1
|
Zhao Q, Shao T, Huang S, Zhang J, Zong G, Zhuo L, Xu Y, Hong W. The insulin-like growth factor binding protein-microfibrillar associated protein-sterol regulatory element binding protein axis regulates fibroblast-myofibroblast transition and cardiac fibrosis. Br J Pharmacol 2024; 181:2492-2508. [PMID: 38586912 DOI: 10.1111/bph.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND AND PURPOSE Excessive fibrogenesis is associated with adverse cardiac remodelling and heart failure. The myofibroblast, primarily derived from resident fibroblast, is the effector cell type in cardiac fibrosis. Megakaryocytic leukaemia 1 (MKL1) is considered the master regulator of fibroblast-myofibroblast transition (FMyT). The underlying transcriptional mechanism is not completely understood. Our goal was to identify novel transcriptional targets of MKL1 that might regulate FMyT and contribute to cardiac fibrosis. EXPERIMENTAL APPROACH RNA sequencing (RNA-seq) performed in primary cardiac fibroblasts identified insulin-like growth factor binding protein 5 (IGFBP5) as one of the genes most significantly up-regulated by constitutively active (CA) MKL1 over-expression. IGFBP5 expression was detected in heart failure tissues using RT-qPCR and western blots. KEY RESULTS Once activated, IGFBP5 translocated to the nucleus to elicit a pro-FMyT transcriptional programme. Consistently, IGFBP5 knockdown blocked FMyT in vitro and dampened cardiac fibrosis in mice. Of interest, IGFBP5 interacted with nuclear factor of activated T-cell 4 (NFAT4) to stimulate the transcription of microfibril-associated protein 5 (MFAP5). MFAP5 contributed to FMyT and cardiac fibrosis by enabling sterol response element binding protein 2 (SREBP2)-dependent cholesterol synthesis. CONCLUSIONS AND IMPLICATIONS Our data unveil a previously unrecognized transcriptional cascade, initiated by IGFBP5, that promotes FMyT and cardiac fibrosis. Screening for small-molecule compounds that target this axis could yield potential therapeutics against adverse cardiac remodelling.
Collapse
Affiliation(s)
- Qianwen Zhao
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Shan Huang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Junjie Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Genjie Zong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Wenxuan Hong
- Department of Cardiology, Zhongshan Hospital Affiliated with Fudan University, Shanghai, China
| |
Collapse
|
2
|
Cheng C, Wang Q, Huang Y, Xue Q, Wang Y, Wu P, Liao F, Miao C. Gandouling inhibits hepatic fibrosis in Wilson's disease through Wnt-1/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116445. [PMID: 37015279 DOI: 10.1016/j.jep.2023.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGIC SIGNIFICANCE Wilson's disease (WD) hepatic fibrosis is the result of chronic liver injury induced by Cu2+ deposition in the liver. Gandouling (GDL) is a hospital preparation of the First Affiliated Hospital of Anhui University of Chinese Medicine. Previous studies have found that GDL can play an anti-inflammatory, anti-oxidation, and promote Cu2+ excretion, which has a clear anti-WD effect. AIM OF THE STUDY We found that Wnt-1 was significantly up-regulated in the liver tissue of toxic-milk (TX) mouse in the WD gene mutant model, and the monomer components of GDL could combine well with Wnt-1. Therefore, in this work, we used RT-qPCR, Western blot, immunofluorescence, network pharmacology, molecular docking, and related methods to study the effects of GDL on hepatic stellate cell (HSC) activation and Wnt-1/β-catenin pathway in TX mice to clarify the effect of GDL on WD hepatic fibrosis. RESULTS GDL could alleviate hepatic fibrosis, improve liver function, and inhibit the activation of HSC in TX mice. Network pharmacology predicted that the Wnt-1/β-catenin was the target of GDL, and molecular dynamics further revealed that GDL has a good binding ability with Wnt-1 and inhibits the Wnt/β-catenin signaling pathway through Wnt-1. Furthermore, we found that GDL blocked the Wnt-1/β-catenin signaling pathway in the liver of TX mice in vivo. In vitro, serum containing GDL blocked the Cu2+ ion-induced Wnt-1/β-catenin signaling pathway in LX-2 cells. Therefore, GDL blocked the Wnt-1/β-catenin signaling pathway, inhibited HSC activation, and improved WD hepatic fibrosis by binding to Wnt-1. CONCLUSION GDL improves hepatic fibrosis in WD model mice by blocking the Wnt-1/β-catenin signaling pathway, and Wnt-1 may be a new target for the diagnosis and treatment of WD. This reveals a new mechanism of GDL against WD, and promotes the clinical promotion of GDL.
