy livers perfused with methylene blue diluted using Histidine-tryptophan-ketoglutarate (HTK) solution or DCD livers subjected to 60 min of warm ischemia without heparin administration. Liver perfusion outcomes were assessed through macroscopic and microscopic evaluations, molecular analyses, and orthotopic liver transplantation (OLT). RESULTS DCD livers subjected to HOPE systems' perfusion exhibited decreased injury and enhanced survival rates compared to static cold storage following 60 min of warm ischemia (DCD + SCS). The 4-week post-transplantation survival rates were 0%, 20%, and 33% in the DCD + SCS, HOPE S1, and HOPE S2 groups, respectively. HOPE S3 conferred protection against hepatocyte and non-parenchymal cell injury, resulting in a 67% animal survival rate following 60 min of warm donor ischemia (HOPE S3). Assessments of hepatic sinusoidal microcirculation, morphological changes, and molecular alterations in preserved livers further confirmed these findings. CONCLUSIONS The newly devised machine perfusion system can enhance and uniform liver perfusion and may become a promising tool for revitalizing DCD liver grafts afflicted with severe warm ischemic injuries.
Collapse
Affiliation(s)
- Lin Fan
- Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haoyang Xia
- Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guizhu Peng
- Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weiyu Wang
- Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhen Fu
- Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qifa Ye
- Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- National Health Commission Key Laboratory of Translational Research on Transplantation Medicine, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Risbey CWG, Thomas C, Niu A, Liu K, Crawford M, Pulitano C. Hypothermic Oxygenated machine PErfusion for high-risk liver grafts for transplantation: A systematic review and meta-analysis. Artif Organs 2024; 48:1085-1099. [PMID: 39418539 DOI: 10.1111/aor.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Hypothermic Oxygenated machine PErfusion (HOPE) can reduce ischemic reperfusion injury and improve outcomes for liver transplant recipients. However, the effect of HOPE on high-risk extended criteria donor (ECD) and donation after circulatory death determination (DCDD) grafts is incomplete, despite the expectation that this cohort benefit maximally from HOPE. Accordingly, this paper aims to characterize the effect of HOPE on ECD and DCDD grafts. METHODS This study includes all papers comparing HOPE to static cold storage for high-risk ECD and DCDD grafts. Systematic searches of Medline, Embase, and Scopus were completed using the terms "HOPE" OR "hypothermic oxygenated machine perfusion" AND "liver transplantation". Data were extracted and analyzed using IBM SPSS to perform the meta-analysis. RESULTS A total of 2286 records were identified, with 10 meeting the inclusion criteria. Overall, the quality of evidence is heterogenous with many papers relying on retrospective controls. However, pooled analysis demonstrates HOPE to significantly reduce the rate of early allograft dysfunction, 12-month graft failure, re-transplantation, total biliary complications, and non-anastomotic strictures for high-risk grafts. CONCLUSIONS There is good evidence that HOPE improves outcomes following liver transplantation across a number of biochemical and clinical endpoints for high-risk grafts. Of note, the reduction in biliary complications and re-transplantation is particularly significant given the morbidity associated with these endpoints. However, further, high-quality prospective trials with contemporary controls and clinically relevant primary endpoints are needed to better define the impact of HOPE for this cohort of grafts.
Collapse
Affiliation(s)
- Charles W G Risbey
- Department of Transplant Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment, Repair, & Optimization (COARO), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital Transplant Institute (RPATI), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Charles Thomas
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anita Niu
- Department of Transplant Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment, Repair, & Optimization (COARO), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital Transplant Institute (RPATI), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Ken Liu
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Australian National Liver Transplantation Unit (ANLTU), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Michael Crawford
- Department of Transplant Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment, Repair, & Optimization (COARO), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital Transplant Institute (RPATI), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Australian National Liver Transplantation Unit (ANLTU), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Carlo Pulitano
- Department of Transplant Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment, Repair, & Optimization (COARO), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital Transplant Institute (RPATI), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Australian National Liver Transplantation Unit (ANLTU), Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Muth V, Stobl F, Michelotto J, Gilles L, Kirwan JA, Eisenberger A, Marchand J, Roschke NN, Moosburner S, Pratschke J, Sauer IM, Raschzok N, Gassner JM. Quality Assessment by Bile Composition in Normothermic Machine Perfusion of Rat Livers. Tissue Eng Part A 2024. [PMID: 38832856 DOI: 10.1089/ten.tea.2024.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Background: The persistent challenge of organ scarcity in liver transplantation leads to an escalating dependence on organs obtained from extended criteria donors (ECD). Normothermic machine perfusion (NMP) is used for improved preservation. Due to the mimicked in vivo conditions during normothermic machine perfusion, the liver is metabolically active, which allows quality assessment during perfusion. Bile seems to be of rising interest in clinical studies, as it is easily collectible for analysis. As there are currently no data on biliary bile acids during NMP, the primary objective of this study was to use our experimental rodent NMP model to assess changes in bile composition through organ damage during perfusion to inform clinical evaluation of donor organs during NMP. Methods: Thirty livers from male Sprague-Dawley rats in five groups underwent 6 h of NMP using either erythrocyte-supplemented DMEM or Steen solution, with or without 30 min of warm ischemia time (WIT). We conducted regular measurements of AST, ALT, LDH, and urea levels in the perfusate at 3-hour intervals. Bile samples were analyzed for biliary pH, LDH, and gamma glutamyltransferase, as well as biliary bile acids via mass spectrometry and UHPLC. Results: Compared with regular livers, liver injury parameters were significantly higher in our donation after circulatory death (DCD) model. Bile production was significantly reduced in livers exposed to WIT, and the bile showed a significantly more alkaline pH. This correlated with the concentration of total bile acids, which was significantly higher in livers experiencing WIT. However, regular livers produced a higher total amount of biliary bile acids during perfusion. Taurocholic acid and its metabolites were most prominent. Secondary bile acids were significantly reduced during perfusion due to the missing enterohepatic circulation. Conclusions: WIT-induced liver injury affects bile composition within our small-animal NMP model. We hypothesize this phenomenon to be attributed to the energy-driven nature of bile secretion, potentially explaining why DCD livers produce less, yet more concentrated, bile. Our results may inform clinical studies, in which biliary bile acids might have a potential as a quantifiable viability marker in human NMP liver transplantation studies.
Collapse
Affiliation(s)
- Vanessa Muth
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
| | - Felix Stobl
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
| | - Julian Michelotto
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
| | - Linda Gilles
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
| | - Jennifer A Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center, Berlin, Germany
| | - Alina Eisenberger
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center, Berlin, Germany
| | - Jeremy Marchand
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center, Berlin, Germany
| | - Nathalie N Roschke
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
| | - Simon Moosburner
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité -;Universitätsmedizin;Berlin, BIH Academy, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
| | - Igor M Sauer
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
| | - Nathanael Raschzok
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité -;Universitätsmedizin;Berlin, BIH Academy, Berlin, Germany
| | - Joseph Mgv Gassner
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité -;Universitätsmedizin;Berlin, BIH Academy, Berlin, Germany
| |
Collapse
|
6
|
Muller X, Rossignol G, Mohkam K, Mabrut JY. Back to Basics: Liver Graft Ischemia in the Era of Machine Perfusion. Transplantation 2024; 108:1269-1272. [PMID: 38277262 DOI: 10.1097/tp.0000000000004912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Affiliation(s)
- Xavier Muller
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Lyon, France
- Institute of Hepatology Lyon (IHL), INSERM U1052, Lyon, France
- ED 340 BMIC, Claude Bernard Lyon 1 University, Villeurbanne, France
| | - Guillaume Rossignol
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Lyon, France
- Institute of Hepatology Lyon (IHL), INSERM U1052, Lyon, France
- ED 340 BMIC, Claude Bernard Lyon 1 University, Villeurbanne, France
- Department of Pediatric Surgery and Liver Transplantation, Femme Mere Enfant University Hospital, Lyon, France
| | - Kayvan Mohkam
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Lyon, France
- Institute of Hepatology Lyon (IHL), INSERM U1052, Lyon, France
- Department of Pediatric Surgery and Liver Transplantation, Femme Mere Enfant University Hospital, Lyon, France
| | - Jean-Yves Mabrut
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Lyon, France
- Institute of Hepatology Lyon (IHL), INSERM U1052, Lyon, France
| |
Collapse
|
7
|
Flores Carvalho M, Boteon YL, Guarrera JV, Modi PR, Lladó L, Lurje G, Kasahara M, Dutkowski P, Schlegel A. Obstacles to implement machine perfusion technology in routine clinical practice of transplantation: Why are we not there yet? Hepatology 2024; 79:713-730. [PMID: 37013926 DOI: 10.1097/hep.0000000000000394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/05/2023] [Indexed: 04/05/2023]
Abstract
Machine perfusion of solid human organs is an old technique, and the basic principles were presented as early as 1855 by Claude Barnard. More than 50 years ago, the first perfusion system was used in clinical kidney transplantation. Despite the well-known benefits of dynamic organ preservation and significant medical and technical development in the last decades, perfusion devices are still not in routine use. This article describes the various challenges to implement this technology in practice, critically analyzing the role of all involved stakeholders, including clinicians, hospitals, regulatory, and industry, on the background of regional differences worldwide. The clinical need for this technology is discussed first, followed by the current status of research and the impact of costs and regulations. Considering the need for strong collaborations between clinical users, regulatory bodies, and industry, integrated road maps and pathways required to achieve a wider implementation are presented. The role of research development, clear regulatory pathways, and the need for more flexible reimbursement schemes is discussed together with potential solutions to address the most relevant hurdles. This article paints an overall picture of the current liver perfusion landscape and highlights the role of clinical, regulatory, and financial stakeholders worldwide.
Collapse
Affiliation(s)
- Mauricio Flores Carvalho
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, University of Florence, AOU Careggi, Florence, Italy
| | - Yuri L Boteon
- Liver Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - James V Guarrera
- Division of Abdominal Transplant Surgery, Rutgers New Jersey Medical School, Department of Surgery, Newark, New Jersey, USA
| | - Pranjal R Modi
- Department of Transplantation Surgery, Institute of Kidney Diseases and Research Center and Dr. H L Trivedi Institute of Transplantation Sciences (IKDRC-ITS), Ahmedabad, India
| | - Laura Lladó
- Liver Transplant Unit, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mureo Kasahara
- Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Andrea Schlegel
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, University of Florence, AOU Careggi, Florence, Italy
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, 20100 Milan, Italy
| |
Collapse
|
8
|
Mergental H, Laing RW, Kirkham AJ, Clarke G, Boteon YL, Barton D, Neil DAH, Isaac JR, Roberts KJ, Abradelo M, Schlegel A, Dasari BVM, Ferguson JW, Cilliers H, Morris C, Friend PJ, Yap C, Afford SC, Perera MTPR, Mirza DF. Discarded livers tested by normothermic machine perfusion in the VITTAL trial: Secondary end points and 5-year outcomes. Liver Transpl 2024; 30:30-45. [PMID: 38109282 DOI: 10.1097/lvt.0000000000000270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/27/2023] [Indexed: 12/20/2023]
Abstract
Normothermic machine perfusion (NMP) enables pretransplant assessment of high-risk donor livers. The VITTAL trial demonstrated that 71% of the currently discarded organs could be transplanted with 100% 90-day patient and graft survivals. Here, we report secondary end points and 5-year outcomes of this prospective, open-label, phase 2 adaptive single-arm study. The patient and graft survivals at 60 months were 82% and 72%, respectively. Four patients lost their graft due to nonanastomotic biliary strictures, one caused by hepatic artery thrombosis in a liver donated following brain death, and 3 in elderly livers donated after circulatory death (DCD), which all clinically manifested within 6 months after transplantation. There were no late graft losses for other reasons. All the 4 patients who died during the study follow-up had functioning grafts. Nonanastomotic biliary strictures developed in donated after circulatory death livers that failed to produce bile with pH >7.65 and bicarbonate levels >25 mmol/L. Histological assessment in these livers revealed high bile duct injury scores characterized by arterial medial necrosis. The quality of life at 6 months significantly improved in all but 4 patients suffering from nonanastomotic biliary strictures. This first report of long-term outcomes of high-risk livers assessed by normothermic machine perfusion demonstrated excellent 5-year survival without adverse effects in all organs functioning beyond 1 year (ClinicalTrials.gov number NCT02740608).