Collapse
Affiliation(s)
- Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Qiang Wang
- Department of Pharmaceutical Preparation, School of Life and Health Sciences, Anhui University of Science and Technology, China.
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Peng Wu
- Department of Anatomy, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Faxue Liao
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
3
|
Liu Y, Wen D, Ho C, Yu L, Zheng D, O'Reilly S, Gao Y, Li Q, Zhang Y. Epigenetics as a versatile regulator of fibrosis. J Transl Med 2023; 21:164. [PMID: 36864460 PMCID: PMC9983257 DOI: 10.1186/s12967-023-04018-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Fibrosis, a process caused by excessive deposition of extracellular matrix (ECM), is a common cause and outcome of organ failure and even death. Researchers have made many efforts to understand the mechanism of fibrogenesis and to develop therapeutic strategies; yet, the outcome remains unsatisfactory. In recent years, advances in epigenetics, including chromatin remodeling, histone modification, DNA methylation, and noncoding RNA (ncRNA), have provided more insights into the fibrotic process and have suggested the possibility of novel therapy for organ fibrosis. In this review, we summarize the current research on the epigenetic mechanisms involved in organ fibrosis and their possible clinical applications.
Collapse
Affiliation(s)
- Yangdan Liu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Dongsheng Wen
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chiakang Ho
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Li Yu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Danning Zheng
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | | | - Ya Gao
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yifan Zhang
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
4
|
Al-Hetty HRAK, Ismaeel GL, Mohammad WT, Toama MA, Kandeel M, Saleh MM, Turki Jalil A. SRF/MRTF-A and liver cirrhosis: Pathologic associations. J Dig Dis 2022; 23:614-619. [PMID: 36601855 DOI: 10.1111/1751-2980.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Liver cirrhosis results from prolonged and extensive liver fibrosis in which fibrotic tissues replace functional hepatic cells. Chronic liver disease due to various viral, chemical, or metabolic factors initiates hepatic fibrogenesis. Cirrhosis is associated with multiple clinical complications and a poor patient prognosis; therefore, developing novel antifibrotic therapies to prevent cirrhosis is of high priority. Mounting evidence points to the key role of serum response factor (SRF) and myocardin-related transcription factor (MRTF)-A in the pathogenesis of liver fibrosis. SRF is a transcription factor and MRTF-A is a co-activator of SRF and normally resides in the cytoplasm. Upon the induction of fibrotic pathways, MRTF-A translocates into the nucleus and forms the active SRF/MRTF-A complex, leading to the expression of a multitude of fibrotic proteins and components of extracellular matrix. Silencing or inhibiting MRTF-A impedes hepatic stellate cell transdifferentiation into myofibroblasts and slows down the deposition of extracellular matrix in the liver, making it a potential therapeutic target. Here, we review the recent findings regarding the role of the SRF/MRTF-A complex in liver fibrosis and its therapeutic potential for the management of cirrhosis.
Collapse
Affiliation(s)
| | | | | | - Mariam Alaa Toama
- College of Health and Medical Technologies, National University of Science and Technology, Dhi-Qar, Iraq
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Anbar, Iraq
| | | |
Collapse
|
5
|
Liang C, Xie RJ, Wang JL, Zhang YW, Zhang JY, Yang Q, Han B. Roles of C/EBP-homologous protein and histone H3 lysine 4 methylation in arsenic-induced mitochondrial apoptosis in hepatocytes. Toxicol Ind Health 2022; 38:745-756. [DOI: 10.1177/07482337221127148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
C/EBP-homologous protein (CHOP) and histone H3 lysine 4 (H3K4) methylation have been verified to be correlated with apoptosis, whereas their biological function in arsenic-induced hepatocyte apoptosis through the mitochondrial pathway is still unclear. This study aimed to explore the specific regulatory mechanism of CHOP and H3K4me1/2 in arsenic-induced mitochondrial apoptosis in hepatocytes. Apoptosis and proliferation results showed arsenic promoted apoptosis and inhibited cell growth in BRL-3A cells. Meanwhile, arsenic treatment significantly upregulated the 78-kDa glucose-regulated protein (GRP78), CHOP, su(var)-3-9,enhancer-of-zeste,trithorax (SET) domain containing 7/9 (SET7/9), H3K4me1/2, BIM and BAX expression, while markedly downregulated lysine-specific histone demethylase 1 (LSD1) and BCL2 expression. After down-regulating CHOP, LSD1, and (su(var)-3-9,enhancer-of-zeste,trithorax) domain-containing protein 7/9 (SET7/9) in BRL-3A cells by siRNA, silencing CHOP and SET7/9 notably attenuated the pro-apoptotic and anti-proliferative effects of arsenic treatment on BRL-3A cells, which was reversed after inhibiting LSD1. In addition, our results suggested that knockdown of CHOP altered the expression of mitochondrial-associated proteins BCL2 and BIM, whereas knockdown of LSD1 and SET7/8 regulated the level of H3K4me1/2 modification and BAX protein. Coupled with chromatin immunoprecipitation results, we found that the level of CHOP in the promoter regions of BCL2 and BIM was significantly increased in BRL-3A cells exposed to 30 µmol/L NaAsO2 for 24 h, whereas the levels of H3K4me1/2 in the promoter regions of BAX were unchanged. Collectively, these data indicated that arsenic triggered the mitochondrial pathway to induce hepatocyte apoptosis by up-regulating the levels of CHOP and H3K4me1/2.
Collapse
Affiliation(s)
- Cai Liang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ru-Jia Xie
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jun-Li Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying-Wan Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jia-Yuan Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qin Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bing Han
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Xi Y, LaCanna R, Ma HY, N'Diaye EN, Gierke S, Caplazi P, Sagolla M, Huang Z, Lucio L, Arlantico A, Jeet S, Brightbill H, Emson C, Wong A, Morshead KB, DePianto DJ, Roose-Girma M, Yu C, Tam L, Jia G, Ramalingam TR, Marsters S, Ashkenazi A, Kim SH, Kelly R, Wu S, Wolters PJ, Feldstein AE, Vander Heiden JA, Ding N. A WISP1 antibody inhibits MRTF signaling to prevent the progression of established liver fibrosis. Cell Metab 2022; 34:1377-1393.e8. [PMID: 35987202 DOI: 10.1016/j.cmet.2022.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/06/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023]
Abstract
Fibrosis is the major risk factor associated with morbidity and mortality in patients with non-alcoholic steatohepatitis (NASH)-driven chronic liver disease. Although numerous efforts have been made to identify the mediators of the initiation of liver fibrosis, the molecular underpinnings of fibrosis progression remain poorly understood, and therapies to arrest liver fibrosis progression are elusive. Here, we identify a pathway involving WNT1-inducible signaling pathway protein 1 (WISP1) and myocardin-related transcription factor (MRTF) as a central mechanism driving liver fibrosis progression through the integrin-dependent transcriptional reprogramming of myofibroblast cytoskeleton and motility. In mice, WISP1 deficiency protects against fibrosis progression, but not fibrosis onset. Moreover, the therapeutic administration of a novel antibody blocking WISP1 halted the progression of existing liver fibrosis in NASH models. These findings implicate the WISP1-MRTF axis as a crucial determinant of liver fibrosis progression and support targeting this pathway by antibody-based therapy for the treatment of NASH fibrosis.