Collapse
Affiliation(s)
- Hynek Mergental
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Richard W Laing
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- Hepato-pancreato Biliary Unit, Royal Stoke University Hospital, Stoke on Trent, UK
| | - Amanda J Kirkham
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - George Clarke
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Yuri L Boteon
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- Liver Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Darren Barton
- D3B team, Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Desley A H Neil
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK
- Department of Cellular Pathology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
| | - John R Isaac
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
| | - Keith J Roberts
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Manuel Abradelo
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- HPB and Abdominal Organ Transplantation Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Andrea Schlegel
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, Milan, Italy
| | - Bobby V M Dasari
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
| | - James W Ferguson
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
| | - Hentie Cilliers
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
| | | | - Peter J Friend
- OrganOx Limited, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Christina Yap
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
- Clinical Trials and Statistics Unit, The Institute for Cancer Research, London
| | - Simon C Afford
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - M Thamara P R Perera
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Darius F Mirza
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| |
Collapse
|
9
|
Nwaduru C, Baker E, Buff M, Selim M, Ovalle LA, Baker TB, Zimmerman MA. Assessing Liver Viability: Insights From Mitochondrial Bioenergetics in Ischemia-Reperfusion Injury. Transplant Proc 2024; 56:228-235. [PMID: 38171992 DOI: 10.1016/j.transproceed.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Orthotopic liver transplantation remains the definitive treatment for patients with end-stage liver disease. Unfortunately, the increasing demand for donor livers and the limited supply of viable organs have both led to a critical need for innovative strategies to expand the pool of transplantable organs. The mitochondrion, central to hepatic cellular function, plays a pivotal role in hepatic ischemic injury, with impaired mitochondrial function and oxidative stress leading to cell death. Mitochondrial protection strategies have shown promise in mitigating IRI and resuscitating marginal organs for transplant. Machine perfusion (MP) has been proven a valuable tool for reviving marginal organs with very promising results. Evaluation of liver viability during perfusion traditionally relies on parameters including lactate clearance, bile production, and transaminase levels. Nevertheless, the quest for more comprehensive and universally applicable viability markers persists. Normothermic regional perfusion has gained robust attention, offering extended recovery time for organs from donation after cardiac death donors. This approach has shown remarkable success in improving organ quality and reducing ischemic injury using the body's physiological conditions. The current challenge lies in the absence of a reliable assessment tool for predicting graft viability and post-transplant outcomes. To address this, exploring insights from mitochondrial function in the context of ischemia-reperfusion injury could offer a promising path toward better patient outcomes and graft longevity. Indeed, hypoxia-induced mitochondrial injury may serve as a surrogate marker of organ viability following oxygenated resuscitation techniques in the future.
Collapse
Affiliation(s)
- Chinedu Nwaduru
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah.
| | - Emma Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michelle Buff
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Motaz Selim
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Leo Aviles Ovalle
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Talia B Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael A Zimmerman
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
10
|
Yang S, Hou W, Liu L. Progress in preservation of intestinal grafts by oxygenated hypothermic machine perfusion. Transplant Rev (Orlando) 2024; 38:100802. [PMID: 37891046 DOI: 10.1016/j.trre.2023.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Intestine transplantation (IT) is a critical treatment strategy for irreversible intestinal failure. Among all abdominal solid organ transplants, the intestine was the most vulnerable to ischemia and reperfusion injury (IRI). The static cold storage (SCS) technique is currently the most commonly used graft preservation method, but its hypoxia condition causes metabolic disorders, resulting in the occurrence of IRI, limiting its application in marginal organs. It is especially important to improve preservation techniques in order to minimize damage to marginal donor organs, which draws more attention to machine perfusion (MP). There has been much debate about whether it is necessary to increase oxygen in these conditions to support low levels of metabolism since the use of machine perfusion to preserve organs. There is evidence that oxygenation helps to restore intracellular ATP levels in the intestine after thermal or cold ischemia damage. The goal of this review is to provide an overview of the role of oxygen in maintaining environmental stability in the gut under hypoxic conditions, as well as to investigate the possibilities and mechanisms of oxygen delivery during preservation in intestine transplantation studies and clinical models.
Collapse
Affiliation(s)
- Shuang Yang
- National Health Commission's Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Wen Hou
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China.
| | - Lei Liu
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Nankai University, Tianjin, China; Organ Transplant Department, Tianjin First Central Hospital, Nankai University, Tianjin, China.
| |
Collapse
|
11
|
Panconesi R, Carvalho MF, Eden J, Fazi M, Ansari F, Mancina L, Navari N, Sousa Da Silva RX, Dondossola D, Borrego LB, Pietzke M, Peris A, Meierhofer D, Muiesan P, Galkin A, Marra F, Dutkowski P, Schlegel A. Mitochondrial injury during normothermic regional perfusion (NRP) and hypothermic oxygenated perfusion (HOPE) in a rodent model of DCD liver transplantation. EBioMedicine 2023; 98:104861. [PMID: 37924707 PMCID: PMC10660010 DOI: 10.1016/j.ebiom.2023.104861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Normothermic regional perfusion (NRP) and hypothermic-oxygenated-perfusion (HOPE), were both shown to improve outcomes after liver transplantation from donors after circulatory death (DCD). Comparative clinical and mechanistical studies are however lacking. METHODS A rodent model of NRP and HOPE, both in the donor, was developed. Following asystolic donor warm ischemia time (DWIT), the abdominal compartment was perfused either with a donor-blood-based-perfusate at 37 °C (NRP) or with oxygenated Belzer-MPS at 10 °C (donor-HOPE) for 2 h. Livers were then procured and underwent 5 h static cold storage (CS), followed by transplantation. Un-perfused and HOPE-treated DCD-livers (after CS) and healthy livers (DBD) with direct implantation after NRP served as controls. Endpoints included the entire spectrum of ischemia-reperfusion-injury. FINDINGS Healthy control livers (DBD) showed minimal signs of inflammation during 2 h NRP and achieved 100% posttransplant recipient survival. In contrast, DCD livers with 30 and 60 min DWIT suffered from greater mitochondrial injury and inflammation as measured by increased perfusate Lactate, FMN- and HMGB-1-levels with subsequent Toll-like-receptor activation during NRP. In contrast, donor-HOPE (instead of NRP) led to significantly less mitochondrial-complex-I-injury and inflammation. Results after donor-HOPE were comparable to ex-situ HOPE after CS. Most DCD-liver recipients survived when treated with one HOPE-technique (86%), compared to only 40% after NRP (p = 0.0053). Following a reduction of DWIT (15 min), DCD liver recipients achieved comparable survivals with NRP (80%). INTERPRETATION High-risk DCD livers benefit more from HOPE-treatment, either immediately in the donor or after cold storage. Comparative prospective clinical studies are required to translate the results. FUNDING Funding was provided by the Swiss National Science Foundation (grant no: 32003B-140776/1, 3200B-153012/1, 320030-189055/1, and 31IC30-166909) and supported by University Careggi (grant no 32003B-140776/1) and the OTT (grant No.: DRGT641/2019, cod.prog. 19CT03) and the Max Planck Society. Work in the A.G. laboratory was partially supported by the NIH R01NS112381 and R21NS125466 grants.
Collapse
Affiliation(s)
- Rebecca Panconesi
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, 10124, Turin, Italy; Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | | | - Janina Eden
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Marilena Fazi
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fariha Ansari
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Leandro Mancina
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Nadia Navari
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Richard Xavier Sousa Da Silva
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico and University of Milan, Centre of Preclinical Research, 20122, Italy
| | - Lucia Bautista Borrego
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Matthias Pietzke
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, 14195, Berlin, Germany
| | - Adriano Peris
- Tuscany Regional Transplant Authority, Centro Regionale Allocazione Organi e Tessuti (CRAOT), Florence, Italy
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, 14195, Berlin, Germany
| | - Paolo Muiesan
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Center for Research, High Education and Transfer DENOThe, University of Florence, Florence, Italy
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland; General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico and University of Milan, Centre of Preclinical Research, 20122, Italy; Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
12
|
Ohara M, Ishikawa J, Yoshimoto S, Hakamata Y, Kobayashi E. A rat model of dual-flow liver machine perfusion system. Acta Cir Bras 2023; 38:e387723. [PMID: 37909599 PMCID: PMC10664844 DOI: 10.1590/acb387723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/01/2023] [Indexed: 11/03/2023] Open
Abstract
PURPOSE As clinical liver perfusion systems use portal vein and artery flow, dual perfusion techniques are required even in small animal models in order to reproduce clinical setting. The aim of this study was to construct a new dual-flow perfusion system in rat model and optimized the oxygen supply to ensure the aerobic metabolization. METHODS The dual-flow circuit was fabricated using rat liver and whole blood samples as perfusates. The oxygen supply was controlled according to the amount of dissolved oxygen in the perfusate. Perfusate parameters and adenosine triphosphate (ATP) levels were analyzed to evaluate organ function and metabolic energy state. Stored whole blood also tested the suitability as perfusate. RESULTS Stored blood showed decrease oxygen delivery and liver function compared to fresh blood. Using fresh blood as perfusate with air only, the dissolved oxygen levels remained low and anaerobic metabolism increased. In contrast, with oxygen control at living body level, anaerobic metabolism was well suppressed, and tissue ATP content was increased. CONCLUSIONS We developed a new dual-flow system that enable to reproduce the clinical settings. The perfusion system showed the possibility to improve the energy metabolic state of the perfused organ under appropriate partial pressure of oxygen.
Collapse
Affiliation(s)
- Masayuki Ohara
- Nippon Veterinary and Life Science University – School of Veterinary Nursing and Technology – Tokyo, Japan
- Screen Holdings Co., Ltd. – Innovation Development Department – Tokyo, Japan
| | - Jun Ishikawa
- Nippon Veterinary and Life Science University – School of Veterinary Nursing and Technology – Tokyo, Japan
- Screen Holdings Co., Ltd. – Innovation Development Department – Tokyo, Japan
| | - Syuhei Yoshimoto
- Screen Holdings Co., Ltd. – Innovation Development Department – Tokyo, Japan
| | - Yoji Hakamata
- Nippon Veterinary and Life Science University – School of Veterinary Nursing and Technology – Tokyo, Japan
| | - Eiji Kobayashi
- Nippon Veterinary and Life Science University – School of Veterinary Nursing and Technology – Tokyo, Japan
- Jikei University School of Medicine – Department of Kidney Regenerative Medicine – Kyoto, Japan
| |
Collapse
|
13
|
Strobl F, Michelotto J, Muth V, Moosburner S, Knaub K, Zimmer M, Patel MS, Pratschke J, Sauer IM, Raschzok N, Gassner JMGV. Advancing Perfusion Models: Dual-Vessel Ex Vivo Rat Liver Perfusion Based on a Clinical Setup. Tissue Eng Part A 2023; 29:518-528. [PMID: 37498780 DOI: 10.1089/ten.tea.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Normothermic ex vivo liver machine perfusion (NEVLP) has been developed to address the increasing organ shortage in liver transplantation, through optimal preservation, assessment, and conditioning of grafts from extended criteria donors. There remains a need to establish simple and standardized animal models that simulate clinical NEVLP to test novel therapies. Liver grafts from 36 Sprague-Dawley rats were perfused for 6 h in a dual-vessel NEVLP system with a Dulbecco's modified Eagles medium-based perfusate supplemented with rat plasma and erythrocytes. Varying doses of the clinically used vasodilator epoprostenol, Kupffer cell inhibitor glycine, and a Steen™-based perfusate were assessed. Perfusion pressures and bile production were recorded, and perfusate was analyzed for transaminase secretion. Tissue samples were evaluated histologically, and levels of cytokines and 8-Isoprostane were measured. Increasing levels of epoprostenol and the addition of glycine resulted in a stepwise decrease of transaminase secretion and improved bile production. Steen further decreased transaminase release and interleukin 1 beta levels. Liver grafts perfused with the optimized Steen-based protocol exhibited lowest levels of oxidative stress and best-preserved liver integrity. In conclusion, epoprostenol seemed to ameliorate liver function and prevent cellular damage beyond its vasodilatory effect, with glycine acting synergistically. The anti-inflammatory and antioxidative properties of Steen further improved the outcome of perfusion. Our rodent NEVLP system may be used to rapidly test new agents for the pharmacologic conditioning of livers and help translate findings from bench-to-bedside.