Collapse
Affiliation(s)
- Ying Xi
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Ryan LaCanna
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Hsiao-Yen Ma
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Elsa-Noah N'Diaye
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Sarah Gierke
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Patrick Caplazi
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Meredith Sagolla
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Zhiyu Huang
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Laura Lucio
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Alexander Arlantico
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Surinder Jeet
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Hans Brightbill
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Claire Emson
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Aaron Wong
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Katrina B Morshead
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Daryle J DePianto
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Charles Yu
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Lucinda Tam
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Guiquan Jia
- Department of Biomarker Discovery, Genentech, South San Francisco, CA, USA
| | | | - Scot Marsters
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Avi Ashkenazi
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Si Hyun Kim
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Ryan Kelly
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Shuang Wu
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ariel E Feldstein
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | | | - Ning Ding
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
7
|
Epigenetic control of mitochondrial fission enables hepatic stellate cells activation in liver fibrosis via PGC-1α-Drp1 pathway. Mitochondrion 2022; 66:38-50. [PMID: 35905890 DOI: 10.1016/j.mito.2022.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
Although excessive mitochondrial fission is linked to cell activation, its significance in hepatic stellate cells (HSCs) activation and liver fibrosis is unknown. Here we show that excessive mitochondrial fission triggers HSCs activation and liver fibrosis degradation by the epigenetic regulation. We used a combination of in vitro and in vivo models, including HSCs and clinical cases or CCl4-induced liver fibrosis mice, was performed to investigate the regulation and function of mitochondrial fission in HSCs activation and liver fibrosis. Herein, we show that DNMT3A and Drp1 is up regulated in fibrosis livers and mice liver fibrosis tissues, while PGC-1α was decreased. Interestingly, down expression of DNMT3A substantially reduced Drp1 levels, collagen accumulation, and interstitial fibrosis, while significantly increased PGC-1α levels. Furthermore, silencing DNMT3A remarkably inhibits HSCs activation and mitochondrial fission both in vivo and in vitro. Mechanistically, co-immunoprecipitation analysis revealed that DNMT3A bound to pull down the protein of PGC-1α. These findings indicated that epigenetic control of mitochondrial fission enables HSCs activation in liver fibrosis via PGC-1α-Drp1 pathway, and provide new insight into the relationship between mitochondrial fission and liver fibrosis.
Collapse
|
8
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
9
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
10
|
Huang S, Shao T, Liu H, Li T, Gui X, Zhao Q. Resident Fibroblast MKL1 Is Sufficient to Drive Pro-fibrogenic Response in Mice. Front Cell Dev Biol 2022; 9:812748. [PMID: 35178401 PMCID: PMC8844195 DOI: 10.3389/fcell.2021.812748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is an evolutionarily conserved pathophysiological process serving bifurcated purposes. On the one hand, fibrosis is essential for wound healing and contributes to the preservation of organ function. On the other hand, aberrant fibrogenic response may lead to tissue remodeling and precipitate organ failure. Recently lineage tracing studies have shown that resident fibroblasts are the primary mediator of fibrosis taking place in key organs such as the heart, the lungs, and the kidneys. Megakaryocytic leukemia 1 (MKL1) is transcriptional regulator involved in tissue fibrosis. Here we generated resident fibroblast conditional MKL1 knockout (CKO) mice by crossing the Mkl1f/f mice to the Col1a2-CreERT2 mice. Models of cardiac fibrosis, pulmonary fibrosis, and renal fibrosis were reproduced in the CKO mice and wild type (WT) littermates. Compared to the WT mice, the CKO mice displayed across-the-board attenuation of fibrosis in different models. Our data cement the pivotal role MKL1 plays in tissue fibrosis but point to the cellular origin from which MKL1 exerts its pro-fibrogenic effects.