Collapse
Affiliation(s)
- Felix Strobl
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Michelotto
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Vanessa Muth
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Moosburner
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Clinician Scientist Program, BIH Academy, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kristina Knaub
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian Zimmer
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Madhukar S Patel
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Johann Pratschke
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Igor M Sauer
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nathanael Raschzok
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Clinician Scientist Program, BIH Academy, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Joseph M G V Gassner
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Clinician Scientist Program, BIH Academy, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Tingle SJ, Dobbins JJ, Thompson ER, Figueiredo RS, Mahendran B, Pandanaboyana S, Wilson C. Machine perfusion in liver transplantation. Cochrane Database Syst Rev 2023; 9:CD014685. [PMID: 37698189 PMCID: PMC10496129 DOI: 10.1002/14651858.cd014685.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
BACKGROUND Liver transplantation is the only chance of cure for people with end-stage liver disease and some people with advanced liver cancers or acute liver failure. The increasing prevalence of these conditions drives demand and necessitates the increasing use of donated livers which have traditionally been considered suboptimal. Several novel machine perfusion preservation technologies have been developed, which attempt to ameliorate some of the deleterious effects of ischaemia reperfusion injury. Machine perfusion technology aims to improve organ quality, thereby improving outcomes in recipients of suboptimal livers when compared to traditional static cold storage (SCS; ice box). OBJECTIVES To evaluate the effects of different methods of machine perfusion (including hypothermic oxygenated machine perfusion (HOPE), normothermic machine perfusion (NMP), controlled oxygenated rewarming, and normothermic regional perfusion) versus each other or versus static cold storage (SCS) in people undergoing liver transplantation. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was 10 January 2023. SELECTION CRITERIA We included randomised clinical trials which compared different methods of machine perfusion, either with each other or with SCS. Studies comparing HOPE via both hepatic artery and portal vein, or via portal vein only, were grouped. The protocol detailed that we also planned to include quasi-randomised studies to assess treatment harms. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. overall participant survival, 2. quality of life, and 3. serious adverse events. Secondary outcomes were 4. graft survival, 5. ischaemic biliary complications, 6. primary non-function of the graft, 7. early allograft function, 8. non-serious adverse events, 9. transplant utilisation, and 10. transaminase release during the first week post-transplant. We assessed bias using Cochrane's RoB 2 tool and used GRADE to assess certainty of evidence. MAIN RESULTS We included seven randomised trials (1024 transplant recipients from 1301 randomised/included livers). All trials were parallel two-group trials; four compared HOPE versus SCS, and three compared NMP versus SCS. No trials used normothermic regional perfusion. When compared with SCS, it was uncertain whether overall participant survival was improved with either HOPE (hazard ratio (HR) 0.91, 95% confidence interval (CI) 0.42 to 1.98; P = 0.81, I2 = 0%; 4 trials, 482 recipients; low-certainty evidence due to imprecision because of low number of events) or NMP (HR 1.08, 95% CI 0.31 to 3.80; P = 0.90; 1 trial, 222 recipients; very low-certainty evidence due to imprecision and risk of bias). No trials reported quality of life. When compared with SCS alone, HOPE was associated with improvement in the following clinically relevant outcomes: graft survival (HR 0.45, 95% CI 0.23 to 0.87; P = 0.02, I2 = 0%; 4 trials, 482 recipients; high-certainty evidence), serious adverse events in extended criteria DBD liver transplants (OR 0.45, 95% CI 0.22 to 0.91; P = 0.03, I2 = 0%; 2 trials, 156 participants; moderate-certainty evidence) and clinically significant ischaemic cholangiopathy in recipients of DCD livers (OR 0.31, 95% CI 0.11 to 0.92; P = 0.03; 1 trial, 156 recipients; high-certainty evidence). In contrast, NMP was not associated with improvement in any of these clinically relevant outcomes. NMP was associated with improved utilisation compared with SCS (one trial found a 50% lower rate of organ discard; P = 0.008), but the reasons underlying this effect are unknown. We identified 11 ongoing studies investigating machine perfusion technologies. AUTHORS' CONCLUSIONS In situations where the decision has been made to transplant a liver donated after circulatory death or donated following brain death, end-ischaemic HOPE will provide superior clinically relevant outcomes compared with SCS alone. Specifically, graft survival is improved (high-certainty evidence), serious adverse events are reduced (moderate-certainty evidence), and in donors after circulatory death, clinically relevant ischaemic biliary complications are reduced (high-certainty evidence). There is no good evidence that NMP has the same benefits over SCS in terms of these clinically relevant outcomes. NMP does appear to improve utilisation of grafts that would otherwise be discarded with SCS; however, the reasons for this, and whether this effect is specific to NMP, is not clear. Further studies into NMP viability criteria and utilisation, as well as head-to-head trials with other perfusion technologies are needed. In the setting of donation following circulatory death transplantation, further trials are needed to assess the effect of these ex situ machine perfusion methods against, or in combination with, normothermic regional perfusion.
Collapse
Affiliation(s)
- Samuel J Tingle
- NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, UK
| | | | - Emily R Thompson
- Institute of Transplantation, The Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | - Sanjay Pandanaboyana
- HPB and Liver Transplant Surgery, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Colin Wilson
- Institute of Transplantation, The Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Yue P, Lv X, You J, Zou Y, Luo J, Lu Z, Cao H, Liu Z, Fan X, Ye Q. Hypothermic oxygenated perfusion attenuates DCD liver ischemia-reperfusion injury by activating the JAK2/STAT3/HAX1 pathway to regulate endoplasmic reticulum stress. Cell Mol Biol Lett 2023; 28:55. [PMID: 37438690 DOI: 10.1186/s11658-023-00466-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (IRI) in donation after cardiac death (DCD) donors is a major determinant of transplantation success. Endoplasmic reticulum (ER) stress plays a key role in hepatic IRI, with potential involvement of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway and the antiapoptotic protein hematopoietic-lineage substrate-1-associated protein X-1 (HAX1). In this study, we aimed to investigate the effects of hypothermic oxygenated perfusion (HOPE), an organ preservation modality, on ER stress and apoptosis during hepatic IRI in a DCD rat model. METHODS To investigate whether HOPE could improve IRI in DCD livers, levels of different related proteins were examined by western blotting and quantitative real-time polymerase chain reaction. Further expression analyses, immunohistochemical analyses, immunofluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, and transmission electron microscopy were conducted to analyze the effects of HOPE on ER stress and apoptosis. To clarify the role of the JAK2/STAT3 pathway and HAX1 in this process, AG490 inhibitor, JAX1 plasmid transfection, co-immunoprecipitation (CO-IP), and flow cytometry analyses were conducted. RESULTS HOPE reduced liver injury and inflammation while alleviating ER stress and apoptosis in the DCD rat model. Mechanistically, HOPE inhibited unfolded protein responses by activating the JAK2/STAT3 pathway, thus reducing ER stress and apoptosis. Moreover, the activated JAK2/STAT3 pathway upregulated HAX1, promoting the interaction between HAX1 and SERCA2b to maintain ER calcium homeostasis. Upregulated HAX1 also modulated ER stress and apoptosis by inhibiting the inositol-requiring enzyme 1 (IRE1) pathway. CONCLUSIONS JAK2/STAT3-mediated upregulation of HAX1 during HOPE alleviates hepatic ER stress and apoptosis, indicating the JAK2/STAT3/HAX1 pathway as a potential target for IRI management during DCD liver transplantation.
Collapse
Affiliation(s)
- Pengpeng Yue
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Xiaoyan Lv
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jian You
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Yongkang Zou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Jun Luo
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Zhongshan Lu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Hankun Cao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Xiaoli Fan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China.
- The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry On Transplantation Medicine Engineering and Technology, Changsha, 410013, China.
| |
Collapse
|
16
|
Parente A, Flores Carvalho M, Schlegel A. Endothelial Cells and Mitochondria: Two Key Players in Liver Transplantation. Int J Mol Sci 2023; 24:10091. [PMID: 37373238 DOI: 10.3390/ijms241210091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Building the inner layer of our blood vessels, the endothelium forms an important line communicating with deeper parenchymal cells in our organs. Previously considered passive, endothelial cells are increasingly recognized as key players in intercellular crosstalk, vascular homeostasis, and blood fluidity. Comparable to other cells, their metabolic function strongly depends on mitochondrial health, and the response to flow changes observed in endothelial cells is linked to their mitochondrial metabolism. Despite the direct impact of new dynamic preservation concepts in organ transplantation, the impact of different perfusion conditions on sinusoidal endothelial cells is not yet explored well enough. This article therefore describes the key role of liver sinusoidal endothelial cells (LSECs) together with their mitochondrial function in the context of liver transplantation. The currently available ex situ machine perfusion strategies are described with their effect on LSEC health. Specific perfusion conditions, including perfusion pressure, duration, and perfusate oxygenation are critically discussed considering the metabolic function and integrity of liver endothelial cells and their mitochondria.
Collapse
Affiliation(s)
- Alessandro Parente
- HPB and Transplant Unit, Department of Surgical Science, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Hepatobiliary and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | | | - Andrea Schlegel
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
- Transplantation Center, Digestive Disease and Surgery Institute, Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Schlegel A, Mergental H, Fondevila C, Porte RJ, Friend PJ, Dutkowski P. Machine perfusion of the liver and bioengineering. J Hepatol 2023; 78:1181-1198. [PMID: 37208105 DOI: 10.1016/j.jhep.2023.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 05/21/2023]
Abstract
With the increasing number of accepted candidates on waiting lists worldwide, there is an urgent need to expand the number and the quality of donor livers. Dynamic preservation approaches have demonstrated various benefits, including improving liver function and graft survival, and reducing liver injury and post-transplant complications. Consequently, organ perfusion techniques are being used in clinical practice in many countries. Despite this success, a proportion of livers do not meet current viability tests required for transplantation, even with the use of modern perfusion techniques. Therefore, devices are needed to further optimise machine liver perfusion - one promising option is to prolong machine liver perfusion for several days, with ex situ treatment of perfused livers. For example, stem cells, senolytics, or molecules targeting mitochondria or downstream signalling can be administered during long-term liver perfusion to modulate repair mechanisms and regeneration. Besides, today's perfusion equipment is also designed to enable the use of various liver bioengineering techniques, to develop scaffolds or for their re-cellularisation. Cells or entire livers can also undergo gene modulation to modify animal livers for xenotransplantation, to directly treat injured organs or to repopulate such scaffolds with "repaired" autologous cells. This review first discusses current strategies to improve the quality of donor livers, and secondly reports on bioengineering techniques to design optimised organs during machine perfusion. Current practice, as well as the benefits and challenges associated with these different perfusion strategies are discussed.
Collapse
Affiliation(s)
- Andrea Schlegel
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, Milan, 20122, Italy; Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, Switzerland
| | - Hynek Mergental
- The Liver Unit, Queen Elizabeth University Hospital Birmingham, United Kingdom
| | - Constantino Fondevila
- Hepatopancreatobiliary Surgery & Transplantation, General & Digestive Surgery Service, Hospital Universitario La Paz, IdiPAZ, CIBERehd, Madrid, Spain
| | - Robert J Porte
- Erasmus MC Transplant Institute, Department of Surgery, Division of HPB & Transplant Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Peter J Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, Switzerland.
| |
Collapse
|
18
|
Olumba FC, Zhou F, Park Y, Chapman WC. Normothermic Machine Perfusion for Declined Livers: A Strategy to Rescue Marginal Livers for Transplantation. J Am Coll Surg 2023; 236:614-625. [PMID: 36728302 DOI: 10.1097/xcs.0000000000000555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Organ waste is a major cause of the donor liver shortage. Roughly 67% of recovered organ donors have liver utilization annually. A new technology called normothermic machine perfusion (NMP) offers a way to recover marginal and declined livers for transplant. We report interim results of the RESTORE trial (FDA investigational drug exemption trial NCT04483102) that aims to transplant NMP-treated livers that would otherwise be discarded. STUDY DESIGN Declined livers were screened for NMP eligibility (eg donation after circulatory death [DCD] grafts with warm ischemic time <40 minutes, donation after brain death [DBD] grafts with cold ischemic time <8 hours). Livers meeting pre-NMP eligibility criteria received NMP using the OrganOx metra device for a minimum of 4 hours. All NMP-treated livers meeting the viability criteria were transplanted to consented recipients. RESULTS Over 22 months, 60 declined livers from three organ procurement organizations (OPOs; 40 DCD and 20 DBD donor livers) were offered, and 22 livers (10 DCD and 12 DBD livers) met the pre-NMP eligibility. After NMP, 16 of 22 livers passed viability testing and were transplanted into needy recipients (median Model for End-Stage Liver Disease [MELD] score of 8, range 6 to 24), resulting in a 72.7% rescue rate (50% DCD, 91.7% DBD). The rate of early allograft dysfunction was 31.3%, but there were no graft-related deaths, primary nonfunction, or instances of nonanastomotic biliary strictures. CONCLUSIONS Interim results of the RESTORE trial suggest that a sizable number of declined livers can be reclaimed. They are safe for transplantation and can enable lower MELD patients at high risk of morbidity and mortality to receive lifesaving grafts while offering OPOs a way to allocate more livers and reduce organ waste.
Collapse
Affiliation(s)
- Franklin C Olumba
- From the Department of Abdominal Organ Transplantation Surgery, Washington University School of Medicine, St Louis, MO (Olumba, Zhou, Chapman)
| | - Fangyu Zhou
- From the Department of Abdominal Organ Transplantation Surgery, Washington University School of Medicine, St Louis, MO (Olumba, Zhou, Chapman)
| | - Yikyung Park
- the Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO (Park)
| | - William C Chapman
- From the Department of Abdominal Organ Transplantation Surgery, Washington University School of Medicine, St Louis, MO (Olumba, Zhou, Chapman)
| |
Collapse
|
19
|
Parente A, Cho HD, Kim KH, Schlegel A. Association between Hepatocellular Carcinoma Recurrence and Graft Size in Living Donor Liver Transplantation: A Systematic Review. Int J Mol Sci 2023; 24:ijms24076224. [PMID: 37047199 PMCID: PMC10093934 DOI: 10.3390/ijms24076224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The aim of this work was to assess the association between graft-to-recipient weight ratio (GRWR) in adult-to-adult living donor liver transplantation (LDLT) and hepatocellular carcinoma (HCC) recurrence. A search of the MEDLINE and EMBASE databases was performed until December 2022 for studies comparing different GRWRs in the prognosis of HCC recipients in LDLT. Data were pooled to evaluate 1- and 3-year survival rates. We identified three studies, including a total of 782 patients (168 GRWR < 0.8 vs. 614 GRWR ≥ 0.8%). The pooled overall survival was 85% and 77% at one year and 90% and 83% at three years for GRWR < 0.8 and GRWR ≥ 0.8, respectively. The largest series found that, in patients within Milan criteria, the GRWR was not associated with lower oncological outcomes. However, patients with HCC outside the Milan criteria with a GRWR < 0.8% had lower survival and higher tumor recurrence rates. The GRWR < 0.8% appears to be associated with lower survival rates in HCC recipients, particularly for candidates with tumors outside established HCC criteria. Although the data are scarce, the results of this study suggest that considering the individual GRWR not only as risk factor for small-for-size-syndrome but also as contributor to HCC recurrence in patients undergoing LDLT would be beneficial. Novel perfusion technologies and pharmacological interventions may contribute to improving outcomes.
Collapse
|
20
|
Bai Y, Shi JH, Liu Q, Yang DJ, Yan ZP, Zhang JK, Tang HW, Guo WZ, Jin Y, Zhang SJ. Charged multivesicular body protein 2B ameliorates biliary injury in the liver from donation after cardiac death rats via autophagy with air-oxygenated normothermic machine perfusion. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166686. [PMID: 36907288 DOI: 10.1016/j.bbadis.2023.166686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 03/03/2023] [Indexed: 03/13/2023]
Abstract
Normothermic machine perfusion (NMP) could provide a curative treatment to reduce biliary injury in donation after cardiac death (DCD) donor livers; however, the underlying mechanisms remain poorly understood. In a rat model, our study compared air-oxygenated NMP to hyperoxygenated NMP and found that air-oxygenated NMP improved DCD functional recovery. Here, we found that the charged multivesicular body protein 2B (CHMP2B) expression was substantially elevated in the intrahepatic biliary duct endothelium of the cold-preserved rat DCD liver after air-oxygenated NMP or in biliary endothelial cells under hypoxia/physoxia. CHMP2B knockout (CHMP2B-/-) rat livers showed increased biliary injury after air-oxygenated NMP, indicated by decreased bile production and bilirubin level, elevated biliary levels of lactate dehydrogenase and gamma-glutamyl transferase. Mechanically, we demonstrated that CHMP2B was transcriptionally regulated by Kruppel-like transcription factor 6 (KLF6) and alleviated biliary injury through decreasing autophagy. Collectively, our results suggested that air-oxygenated NMP regulates CHMP2B expression through the KLF6, which reduces biliary injury by inhibiting autophagy. Targeting the KLF6-CHMP2B autophagy axis may provide a solution to reducing biliary injury in DCD livers undergoing NMP.
Collapse
Affiliation(s)
- Yang Bai
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qi Liu
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dong-Jing Yang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhi-Ping Yan
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jia-Kai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hong-Wei Tang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yang Jin
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
21
|
Banker A, Bhatt N, Rao PS, Agrawal P, Shah M, Nayak M, Mohanka R. A Review of Machine Perfusion Strategies in Liver Transplantation. J Clin Exp Hepatol 2023; 13:335-349. [PMID: 36950485 PMCID: PMC10025749 DOI: 10.1016/j.jceh.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/17/2023] Open
Abstract
The acceptance of liver transplantation as the standard of care for end-stage liver diseases has led to a critical shortage of donor allografts. To expand the donor organ pool, many countries have liberalized the donor criteria including extended criteria donors and donation after circulatory death. These marginal livers are at a higher risk of injury when they are preserved using the standard static cold storage (SCS) preservation techniques. In recent years, research has focused on optimizing organ preservation techniques to protect these marginal livers. Machine perfusion (MP) of the expanded donor liver has witnessed considerable advancements in the last decade. Research has showed MP strategies to confer significant advantages over the SCS techniques, such as longer preservation times, viability assessment and the potential to recondition high risk allografts prior to implantation. In this review article, we address the topic of MP in liver allograft preservation, with emphasis on current trends in clinical application. We discuss the relevant clinical trials related to the techniques of hypothermic MP, normothermic MP, hypothermic oxygenated MP, and controlled oxygenated rewarming. We also discuss the potential applications of ex vivo therapeutics which may be relevant in the future to further optimize the allograft prior to transplantation.
Collapse
Key Words
- ALP, Alkaline phosphatase
- ALT, Alanine transaminase
- ASO, Antisense oligonucleotides
- AST, Aspartate transaminase
- CIT, Cold ischemia times
- COPE, Consortium for Organ Preservation in Europe
- COR, Controlled oxygenated rewarming
- DBD, Donation after brain death
- DCD, Donation after circulatory death
- DHOPE, dual hypothermic oxygenated machine perfusion
- EAD, Early allograft dysfunction
- ECD, Extended criteria donors
- ETC, Electron transport chain
- GGT, Gamma glutamyl transferase
- HCV, Hepatitis C virus
- HMP, Hypothermic machine perfusion
- HOPE, Hypothermic oxygenated machine perfusion
- ICU, Intensive care unit
- IGL, Institute George Lopez-1
- INR, International normalized ratio
- IRI, ischemia reperfusion injury
- LDH, Lactate dehydrogenase
- MELD, Model for end-stage liver disease
- MP, Machine perfusion
- NAS, Non-anastomotic biliary strictures
- NMP, Normothermic machine perfusion
- NO, Nitric oxide
- PNF, Primary nonfunction
- ROS, Reactive oxygen species
- RT-PCR, Reverse transcription polymerase chain reaction
- SNMP, Sub-normothermic machine perfusion
- UW, University of Wisconsin
- WIT, Warm ischemia times
- hypothermic machine perfusion
- hypothermic oxygenated machine perfusion
- machine perfusion
- normothermic machine perfusion
- static cold storage
Collapse
Affiliation(s)
- Amay Banker
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Neha Bhatt
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Prashantha S. Rao
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Pravin Agrawal
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Mitul Shah
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Madhavi Nayak
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Ravi Mohanka
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| |
Collapse
|
22
|
Muth V, Gassner JMGV, Moosburner S, Lurje G, Michelotto J, Strobl F, Knaub K, Engelmann C, Tacke F, Selzner M, Pratschke J, Sauer IM, Raschzok N. Ex Vivo Liver Machine Perfusion: Comprehensive Review of Common Animal Models. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:10-27. [PMID: 35848526 DOI: 10.1089/ten.teb.2022.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The most common preservation technique for liver grafts is static cold storage. Due to the organ shortage for liver transplantation (LT), extended criteria donor (ECD) allografts are increasingly used-despite the higher risk of inferior outcome after transplantation. Ex vivo liver machine perfusion (MP) has been developed to improve the outcome of transplantation, especially with ECD grafts, and is currently under evaluation in clinical trials. We performed a literature search on PubMed and ISI Web of Science to assemble an overview of rodent and porcine animal models of ex vivo liver MP for transplantation, which is essential for the present and future development of clinical liver MP. Hypothermic, subnormothermic, and normothermic MP systems have been successfully used for rat and pig LT. In comparison with hypothermic systems, normothermic perfusion often incorporates a dialysis unit. Moreover, it enables metabolic assessment of liver grafts. Allografts experiencing warm ischemic time have a superior survival rate after MP compared with cold storage alone, irrespective of the temperature used for perfusion. Furthermore, ex vivo MP improves the outcome of regular and ECD liver grafts in animal models. Small and large animal models of ex vivo liver MP are available to foster the further development of this new technology. Impact Statement Ex vivo machine perfusion is an important part of current research in the field of liver transplantation. While evidence for improve storage is constantly rising, the development of future applications such as quality assessment and therapeutic interventions necessitates robust animal models. This review is intended to provide an overview of this technology in common large and small animal models and to give an outlook on future applications. Moreover, we describe developmental steps that can be followed by others, and which can help to decrease the number of animals used for experiments based on the replace, reduce, refine concept.
Collapse
Affiliation(s)
- Vanessa Muth
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joseph M G V Gassner
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Clinician Scientist Program, BIH Academy, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Moosburner
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Clinician Scientist Program, BIH Academy, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Lurje
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Michelotto
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Felix Strobl
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kristina Knaub
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelius Engelmann
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus Selzner
- Department of Surgery, Abdominal Transplant and HPB Surgery, Ajmera Family Transplant Centre, Toronto General Hospital, Toronto, Canada
| | - Johann Pratschke
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Igor M Sauer
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nathanael Raschzok
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Clinician Scientist Program, BIH Academy, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Panconesi R, Widmer J, Carvalho MF, Eden J, Dondossola D, Dutkowski P, Schlegel A. Mitochondria and ischemia reperfusion injury. Curr Opin Organ Transplant 2022; 27:434-445. [PMID: 35950880 DOI: 10.1097/mot.0000000000001015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review describes the role of mitochondria in ischemia-reperfusion-injury (IRI). RECENT FINDINGS Mitochondria are the power-house of our cells and play a key role for the success of organ transplantation. With their respiratory chain, mitochondria are the main energy producers, to fuel metabolic processes, control cellular signalling and provide electrochemical integrity. The mitochondrial metabolism is however severely disturbed when ischemia occurs. Cellular energy depletes rapidly and various metabolites, including Succinate accumulate. At reperfusion, reactive oxygen species are immediately released from complex-I and initiate the IRI-cascade of inflammation. Prior to the development of novel therapies, the underlying mechanisms should be explored to target the best possible mitochondrial compound. A clinically relevant treatment should recharge energy and reduce Succinate accumulation before organ implantation. While many interventions focus instead on a specific molecule, which may inhibit downstream IRI-inflammation, mitochondrial protection can be directly achieved through hypothermic oxygenated perfusion (HOPE) before transplantation. SUMMARY Mitochondria are attractive targets for novel molecules to limit IRI-associated inflammation. Although dynamic preservation techniques could serve as delivery tool for new therapeutic interventions, their own inherent mechanism should not only be studied, but considered as key treatment to reduce mitochondrial injury, as seen with the HOPE-approach.
Collapse
Affiliation(s)
- Rebecca Panconesi
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Jeannette Widmer
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | | | - Janina Eden
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Daniele Dondossola
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, Milan, Italy
| | - Philipp Dutkowski
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, Milan, Italy
| |
Collapse
|
24
|
Widmer J, Eden J, Carvalho MF, Dutkowski P, Schlegel A. Machine Perfusion for Extended Criteria Donor Livers: What Challenges Remain? J Clin Med 2022; 11:jcm11175218. [PMID: 36079148 PMCID: PMC9457017 DOI: 10.3390/jcm11175218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
Based on the renaissance of dynamic preservation techniques, extended criteria donor (ECD) livers reclaimed a valuable eligibility in the transplantable organ pool. Being more vulnerable to ischemia, ECD livers carry an increased risk of early allograft dysfunction, primary non-function and biliary complications and, hence, unveiled the limitations of static cold storage (SCS). There is growing evidence that dynamic preservation techniques—dissimilar to SCS—mitigate reperfusion injury by reconditioning organs prior transplantation and therefore represent a useful platform to assess viability. Yet, a debate is ongoing about the advantages and disadvantages of different perfusion strategies and their best possible applications for specific categories of marginal livers, including organs from donors after circulatory death (DCD) and brain death (DBD) with extended criteria, split livers and steatotic grafts. This review critically discusses the current clinical spectrum of livers from ECD donors together with the various challenges and posttransplant outcomes in the context of standard cold storage preservation. Based on this, the potential role of machine perfusion techniques is highlighted next. Finally, future perspectives focusing on how to achieve higher utilization rates of the available donor pool are highlighted.