Collapse
Affiliation(s)
- Shan Huang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hong Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tianfa Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xianhua Gui
- Department of Respiratory Medicine, Affiliated Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qianwen Zhao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
11
|
Li Z, Zhao Q, Lu Y, Zhang Y, Li L, Li M, Chen X, Sun D, Duan Y, Xu Y. DDIT4 S-Nitrosylation Aids p38-MAPK Signaling Complex Assembly to Promote Hepatic Reactive Oxygen Species Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101957. [PMID: 34310076 PMCID: PMC8456271 DOI: 10.1002/advs.202101957] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Indexed: 05/11/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling plays a significant role in reactive oxygen species (ROS) production. The authors have previously shown that Brahma-related gene 1 (BRG1), a chromatin remodeling protein, contributes to hepatic ROS accumulation in multiple animal and cellular models of liver injury. Here it is reported that DNA damage-induced transcript 4 (DDIT4) is identified as a direct transcriptional target for BRG1. DDIT4 overexpression overcomes BRG1 deficiency to restore ROS production whereas DDIT4 knockdown phenocopies BRG1 deficiency in suppressing ROS production in vitro and in vivo. Mechanistically, DDIT4 coordinates the assembly of the p38-MAPK signaling complex to drive ROS production in an S-nitrosylation dependent manner. Molecular docking identifies several bioactive DDIT4-inteacting compounds including imatinib, nilotinib, and nateglinide, all of which are confirmed to attenuate hepatic ROS production, dampen p38-MAPK signaling, and ameliorate liver injury by influencing DDIT4 S-nitrosylation. Importantly, positive correlation between ROS levels and BRG1/DDIT4/S-nitrosylated DDIT4 levels is detected in human liver biopsy specimens. In conclusion, the data reveal a transcription-based signaling cascade that contributes to ROS production in liver injury.
Collapse
Affiliation(s)
- Zilong Li
- Department of Hepatobiliary and Pancreatic SurgeryThe First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow UniversityChangzhou213000China
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Translational MedicineNanjing Medical UniversityNanjing211166China
- Institute of Biomedical ResearchLiaocheng UniversityLiaocheng252000China
- State Key Laboratory of Natural MedicinesDepartment of PharmacologyChina Pharmaceutical UniversityNanjingChina
| | - Qianwen Zhao
- State Key Laboratory of Natural MedicinesDepartment of PharmacologyChina Pharmaceutical UniversityNanjingChina
| | - Yunjie Lu
- Department of Hepatobiliary and Pancreatic SurgeryThe First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow UniversityChangzhou213000China
| | - Yangxi Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Translational MedicineNanjing Medical UniversityNanjing211166China
| | - Luyang Li
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Translational MedicineNanjing Medical UniversityNanjing211166China
| | - Min Li
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Translational MedicineNanjing Medical UniversityNanjing211166China
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow UniversityChangzhou213000China
| | - Donglin Sun
- Department of Hepatobiliary and Pancreatic SurgeryThe First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow UniversityChangzhou213000China
| | - Yunfei Duan
- Department of Hepatobiliary and Pancreatic SurgeryThe First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow UniversityChangzhou213000China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Translational MedicineNanjing Medical UniversityNanjing211166China
- Institute of Biomedical ResearchLiaocheng UniversityLiaocheng252000China
- State Key Laboratory of Natural MedicinesDepartment of PharmacologyChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
12
|
Nucleocytoplasmic Shuttling of the Mechanosensitive Transcription Factors MRTF and YAP /TAZ. Methods Mol Biol 2021; 2299:197-216. [PMID: 34028745 DOI: 10.1007/978-1-0716-1382-5_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Myocardin-related transcription factor (MRTF) and the paralogous Hippo pathway effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are transcriptional co-activators that play pivotal roles in myofibroblast generation and activation, and thus the pathogenesis of organ fibrosis. They are regulated by a variety of chemical and mechanical fibrogenic stimuli, primarily at the level of their nucleocytoplasmic shuttling. In this chapter we describe the tools and protocols that allow for exact, quantitative, and automated determination and analysis of the nucleocytoplasmic distribution of endogenous or heterologously expressed MRTF and YAP/TAZ, measured in large cell populations. Dynamic monitoring of nucleocytoplasmic ratios of transcription factors is a novel and important approach, suitable to address both the structural requirements and the regulatory mechanisms underlying transcription factor traffic and the consequent reprogramming of gene expression during fibrogenesis.