Collapse
Affiliation(s)
- Jeannette Widmer
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zürich, Switzerland
| | - Janina Eden
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zürich, Switzerland
| | - Mauricio Flores Carvalho
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, 50139 Florence, Italy
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zürich, Switzerland
| | - Andrea Schlegel
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zürich, Switzerland
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
25
|
Liver perfusion strategies: what is best and do ischemia times still matter? Curr Opin Organ Transplant 2022; 27:285-299. [PMID: 35438271 DOI: 10.1097/mot.0000000000000963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW This review describes recent developments in the field of liver perfusion techniques. RECENT FINDINGS Dynamic preservation techniques are increasingly tested due to the urgent need to improve the overall poor donor utilization. With their exposure to warm ischemia, livers from donors after circulatory death (DCD) transmit additional risk for severe complications after transplantation. Although the superiority of dynamic approaches compared to static-cold-storage is widely accepted, the number of good quality studies remains limited. Most risk factors, particularly donor warm ischemia, and accepted thresholds are inconsistently reported, leading to difficulties to assess the impact of new preservation technologies. Normothermic regional perfusion (NRP) leads to good outcomes after DCD liver transplantation, with however short ischemia times. While randomized controlled trials (RCT) with NRP are lacking, results from the first RCTs with ex-situ perfusion were reported. Hypothermic oxygenated perfusion was shown to protect DCD liver recipients from ischemic cholangiopathy. In contrast, endischemic normothermic perfusion seems to not impact on the development of biliary complications, although this evidence is only available from retrospective studies. SUMMARY Dynamic perfusion strategies impact posttransplant outcomes and are increasingly commissioned in various countries along with more evidence from RCTs. Transparent reporting of risk and utilization with uniform definitions is required to compare the role of different preservation strategies in DCD livers with prolonged ischemia times.
Collapse
|
26
|
Panconesi R, Flores Carvalho M, Dondossola D, Muiesan P, Dutkowski P, Schlegel A. Impact of Machine Perfusion on the Immune Response After Liver Transplantation – A Primary Treatment or Just a Delivery Tool. Front Immunol 2022; 13:855263. [PMID: 35874758 PMCID: PMC9304705 DOI: 10.3389/fimmu.2022.855263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
The frequent use of marginal livers forces transplant centres to explore novel technologies to improve organ quality and outcomes after implantation. Organ perfusion techniques are therefore frequently discussed with an ever-increasing number of experimental and clinical studies. Two main approaches, hypothermic and normothermic perfusion, are the leading strategies to be introduced in clinical practice in many western countries today. Despite this success, the number of studies, which provide robust data on the underlying mechanisms of protection conveyed through this technology remains scarce, particularly in context of different stages of ischemia-reperfusion-injury (IRI). Prior to a successful clinical implementation of machine perfusion, the concept of IRI and potential key molecules, which should be addressed to reduce IRI-associated inflammation, requires a better exploration. During ischemia, Krebs cycle metabolites, including succinate play a crucial role with their direct impact on the production of reactive oxygen species (ROS) at mitochondrial complex I upon reperfusion. Such features are even more pronounced under normothermic conditions and lead to even higher levels of downstream inflammation. The direct consequence appears with an activation of the innate immune system. The number of articles, which focus on the impact of machine perfusion with and without the use of specific perfusate additives to modulate the inflammatory cascade after transplantation is very small. This review describes first, the subcellular processes found in mitochondria, which instigate the IRI cascade together with proinflammatory downstream effects and their link to the innate immune system. Next, the impact of currently established machine perfusion strategies is described with a focus on protective mechanisms known for the different perfusion approaches. Finally, the role of such dynamic preservation techniques to deliver specific agents, which appear currently of interest to modulate this posttransplant inflammation, is discussed together with future aspects in this field.
Collapse
Affiliation(s)
- Rebecca Panconesi
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della, Scienza di Torino, University of Turin, Turin, Italy
| | - Mauricio Flores Carvalho
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore, Policlinico and University of Milan, Milan, Italy
| | - Paolo Muiesan
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore, Policlinico and University of Milan, Milan, Italy
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Schlegel
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore, Policlinico and University of Milan, Milan, Italy
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland
- *Correspondence: Andrea Schlegel,
| |
Collapse
|
27
|
Schlegel A, Porte R, Dutkowski P. Protective mechanisms and current clinical evidence of hypothermic oxygenated machine perfusion (HOPE) in preventing post-transplant cholangiopathy. J Hepatol 2022; 76:1330-1347. [PMID: 35589254 DOI: 10.1016/j.jhep.2022.01.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
The development of cholangiopathies after liver transplantation impacts on the quality and duration of graft and patient survival, contributing to higher costs as numerous interventions are required to treat strictures and infections at the biliary tree. Prolonged donor warm ischaemia time in combination with additional cold storage are key risk factors for the development of biliary strictures. Based on this, the clinical implementation of dynamic preservation strategies is a current hot topic in the field of donation after circulatory death (DCD) liver transplantation. Despite various retrospective studies reporting promising results, also regarding biliary complications, there are only a few randomised-controlled trials on machine perfusion. Recently, the group from Groningen has published the first randomised-controlled trial on hypothermic oxygenated perfusion (HOPE), demonstrating a significant reduction of symptomatic ischaemic cholangiopathies with the use of a short period of HOPE before DCD liver implantation. The most likely mechanism for this important effect, also shown in several experimental studies, is based on mitochondrial reprogramming under hypothermic aerobic conditions, e.g. exposure to oxygen in the cold, with a controlled and slow metabolism of ischaemically accumulated succinate and simultaneous ATP replenishment. This unique feature prevents mitochondrial oxidative injury and further downstream tissue inflammation. HOPE treatment therefore supports livers by protecting them from ischaemia-reperfusion injury (IRI), and thereby also prevents the development of post-transplant biliary injury. With reduced IRI-associated inflammation, recipients are also protected from activation of the innate immune system, with less acute rejections seen after HOPE.
Collapse
Affiliation(s)
- Andrea Schlegel
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland; General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100 Milan, Italy
| | - Robert Porte
- Department of Surgery, Surgical Research Laboratory, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland.
| |
Collapse
|
28
|
Bochimoto H, Ishihara Y, Mohd Zin NK, Iwata H, Kondoh D, Obara H, Matsuno N. Ultrastructural changes in porcine liver sinusoidal endothelial cells of machine perfused liver donated after cardiac death. World J Gastroenterol 2022; 28:2100-2111. [PMID: 35664031 PMCID: PMC9134135 DOI: 10.3748/wjg.v28.i19.2100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/17/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The machine perfusion (MP) preservation including hypothermic MP (HMP) and midthermic MP (MMP) has been considered as a promising strategy to preserve the functions of liver donated after cardiac death. The importance of understanding liver sinusoidal endothelial cells (LSEC) damage in regulating liver injury during MP has been emphasized. However, the ultrastructural changes in the LSEC and sinusoids around them after MP are unclear.
AIM To investigate the ultrastructural changes in the LSEC and sinusoids around them after MP.
METHODS Porcine liver grafts undergo a warm ischemia time of 60 minutes perfused for 4 h with modified University of Wisconsin gluconate solution. Group A grafts were preserved with HMP at 8 °C constantly for 4 h. Group B grafts were preserved with a rewarming solution at 22 °C by MMP for 4 h. Then the ultrastructural changes in the LSEC and sinusoids in Group A and B were comparatively analyzed by using osmium-maceration scanning electron microscopy with complementary transmission electron microscopy methods.
RESULTS An analysis of the LSEC after warm ischemia revealed that mitochondria with condensed-shaped cristae, abnormal vesicles, reduction of ribosomes and the endoplasmic reticulum (ER) surround the mitochondria appeared. The MP subsequent after warm ischemia alleviate the abnormal vesicles and reduction of ribosomes in LSEC, which indicated the reduction of the ER damage. However, MMP could restore the tubular mitochondrial cristae, while after HMP the condensed and narrow mitochondrial cristae remained. In addition, the volume of the sinusoidal space in the liver grafts after MMP were restored, which indicated a lower risk of pressure injury than HMP.
CONCLUSION MMP alleviates the ER damage of LSEC by warm ischemia, additionally restore the metabolism of LSEC via the normalization of mitochondria and prevent the share stress damage of liver grafts.
Collapse
Affiliation(s)
- Hiroki Bochimoto
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku 105-8461, Tokyo, Japan
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
| | - Yo Ishihara
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
| | - Nur Khatijah Mohd Zin
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku 105-8461, Tokyo, Japan
| | - Hiroyoshi Iwata
- Department of Surgery, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
| | - Daisuke Kondoh
- Laboratory of Veterinary Anatomy, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Hiromichi Obara
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
- Department of Mechanical Engineering, Tokyo Metropolitan University, Hachioji 192-0397, Tokyo, Japan
| | - Naoto Matsuno
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
- Department of Surgery, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
| |
Collapse
|
29
|
Delivering siRNA Compounds During HOPE to Modulate Organ Function: A Proof-of-Concept Study in a Rat Liver Transplant Model. Transplantation 2022; 106:1565-1576. [PMID: 35581683 DOI: 10.1097/tp.0000000000004175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Apoptosis contributes to the severity of ischemia-reperfusion injury (IRI), limiting the use of extended criteria donors in liver transplantation (LT). Machine perfusion has been proposed as a platform to administer specific therapies to improve graft function. Alternatively, the inhibition of genes associated with apoptosis during machine perfusion could alleviate IRI post-LT. The aim of the study was to investigate whether inhibition of an apoptosis-associated gene (FAS) using a small interfering RNA (siRNA) approach could alleviate IRI in a rat LT model. METHODS In 2 different experimental protocols, FASsiRNA (500 µg) was administered to rat donors 2 h before organ procurement, followed by 22 h of static cold storage, (SCS) or was added to the perfusate during 1 h of ex situ hypothermic oxygenated perfusion (HOPE) to livers previously preserved for 4 h in SCS. RESULTS Transaminase levels were significantly lower in the SCS-FASsiRNA group at 24 h post-LT. Proinflammatory cytokines (interleukin-2, C-X-C motif chemokine 10, tumor necrosis factor alpha, and interferon gamma) were significantly decreased in the SCS-FASsiRNA group, whereas the interleukin-10 anti-inflammatory cytokine was significantly increased in the HOPE-FASsiRNA group. Liver absorption of FASsiRNA after HOPE session was demonstrated by confocal microscopy; however, no statistically significant differences on the apoptotic index, necrosis levels, and FAS protein transcription between treated and untreated groups were observed. CONCLUSIONS FAS inhibition through siRNA therapy decreases the severity of IRI after LT in a SCS protocol; however the association of siRNA therapy with a HOPE perfusion model is very challenging. Future studies using better designed siRNA compounds and appropriate doses are required to prove the siRNA therapy effectiveness during liver HOPE liver perfusion.
Collapse
|
30
|
Shi JH, Yang DJ, Jin Q, Cheng N, Shi YB, Bai Y, Yu DS, Guo WZ, Ge GB, Zhang SJ. Cytochrome P450 2E1 predicts liver functional recovery from donation after circulatory death using air-ventilated normothermic machine perfusion. Sci Rep 2022; 12:7446. [PMID: 35523980 PMCID: PMC9076671 DOI: 10.1038/s41598-022-11434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
The optimal oxygen concentration is unclear for normothermic machine perfusion (NMP) of livers from donation after circulatory death (DCD). Our purposes were to investigate the effect of air-ventilated NMP on the DCD liver, analyze the underlying mechanism and select the targets to predict liver functional recovery with NMP. NMP was performed using the NMP system with either air ventilation or oxygen ventilation for 2 h in the rat liver following warm ischemia and cold-storage preservation. Proteomics and metabolomics were used to reveal the significant molecular networks. The bioinformation analysis was validated by administering peroxisome proliferator activator receptor-γ (PPARγ) antagonist and agonist via perfusion circuit in the air-ventilated NMP. Results showed that air-ventilated NMP conferred a better functional recovery and a less inflammatory response in the rat DCD liver; integrated proteomics and metabolomics analysis indicated that intrahepatic docosapentaenoic acid downregulation and upregulation of cytochrome P450 2E1 (CYP2E1) expression and activity were associated with DCD liver functional recovery with air-ventilated NMP; PPARγ antagonist worsened liver function under air-oxygenated NMP whereas PPARγ agonist played the opposite role. In conclusion, air-ventilated NMP confers a better liver function from DCD rats through the DAP-PPARγ-CYP2E1 axis; CYP2E1 activity provides a biomarker of liver functional recovery from DCD.
Collapse
Affiliation(s)
- Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| | - Dong-Jing Yang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qiang Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 200473, China
| | - Nuo Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuan-Bin Shi
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yang Bai
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dong-Sheng Yu
- Division of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 200473, China.
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
31
|
Zhou W, Peng S, Du P, Zhou P, Xue C, Ye Q. Hypothermic oxygenated perfusion combined with TJ-M2010-5 alleviates hepatic ischemia-reperfusion injury in donation after circulatory death. Int Immunopharmacol 2022; 105:108541. [DOI: 10.1016/j.intimp.2022.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/05/2022]
|
32
|
Han Y, Black S, Gong Z, Chen Z, Ko JK, Zhou Z, Xia T, Fang D, Yang D, Gu D, Zhang Z, Ren H, Duan X, Reader BF, Chen P, Li Y, Kim JL, Li Z, Xu X, Guo L, Zhou X, Haggard E, Zhu H, Tan T, Chen K, Ma J, Zeng C. Membrane-delimited signaling and cytosolic action of MG53 preserve hepatocyte integrity during drug-induced liver injury. J Hepatol 2022; 76:558-567. [PMID: 34736969 DOI: 10.1016/j.jhep.2021.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/20/2021] [Accepted: 10/18/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS Drug-induced liver injury (DILI) remains challenging to treat and is still a leading cause of acute liver failure. MG53 is a muscle-derived tissue-repair protein that circulates in the bloodstream and whose physiological role in protection against DILI has not been examined. METHODS Recombinant MG53 protein (rhMG53) was administered exogenously, using mice with deletion of Mg53 or Ripk3. Live-cell imaging, histological, biochemical, and molecular studies were used to investigate the mechanisms that underlie the extracellular and intracellular action of rhMG53 in hepatoprotection. RESULTS Systemic administration of rhMG53 protein, in mice, can prophylactically and therapeutically treat DILI induced through exposure to acetaminophen, tetracycline, concanavalin A, carbon tetrachloride, or thioacetamide. Circulating MG53 protects hepatocytes from injury through direct interaction with MLKL at the plasma membrane. Extracellular MG53 can enter hepatocytes and act as an E3-ligase to mitigate RIPK3-mediated MLKL phosphorylation and membrane translocation. CONCLUSIONS Our data show that the membrane-delimited signaling and cytosolic dual action of MG53 effectively preserves hepatocyte integrity during DILI. rhMG53 may be a potential treatment option for patients with DILI. LAY SUMMARY Interventions to treat drug-induced liver injury and halt its progression into liver failure are of great value to society. The present study reveals that muscle-liver cross talk, with MG53 as a messenger, serves an important role in liver cell protection. Thus, MG53 is a potential treatment option for patients with drug-induced liver injury.
Collapse
Affiliation(s)
- Yu Han
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Sylvester Black
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Zhengfan Gong
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Zhi Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Jae-Kyun Ko
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Zhongshu Zhou
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Tianyang Xia
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Dandong Fang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Donghai Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Daqian Gu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Ziyue Zhang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Xudong Duan
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Brenda F Reader
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yongsheng Li
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jung-Lye Kim
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Zhongguang Li
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Laboratory of Cell Biology, Genetics and Developmental Biology, Shannxi Normal University College of Life Sciences, Xi'an, China
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shannxi Normal University College of Life Sciences, Xi'an, China
| | - Li Guo
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xinyu Zhou
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Erin Haggard
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Ken Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China.
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China.
| |
Collapse
|
33
|
Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells 2022; 11:cells11040688. [PMID: 35203337 PMCID: PMC8870414 DOI: 10.3390/cells11040688] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Hepatic ischemia reperfusion injury (HIRI) is a major hurdle in many clinical scenarios, including liver resection and transplantation. Various studies and countless surgical events have led to the observation of a strong correlation between HIRI induced by liver transplantation and early allograft-dysfunction development. The detrimental impact of HIRI has driven the pursuit of new ways to alleviate its adverse effects. At the core of HIRI lies mitochondrial dysfunction. Various studies, from both animal models and in clinical settings, have clearly shown that mitochondrial function is severely hampered by HIRI and that its preservation or restoration is a key indicator of successful organ recovery. Several strategies have been thus implemented throughout the years, targeting mitochondrial function. This work briefly discusses some the most utilized approaches, ranging from surgical practices to pharmacological interventions and highlights how novel strategies can be investigated and implemented by intricately discussing the way mitochondrial function is affected by HIRI.
Collapse
|
34
|
Ishii D, Matsuno N, Gochi M, Iwata H, Shonaka T, Nishikawa Y, Obara H, Yokoo H, Furukawa H. Beneficial effects of end-ischemic oxygenated machine perfusion preservation for split-liver transplantation in recovering graft function and reducing ischemia-reperfusion injury. Sci Rep 2021; 11:22608. [PMID: 34799598 PMCID: PMC8604979 DOI: 10.1038/s41598-021-01467-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023] Open
Abstract
This study examined the efficacy of end-ischemic hypothermic oxygenated machine perfusion preservation (HOPE) using an originally developed machine perfusion system for split-liver transplantation. Porcine split-liver grafts were created via 75% liver resection after 10 min of warm ischemia. In Group 1, grafts were preserved by simple cold storage (CS) for 8 h (CS group; n = 4). In Group 2, grafts were preserved by simple CS for 6 h and end-ischemic HOPE for 2 h (HOPE group; n = 5). All grafts were evaluated using an isolated ex vivo reperfusion model with autologous blood for 2 h. Biochemical markers (aspartate aminotransferase and lactate dehydrogenase levels) were significantly better immediately after reperfusion in the HOPE group than in the CS group. Furthermore, the HOPE group had a better histological score. The levels of inflammatory cytokines (tumor necrosis factor-α, interferon-γ, interleukin-1β, and interleukin-10) were significantly lower after reperfusion in the HOPE group. Therefore, we concluded that end-ischemic HOPE for split-liver transplantation can aid in recovering the graft function and reducing ischemia-reperfusion injury. HOPE, using our originally developed machine perfusion system, is safe and can improve graft function while attenuating liver injury due to preservation.
Collapse
Affiliation(s)
- Daisuke Ishii
- Department of Surgery, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Naoto Matsuno
- Department of Surgery, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Mikako Gochi
- Department of Surgery, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hiroyoshi Iwata
- Department of Surgery, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Tatsuya Shonaka
- Department of Surgery, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yuji Nishikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Hiromichi Obara
- Department of Mechanical Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Hideki Yokoo
- Department of Surgery, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hiroyuki Furukawa
- Department of Surgery, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
35
|
Xu M, Zhou F, Ahmed O, Upadhya GA, Jia J, Lee C, Xing J, Ye L, Shim SH, Zhang Z, Byrnes K, Wong B, Kim JS, Lin Y, Chapman WC. A Novel Multidrug Combination Mitigates Rat Liver Steatosis Through Activating AMPK Pathway During Normothermic Machine Perfusion. Transplantation 2021; 105:e215-e225. [PMID: 34019362 PMCID: PMC8356968 DOI: 10.1097/tp.0000000000003675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hepatic steatosis is now the leading cause of liver discards in deceased donors. Previous studies [Yarmush formula (Y) defatting] have successfully reduced the fat content by treating rat steatotic livers on extracorporeal normothermic machine perfusion (NMP) with a multidrug combination including the GW compounds that were linked to an increased risk of carcinogenesis. METHODS We developed a novel multidrug combination by replacing the GW compounds with 2 polyphenols, epigallocatechin-3-gallate (E) and resveratrol (R). Sixteen rat livers were placed on NMP and assigned to control, Y defatting, Y + E + R defatting, or Y'-GW + E + R defatting groups (Y'-GW = 90% dose-reduced Y defatting, n = 4/group). RESULTS All livers in defatting groups had significant decreases in hepatic triglyceride content at the end of the experiment. However, livers treated with our novel Y'-GW + E + R combination had evidence of increased metabolism and less hepatocyte damage and carcinogenic potential. Our Y'-GW + E + R combination had increased phosphorylation of AMP-activated protein kinase (P = 0.019) and acetyl-CoA carboxylase (P = 0.023) compared with control; these were not increased in Y + E + R group and actually decreased in the Y group. Furthermore, the Y'-GW + E + R group had less evidence of carcinogenic potential with no increase in AKT phosphorylation compared with control (P = 0.089); the Y (P = 0.031) and Y + E + R (P = 0.035) groups had striking increases in AKT phosphorylation. Finally, our Y'-GW + E + R showed less evidence of hepatocyte damage with significantly lower perfusate alanine aminotransferase (P = 0.007) and aspartate aminotransferase (P = 0.014) levels. CONCLUSIONS We have developed a novel multidrug combination demonstrating promising defatting efficacy via activation of the AMP-activated protein kinase pathway with an optimized safety profile and reduced hepatotoxicity during ex vivo NMP.
Collapse
Affiliation(s)
- Min Xu
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Fangyu Zhou
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Ola Ahmed
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Gundumi A. Upadhya
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Jianluo Jia
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Choonghee Lee
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Jianwei Xing
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Li Ye
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - So Hee Shim
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhengyan Zhang
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen Byrnes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian Wong
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Jae-Sung Kim
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - Yiing Lin
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| | - William C. Chapman
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
36
|
Mitochondrial respiratory chain and Krebs cycle enzyme function in human donor livers subjected to end-ischaemic hypothermic machine perfusion. PLoS One 2021; 16:e0257783. [PMID: 34710117 PMCID: PMC8553115 DOI: 10.1371/journal.pone.0257783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Marginal human donor livers are highly susceptible to ischaemia reperfusion injury and mitochondrial dysfunction. Oxygenation during hypothermic machine perfusion (HMP) was proposed to protect the mitochondria but the mechanism is unclear. Additionally, the distribution and uptake of perfusate oxygen during HMP are unknown. This study aimed to examine the feasibility of mitochondrial function analysis during end-ischaemic HMP, assess potential mitochondrial viability biomarkers, and record oxygenation kinetics. METHODS This was a randomised pilot study using human livers retrieved for transplant but not utilised. Livers (n = 38) were randomised at stage 1 into static cold storage (n = 6), hepatic artery HMP (n = 7), and non-oxygen supplemented portal vein HMP (n = 7) and at stage 2 into oxygen supplemented and non-oxygen supplemented portal vein HMP (n = 11 and 7, respectively). Mitochondrial parameters were compared between the groups and between low- and high-risk marginal livers based on donor history, organ steatosis and preservation period. The oxygen delivery efficiency was assessed in additional 6 livers using real-time measurements of perfusate and parenchymal oxygen. RESULTS The change in mitochondrial respiratory chain (complex I, II, III, IV) and Krebs cycle enzyme activity (aconitase, citrate synthase) before and after 4-hour preservation was not different between groups in both study stages (p > 0.05). Low-risk livers that could have been used clinically (n = 8) had lower complex II-III activities after 4-hour perfusion, compared with high-risk livers (73 nmol/mg/min vs. 113 nmol/mg/min, p = 0.01). Parenchymal pO2 was consistently lower than perfusate pO2 (p ≤ 0.001), stabilised in 28 minutes compared to 3 minutes in perfusate (p = 0.003), and decreased faster upon oxygen cessation (75 vs. 36 minutes, p = 0.003). CONCLUSIONS Actively oxygenated and air-equilibrated end-ischaemic HMP did not induce oxidative damage of aconitase, and respiratory chain complexes remained intact. Mitochondria likely respond to variable perfusate oxygen levels by adapting their respiratory function during end-ischaemic HMP. Complex II-III activities should be further investigated as viability biomarkers.