Collapse
|
13
|
Speight P, Rozycki M, Venugopal S, Szászi K, Kofler M, Kapus A. Myocardin-related transcription factor and serum response factor regulate cilium turnover by both transcriptional and local mechanisms. iScience 2021; 24:102739. [PMID: 34278253 PMCID: PMC8261663 DOI: 10.1016/j.isci.2021.102739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/02/2020] [Accepted: 06/15/2021] [Indexed: 12/31/2022] Open
Abstract
Turnover of the primary cilium (PC) is critical for proliferation and tissue homeostasis. Each key component of the PC resorption machinery, the HEF1/Aurora kinase A (AurA)/HDAC6 pathway harbors cis-elements potentially targeted by the transcriptional co-activator myocardin-related transcription factor (MRTF) and/or its partner serum response factor (SRF). Thus we investigated if MRTF and/or SRF regulate PC turnover. Here we show that (1) both MRTF and SRF are indispensable for serum-induced PC resorption, and (2) they act via both transcriptional and local mechanisms. Intriguingly, MRTF and SRF are present in the basal body and/or the PC, and serum facilitates ciliary MRTF recruitment. MRTF promotes the stability and ciliary accumulation of AurA and facilitates SRF phosphorylation. Ciliary SRF interacts with AurA and HDAC6. MRTF also inhibits ciliogenesis. It interacts with and is required for the correct localization of the ciliogenesis modulator CEP290. Thus, MRTF and SRF are critical regulators of PC assembly and/or disassembly, acting both as transcription factors and as PC constituents.
Collapse
Affiliation(s)
- Pam Speight
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Matthew Rozycki
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
14
|
Miranda MZ, Lichner Z, Szászi K, Kapus A. MRTF: Basic Biology and Role in Kidney Disease. Int J Mol Sci 2021; 22:ijms22116040. [PMID: 34204945 PMCID: PMC8199744 DOI: 10.3390/ijms22116040] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 12/23/2022] Open
Abstract
A lesser known but crucially important downstream effect of Rho family GTPases is the regulation of gene expression. This major role is mediated via the cytoskeleton, the organization of which dictates the nucleocytoplasmic shuttling of a set of transcription factors. Central among these is myocardin-related transcription factor (MRTF), which upon actin polymerization translocates to the nucleus and binds to its cognate partner, serum response factor (SRF). The MRTF/SRF complex then drives a large cohort of genes involved in cytoskeleton remodeling, contractility, extracellular matrix organization and many other processes. Accordingly, MRTF, activated by a variety of mechanical and chemical stimuli, affects a plethora of functions with physiological and pathological relevance. These include cell motility, development, metabolism and thus metastasis formation, inflammatory responses and—predominantly-organ fibrosis. The aim of this review is twofold: to provide an up-to-date summary about the basic biology and regulation of this versatile transcriptional coactivator; and to highlight its principal involvement in the pathobiology of kidney disease. Acting through both direct transcriptional and epigenetic mechanisms, MRTF plays a key (yet not fully appreciated) role in the induction of a profibrotic epithelial phenotype (PEP) as well as in fibroblast-myofibroblast transition, prime pathomechanisms in chronic kidney disease and renal fibrosis.