Collapse
|
37
|
Lonati C, Schlegel A, Battistin M, Merighi R, Carbonaro M, Dongiovanni P, Leonardi P, Zanella A, Dondossola D. Effluent Molecular Analysis Guides Liver Graft Allocation to Clinical Hypothermic Oxygenated Machine Perfusion. Biomedicines 2021; 9:biomedicines9101444. [PMID: 34680561 PMCID: PMC8533371 DOI: 10.3390/biomedicines9101444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/14/2023] Open
Abstract
Hypothermic-oxygenated-machine-perfusion (HOPE) allows assessment/reconditioning of livers procured from high-risk donors before transplantation. Graft referral to HOPE mostly depends on surgeons' subjective judgment, as objective criteria are still insufficient. We investigated whether analysis of effluent fluids collected upon organ flush during static-cold-storage can improve selection criteria for HOPE utilization. Effluents were analyzed to determine cytolysis enzymes, metabolites, inflammation-related mediators, and damage-associated-molecular-patterns. Molecular profiles were assessed by unsupervised cluster analysis. Differences between "machine perfusion (MP)-yes" vs. "MP-no"; "brain-death (DBD) vs. donation-after-circulatory-death (DCD)"; "early-allograft-dysfunction (EAD)-yes" vs. "EAD-no" groups, as well as correlation between effluent variables and transplantation outcome, were investigated. Livers assigned to HOPE (n = 18) showed a different molecular profile relative to grafts transplanted without this procedure (n = 21, p = 0.021). Increases in the inflammatory mediators PTX3 (p = 0.048), CXCL8/IL-8 (p = 0.017), TNF-α (p = 0.038), and ANGPTL4 (p = 0.010) were observed, whereas the anti-inflammatory cytokine IL-10 was reduced (p = 0.007). Peculiar inflammation, cell death, and coagulation signatures were observed in fluids collected from DCD livers compared to those from DBD grafts. AST (p = 0.034), ALT (p = 0.047), and LDH (p = 0.047) were higher in the "EAD-yes" compared to the "EAD-no" group. Cytolysis markers and hyaluronan correlated with recipient creatinine, AST, and ICU stay. The study demonstrates that effluent molecular analysis can provide directions about the use of HOPE.
Collapse
Affiliation(s)
- Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (R.M.); (D.D.)
- Correspondence: ; Tel.: +39-0255033318
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50139 Florence, Italy;
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, 8000 Zurich, Switzerland
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (R.M.); (D.D.)
| | - Riccardo Merighi
- Center for Preclinical Research, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (R.M.); (D.D.)
| | - Margherita Carbonaro
- General and Liver Transplant Sugery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy;
| | - Patrizia Leonardi
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (P.L.); (A.Z.)
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (P.L.); (A.Z.)
- Department of Anesthesia and Critical Care, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Daniele Dondossola
- Center for Preclinical Research, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (R.M.); (D.D.)
- General and Liver Transplant Sugery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (P.L.); (A.Z.)
| |
Collapse
|
38
|
Jia D, Pan Q, Zhang Y, Yu Y, Song Z, Liu YF, Jia Z, Guo S, Cheng Y. Ischemic postconditioning improves the outcome of organs from donors after cardiac death in a pig liver transplantation model and provides synergistic protection with hypothermic machine perfusion. Clin Transplant 2021; 35:e14417. [PMID: 34231926 DOI: 10.1111/ctr.14417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/18/2022]
Abstract
AIM This study investigated whether ischemic postconditioning (IPO) improved the outcome of organs from donors after cardiac death and had a synergistic effect with hypothermic machine perfusion (HMP) in a pig liver transplantation model. METHODS A donor after cardiac death (DCD) model was developed in 48 healthy Bama miniature pigs randomly divided into four groups: simple cold storage group (SCS group), IPO group, HMP group, HMP-IPO group. The levels of serum alanine aminotransferase (ALT), total bilirubin, histopathological findings, apoptotic activity of hepatocytes, international normalized ratio (INR), tumor necrosis factor-α (TNF-α), and Malondialdehyde (MDA) were compared. RESULTS All recipients in the SCS group died within 6 h after transplantation. The livers of the recipients in the IPO had 50% survival on day 5. HMP allowed 83.3% survival and HMP-IPO allowed 100% survival. After reperfusion, the recipients in the IPO and HMP-IPO group had lower ALT and total bilirubin levels, less Suzuki score, less apoptosis, and less injury to hepatocytes and biliary ducts and attenuated inflammatory response and oxidative load. CONCLUSIONS IPO improved the outcome of organs from donors after cardiac death and had a synergistic effect with HMP in the pig liver transplantation model.
Collapse
Affiliation(s)
- Degong Jia
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Qi Pan
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yijie Zhang
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Yu
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhanyu Song
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yong Feng Liu
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhixing Jia
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Shanshan Guo
- School of Anesthesiology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ying Cheng
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
39
|
Chen C, Chen M, Lin X, Guo Y, Ma Y, Chen Z, Ju W, He X. En bloc procurement of porcine abdominal multiple organ block for ex situ normothermic machine perfusion: a technique for avoiding initial cold preservation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1116. [PMID: 34430557 PMCID: PMC8350716 DOI: 10.21037/atm-21-1308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022]
Abstract
Background Normothermic machine perfusion (NMP) is a technique that maintains organs ex situ with normal metabolism, and organ function can be better preserved. The study of multiple-organ NMP is rarely reported. Multiple organ block (MOB) is a self-perfusing system for maintaining multiple organs ex situ, and porcine MOBs have been successfully preserved for 18 to 37 h. Due to the above context, we conceived to maintain abdominal multiple organ block (AMOB) ex situ utilizing NMP technology. Methods AMOBs were procured from Ba-Ma miniature pigs through en bloc procurement surgery. The process of cold preservation was eliminated between the procurement and machine perfusion, and a few minutes of warm ischemia emerged. Autologous whole blood was collected during procurement surgery as a perfusate component in the beginning. Results The median time of procurement surgery was approximately 220 min, and the median time of warm ischemia was 300 sec. Cases 1 and 2 suffered from repeated hypotension during the procurement surgery, and case 2 exhibited hemorrhage. After improved and optimized procurement processes, the vital signs of cases 3 to 5 remained stable during procurement. In the NMP phase, the flow increased slowly in cases 1 and 2 and did not remain stable even after continuous infusion of a high-dose vasodilator. The lactic acid level rapidly increased, and the levels of ALT and AST were obviously higher than those in cases 3 to 5. In contrast, the flow rate increased smoothly in cases 3 to 5. The lactic acid level remained stable during the first 10 h of perfusion. Conclusions AMOB procurement from heart-beating pigs for NMP without initial cold preservation is technically feasible.
Collapse
Affiliation(s)
- Chuanbao Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Maogen Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaohong Lin
- Division of General Surgery, The Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiwen Guo
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yihao Ma
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhitao Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Weiqiang Ju
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
40
|
The Effects of 6-Chromanol SUL-138 during Hypothermic Machine Perfusion on Porcine Deceased Donor Kidneys. TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diminishing ischemia-reperfusion injury (IRI) by improving kidney preservation techniques offers great beneficial value for kidney transplant recipients. Mitochondria play an important role in the pathogenesis of IRI and are therefore interesting targets for pharmacological interventions. Hypothermic machine perfusion (HMP), as a preservation strategy, offers the possibility to provide mitochondrial–targeted therapies. This study focuses on the addition of a mitochondrial protective agent SUL—138 during HMP and assesses its effect on kidney function and injury during normothermic reperfusion. In this case, 30 min of warm ischemia was applied to porcine slaughterhouse kidneys before 24 h of non–oxygenated HMP with or without the addition of SUL—138. Functional assessment was performed by 4 h normothermic autologous blood reperfusion. No differences in renal function or perfusion parameters were found between both groups. ATP levels were lower after 30 min of warm ischemia in the SUL–138 group (n.s, p = 0.067) but restored significantly during 24 h of HMP in combination with SUL—138. Aspartate aminotransferase (ASAT) levels were significantly lower for the SUL—138 group. SUL—138 does not influence renal function in this model. Restoration of ATP levels during 24 h of HMP with the addition of SUL in combination with lower ASAT levels could be an indication of improved mitochondrial function.
Collapse
|
41
|
Role of Dietary Nutritional Treatment on Hepatic and Intestinal Damage in Transplantation with Steatotic and Non-Steatotic Liver Grafts from Brain Dead Donors. Nutrients 2021; 13:nu13082554. [PMID: 34444713 PMCID: PMC8400262 DOI: 10.3390/nu13082554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Herein, we investigate whether: (1) the administration of glucose or a lipid emulsion is useful in liver transplantation (LT) using steatotic (induced genetically or nutritionally) or non-steatotic livers from donors after brain death (DBDs); and (2) any such benefits are due to reductions in intestinal damage and consequently to gut microbiota preservation. In recipients from DBDs, we show increased hepatic damage and failure in the maintenance of ATP, glycogen, phospholipid and growth factor (HGF, IGF1 and VEGFA) levels, compared to recipients from non-DBDs. In recipients of non-steatotic grafts from DBDs, the administration of glucose or lipids did not protect against hepatic damage. This was associated with unchanged ATP, glycogen, phospholipid and growth factor levels. However, the administration of lipids in steatotic grafts from DBDs protected against damage and ATP and glycogen drop and increased phospholipid levels. This was associated with increases in growth factors. In all recipients from DBDs, intestinal inflammation and damage (evaluated by LPS, vascular permeability, mucosal damage, TLR4, TNF, IL1, IL-10, MPO, MDA and edema formation) was not shown. In such cases, potential changes in gut microbiota would not be relevant since neither inflammation nor damage was evidenced in the intestine following LT in any of the groups evaluated. In conclusion, lipid treatment is the preferable nutritional support to protect against hepatic damage in steatotic LT from DBDs; the benefits were independent of alterations in the recipient intestine.
Collapse
|
42
|
Tingle SJ, Thompson ER, Figueiredo RS, Mahendran B, Pandanaboyana S, Wilson CH. Machine perfusion in liver transplantation: a network meta-analysis. Hippokratia 2021. [DOI: 10.1002/14651858.cd014685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Samuel J Tingle
- NIHR Blood and Transplant Research Unit; Newcastle University and Cambridge University; Newcastle upon Tyne UK
| | - Emily R Thompson
- Institute of Transplantation; The Freeman Hospital; Newcastle upon Tyne UK
| | | | | | - Sanjay Pandanaboyana
- HPB and Liver Transplant Surgery; Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust; Newcastle upon Tyne UK
| | - Colin H Wilson
- Institute of Transplantation; The Freeman Hospital; Newcastle upon Tyne UK
| |
Collapse
|
43
|
Cheng N, Shi JH, Jin Y, Shi YB, Liu XD, Zhang HP, Cao SL, Yang H, Guo WZ, Zhang SJ. Pharmacological Activating Transcription Factor 6 Activation Is Beneficial for Liver Retrieval With ex vivo Normothermic Mechanical Perfusion From Cardiac Dead Donor Rats. Front Surg 2021; 8:665260. [PMID: 34222317 PMCID: PMC8249577 DOI: 10.3389/fsurg.2021.665260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/24/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Normothermic machine perfusion (NMP) could be beneficial for organ retrieval from donors after cardiac death (DCD). Activating transcription factor 6 (ATF6) was recently shown to mitigate liver ischemia/reperfusion injury and confer protection. The aims of this study were to assess the implication of ATF6 in liver retrieval from DCD rat livers with NMP and explore the effect of pharmacologic ATF-6 activation on liver retrieval. Methods: The livers from DCD rats were exposed to 30 min of warm ischemia and 8 h cold preservation followed by 2 h NMP with or without an ATF6 activator in the perfusate. Perfusates and livers were harvested to detect ATF6 expression, liver function, and inflammation. Results: DCD livers with NMP were associated with ATF6 overexpression and activation based on IHC and WB (P < 0.05). The ATF6 activator downregulated perfusate aminotransferases, decreased the Suzuki score, downregulated CD68 and MPO based on IHC, induced the expression of cytochrome c in mitochondria and inhibited the expression of cytochrome c in cytoplasm based on WB, reduced TNFα and IL-6 levels based on ELISA, decreased levels of MDA, GSSG and ATP, and increased SOD activity and GSH levels in the perfused livers (P < 0.05). Conclusion: ATF6 is important for liver retrieval, and an exogenous ATF6 activator accelerates liver retrieval from DCD rats in an ex vivo NMP model.
Collapse
Affiliation(s)
- Nuo Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yang Jin
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuan-Bin Shi
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xu-Dong Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hua-Peng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Sheng-Li Cao
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Han Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Sun D, Yang L, Zheng W, Cao H, Wu L, Song H. Protective Effects of Bone Marrow Mesenchymal Stem Cells (BMMSCS) Combined with Normothermic Machine Perfusion on Liver Grafts Donated After Circulatory Death via Reducing the Ferroptosis of Hepatocytes. Med Sci Monit 2021; 27:e930258. [PMID: 34112750 PMCID: PMC8204680 DOI: 10.12659/msm.930258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To improve the quality of liver grafts from extended-criteria donors donated after circulatory death (DCD), this study explored whether bone marrow mesenchymal stem cells (BMMSCs) combined with normothermic machine perfusion (NMP) have protective effects on DCD donor livers and the effects of ferroptosis in this procedure. MATERIAL AND METHODS Twenty-four male rat DCD donor livers were randomly and averagely divided into normal, static cold storage (SCS), NMP, and NMP combined with BMMSCs groups. Liver function, bile secretion, and pathological features of DCD donor livers were detected to evaluate the protective effects of NMP and BMMSCs on DCD donor livers. Hydrogen peroxide was used to induce an oxidative stress model of hepatocyte IAR-20 cells to evaluate the protective effects of BMMSCs in vitro. RESULTS Livers treated with NMP combined with BMMSCs showed better liver function, relieved histopathological damage, reduced oxidative stress injury and ferroptosis, and the mechanism of reduction was associated with downregulation of intracellular reactive oxygen species (ROS) and free Fe²⁺ levels. BMMSCs showed significant protective effects on the ultrastructure of DCD donor livers and ROS-induced injury to IAR-20 cells under electron microscopy. BMMSCs also significantly improved the expression level of microtubule-associated protein 1 light chain 3 (LC3)-II in both DCD donor livers and ROS-induced injured IAR-20 cells, including upregulating the expression of ferritin. CONCLUSIONS BMMSCs combined with NMP could reduce the level of ROS and free Fe²⁺ in oxidative stress damaged rat DCD donor livers, potentially reduce the ferroptosis in hepatocytes, and repair both morphology and function of DCD donor livers.
Collapse
Affiliation(s)
- Dong Sun
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China (mainland)
| | - Liu Yang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China (mainland)
| | - Weiping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China (mainland).,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China (mainland)
| | - Huan Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China (mainland).,NHC Key Laboratory of Critical Care Medicine, Tianjin, China (mainland)
| | - Longlong Wu
- School of Medicine, Nankai University, Tianjin, China (mainland)
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China (mainland).,Tianjin Key Laboratory of Organ Transplantation, Tianjin, China (mainland)
| |
Collapse
|
45
|
Mitochondrial Reprogramming—What Is the Benefit of Hypothermic Oxygenated Perfusion in Liver Transplantation? TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2020015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although machine perfusion is a hot topic today, we are just at the beginning of understanding the underlying mechanisms of protection. Recently, the first randomized controlled trial reported a significant reduction of ischemic cholangiopathies after transplantation of livers donated after circulatory death, provided the grafts were treated with an endischemic hypothermic oxygenated perfusion (HOPE). This approach has been known for more than fifty years, and was initially mainly used to preserve kidneys before implantation. Today there is an increasing interest in this and other dynamic preservation technologies and various centers have tested different approaches in clinical trials and cohort studies. Based on this, there is a need for uniform perfusion settings (perfusion route and duration), and the development of general guidelines regarding the duration of cold storage in context of the overall donor risk is also required to better compare various trial results. This article will highlight how cold perfusion protects organs mechanistically, and target such technical challenges with the perfusion setting. Finally, the options for viability testing during hypothermic perfusion will be discussed.
Collapse
|
46
|
Zhou W, Zhong Z, Lin D, Liu Z, Zhang Q, Xia H, Peng S, Liu A, Lu Z, Wang Y, Ye S, Ye Q. Hypothermic oxygenated perfusion inhibits HECTD3-mediated TRAF3 polyubiquitination to alleviate DCD liver ischemia-reperfusion injury. Cell Death Dis 2021; 12:211. [PMID: 33627626 PMCID: PMC7904838 DOI: 10.1038/s41419-021-03493-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Ischemia-reperfusion injury (IRI) is an inevitable and serious clinical problem in donations after heart death (DCD) liver transplantation. Excessive sterile inflammation plays a fateful role in liver IRI. Hypothermic oxygenated perfusion (HOPE), as an emerging organ preservation technology, has a better preservation effect than cold storage (CS) for reducing liver IRI, in which regulating inflammation is one of the main mechanisms. HECTD3, a new E3 ubiquitin ligase, and TRAF3 have an essential role in inflammation. However, little is known about HECTD3 and TRAF3 in HOPE-regulated liver IRI. Here, we aimed to investigate the effects of HOPE on liver IRI in a DCD rat model and explore the roles of HECTD3 and TRAF3 in its pathogenesis. We found that HOPE significantly improved liver damage, including hepatocyte and liver sinusoidal endothelial cell injury, and reduced DCD liver inflammation. Mechanistically, both the DOC and HECT domains of HECTD3 directly interacted with TRAF3, and the catalytic Cys (C832) in the HECT domain promoted the K63-linked polyubiquitination of TRAF3 at Lys138. Further, the ubiquitinated TRAF3 at Lys138 increased oxidative stress and activated the NF-κB inflammation pathway to induce liver IRI in BRL-3A cells under hypoxia/reoxygenation conditions. Finally, we confirmed that the expression of HECTD3 and TRAF3 was obviously increased in human DCD liver transplantation specimens. Overall, these findings demonstrated that HOPE can protect against DCD liver transplantation-induced-liver IRI by reducing inflammation via HECTD3-mediated TRAF3 K63-linked polyubiquitination. Therefore, HOPE regulating the HECTD3/TRAF3 pathway is a novel target for improving IRI in DCD liver transplantation.
Collapse
Affiliation(s)
- Wei Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Danni Lin
- The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Qiuyan Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Haoyang Xia
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Sheng Peng
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Anxiong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Zhongshan Lu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Shaojun Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.
- The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China.
| |
Collapse
|
47
|
OuYang Q, Liang G, Tan X, He X, Zhang L, Kuang W, Chen J, Wang S, Liang M, Huo F. Evaluation of the ex vivo liver viability using a nuclear magnetic resonance relaxation time-based assay in a porcine machine perfusion model. Sci Rep 2021; 11:4117. [PMID: 33603011 PMCID: PMC7892848 DOI: 10.1038/s41598-021-83202-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/27/2021] [Indexed: 01/07/2023] Open
Abstract
There is a dearth of effective parameters for selecting potentially transplantable liver grafts from expanded-criteria donors. In this study, we used a nuclear magnetic resonance (NMR) relaxation analyzer-based assay to assess the viability of ex vivo livers obtained via porcine donation after circulatory death (DCD). Ex situ normothermic machine perfusion (NMP) was utilized as a platform for viability test of porcine DCD donor livers. A liver-targeted contrast agent, gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA), was injected into the perfusate during NMP, and the dynamic biliary excretion of the Gd-EOB-DTPA was monitored by measuring the longitudinal relaxation time (T1). The longitudinal relaxation rate (R1) of the bile was served as a parameter. The delay of increase in biliary R1 during early stage of NMP indicated the impaired function of liver grafts in both warm and cold ischemia injury, which was correlated with the change of alanine aminotransferase. The preservative superiority in cold ischemia of dual hypothermic oxygenated machine perfusion could also be verified by assessing biliary R1 and other biochemical parameters. This study allows for the dynamic assessment of the viability of porcine DCD donor livers by combined usage of ex situ NMP and NMR relaxation time based assay, which lays a foundation for further clinical application.
Collapse
Affiliation(s)
- Qing OuYang
- Department of Hepatobiliary Surgery and Liver Transplant Center, The General Hospital of Southern Theater, Guangzhou, China
| | - Guohai Liang
- The MOE Key Laboratory of Laser Life Science, South China Normal University, Guangzhou, China
| | - Xiaoyu Tan
- Department of Hepatobiliary Surgery and Liver Transplant Center, The General Hospital of Southern Theater, Guangzhou, China
| | - Xiran He
- Guangdong Shunde Industry Design Institute (Guangdong Shunde Innovative Design Institute), Shunde, Guangdong, China
| | - Lin Zhang
- Guangdong Devocean Medical Instrument Co., Ltd., Shunde, Guangdong, China
| | - Weijian Kuang
- Guangdong Shunde Industry Design Institute (Guangdong Shunde Innovative Design Institute), Shunde, Guangdong, China
| | - Jianxiong Chen
- Department of Hepatobiliary Surgery and Liver Transplant Center, The General Hospital of Southern Theater, Guangzhou, China
| | - Shaoping Wang
- Department of Hepatobiliary Surgery and Liver Transplant Center, The General Hospital of Southern Theater, Guangzhou, China
| | - Mingju Liang
- Guangdong Shunde Industry Design Institute (Guangdong Shunde Innovative Design Institute), Shunde, Guangdong, China.
| | - Feng Huo
- Department of Hepatobiliary Surgery and Liver Transplant Center, The General Hospital of Southern Theater, Guangzhou, China.
| |
Collapse
|
48
|
Panconesi R, Flores Carvalho M, Mueller M, Meierhofer D, Dutkowski P, Muiesan P, Schlegel A. Viability Assessment in Liver Transplantation-What Is the Impact of Dynamic Organ Preservation? Biomedicines 2021; 9:biomedicines9020161. [PMID: 33562406 PMCID: PMC7915925 DOI: 10.3390/biomedicines9020161] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Based on the continuous increase of donor risk, with a majority of organs classified as marginal, quality assessment and prediction of liver function is of utmost importance. This is also caused by the notoriously lack of effective replacement of a failing liver by a device or intensive care treatment. While various parameters of liver function and injury are well-known from clinical practice, the majority of specific tests require prolonged diagnostic time and are more difficult to assess ex situ. In addition, viability assessment of procured organs needs time, because the development of the full picture of cellular injury and the initiation of repair processes depends on metabolic active tissue and reoxygenation with full blood over several hours or days. Measuring injury during cold storage preservation is therefore unlikely to predict the viability after transplantation. In contrast, dynamic organ preservation strategies offer a great opportunity to assess organs before implantation through analysis of recirculating perfusates, bile and perfused liver tissue. Accordingly, several parameters targeting hepatocyte or cholangiocyte function or metabolism have been recently suggested as potential viability tests before organ transplantation. We summarize here a current status of respective machine perfusion tests, and report their clinical relevance.
Collapse
Affiliation(s)
- Rebecca Panconesi
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
| | - Mauricio Flores Carvalho
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
| | - Matteo Mueller
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, 8091 Zurich, Switzerland; (M.M.); (P.D.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, 14195 Berlin, Germany;
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, 8091 Zurich, Switzerland; (M.M.); (P.D.)
| | - Paolo Muiesan
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, 8091 Zurich, Switzerland; (M.M.); (P.D.)
- Correspondence:
| |
Collapse
|
49
|
Assessing Kidney Graft Viability and Its Cells Metabolism during Machine Perfusion. Int J Mol Sci 2021; 22:ijms22031121. [PMID: 33498732 PMCID: PMC7865666 DOI: 10.3390/ijms22031121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Kidney transplantation is the golden treatment for end-stage renal disease. Static cold storage is currently considered the standard method of preservation, but dynamic techniques, such as machine perfusion (MP), have been shown to improve graft function, especially in kidneys donated by extended criteria donors and donation after circulatory death. With poor organ quality being a major reason for kidneys not being transplanted, an accurate, objective and reliable quality assessment during preservation could add value and support to clinicians’ decisions. MPs are emerging technologies with the potential to assess kidney graft viability and quality, both in the hypothermic and normothermic scenarios. The aim of this review is to summarize current tools for graft viability assessment using MP prior to implantation in relation to the ischemic damage.
Collapse
|
50
|
Hypothermic Oxygenated Perfusion Versus Normothermic Regional Perfusion in Liver Transplantation From Controlled Donation After Circulatory Death: First International Comparative Study. Ann Surg 2020; 272:751-758. [PMID: 32833758 DOI: 10.1097/sla.0000000000004268] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To compare HOPE and NRP in liver transplantation from cDCD. SUMMARY OF BACKGROUND DATA Liver transplantation after cDCD is associated with higher rates of graft loss. Dynamic preservation strategies such as NRP and HOPE may offer safer use of cDCD grafts. METHODS Retrospective comparative cohort study assessing outcomes after cDCD liver transplantation in 1 Swiss (HOPE) and 6 French (NRP) centers. The primary endpoint was 1-year tumor-death censored graft and patient survival. RESULTS A total of 132 and 93 liver grafts were transplanted after NRP and HOPE, respectively. NRP grafts were procured from younger donors (50 vs 61 years, P < 0.001), with shorter functional donor warm ischemia (22 vs 31 minutes, P < 0.001) and a lower overall predicted risk for graft loss (UK-DCD-risk score 6 vs 9 points, P < 0.001). One-year tumor-death censored graft and patient survival was 93% versus 86% (P = 0.125) and 95% versus 93% (P = 0.482) after NRP and HOPE, respectively. No differences in non-anastomotic biliary strictures, primary nonfunction and hepatic artery thrombosis were observed in the total cohort and in 32 vs. 32 propensity score-matched recipients CONCLUSION:: NRP and HOPE in cDCD achieved similar post-transplant recipient and graft survival rates exceeding 85% and comparable to the benchmark values observed in standard DBD liver transplantation. Grafts in the HOPE cohort were procured from older donors and had longer warm ischemia times, and consequently achieved higher utilization rates. Therefore, randomized controlled trials with intention-to-treat analysis are needed to further compare both preservation strategies, especially for high-risk donor-recipient combinations.
Collapse
|