Collapse
Affiliation(s)
- Maria Zena Miranda
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Zsuzsanna Lichner
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
15
|
Zhang L, Li HL, Zhang DD, Cui XC. Therapeutic effects of myocardin-related transcription factor A (MRTF-A) knockout on experimental mice with nonalcoholic steatohepatitis induced by high-fat diet. Hum Exp Toxicol 2021; 40:1634-1645. [PMID: 33779332 DOI: 10.1177/09603271211002886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To explore the effects of myocardin-related transcription factor A (MRTF-A) knockout on mice with nonalcoholic steatohepatitis (NASH) induced by high-fat diet (HFD). METHODS Normal-fat diet (NFD) or HFD was fed to MRTF-A-knockout (MRTF-A-/-) and wild-type (WT) mice for 16 weeks. Liver histopathological status was observed using Hematoxylin and Eosin (HE) staining, Oil Red O staining, Sirius Red staining, and Immunohistochemical staining. The mRNA and protein levels in liver tissues were measured through quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. RESULTS Compared with WT + HFD group, mice in MRTF-A-/- + HFD group were decreased in body weight, blood glucose, plasma insulin, liver TG and NAFLD activity score (NAS), with liver function recovery. Besides, compared with HFD-fed WT mice, HFD-fed MRTF-A-/- mice were improved in hepatic fibrosis, accompanied by decreased collagen content (%) and down-regulated expressions of α-SMA, COL1A2, TGFβ1, and SMAD3. In mice fed with HFD, the expression of MCP-1, CCR2, F4/80 and CD68 declined in liver tissues of MRTF-A-/- mice as compared with WT mice. Besides, in hepatic macrophages isolated from HFD-fed mice, the observed increased expression of TNF-α, IL-1β, MCP-1, as well as decreased expression of CCR2. Compared with WT + HFD group, MRTF-A-/- + HFD group mice were decreased regarding NF-κB p65 in liver tissues. CONCLUSION MRTF-A knockout reduced macrophage infiltration, down-regulated NF-κB p65 expression, and ameliorated inflammation and fibrosis of liver tissues in mice, thereby becoming a potential therapeutic target for NASH treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Infectious Diseases, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Hua-Long Li
- Department of Infectious Diseases, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Ding-Ding Zhang
- Department of Infectious Diseases, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xiao-Chun Cui
- Bone and Joint Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| |
Collapse
|
16
|
Wu X, Dong W, Zhang T, Ren H, Wang J, Shang L, Zhu Z, Zhu W, Shi X, Xu Y. Epiregulin (EREG) and Myocardin Related Transcription Factor A (MRTF-A) Form a Feedforward Loop to Drive Hepatic Stellate Cell Activation. Front Cell Dev Biol 2021; 8:591246. [PMID: 33520984 PMCID: PMC7843934 DOI: 10.3389/fcell.2020.591246] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Trans-differentiation of quiescent hepatic stellate cells (HSC) into myofibroblast cells is considered the linchpin of liver fibrosis. A myriad of signaling pathways contribute to HSC activation and consequently liver fibrosis. Epidermal growth factor (EGF) family of cytokines signal through the cognate receptor EGFR to promote HSC activation. In the present study we investigated the transcription regulation of epiregulin (EREG), an EGFR ligand, during HSC activation. We report that EREG expression was significantly up-regulated in activated HSCs compared to quiescent HSCs isolated from mice. In addition, there was an elevation of EREG expression in HSCs undergoing activation in vitro. Of interest, deficiency of myocardin-related transcription factor A (MRTF-A), a well-documented regulator of HSC trans-differentiation, attenuated up-regulation of EREG expression both in vivo and in vitro. Further analysis revealed that MRTF-A interacted with serum response factor (SRF) to bind directly to the EREG promoter and activate EREG transcription. EREG treatment promoted HSC activation in vitro, which was blocked by MRTF-A depletion or inhibition. Mechanistically, EREG stimulated nuclear trans-location of MRTF-A in HSCs. Together, our data portray an EREG-MRTF-A feedforward loop that contributes to HSC activation and suggest that targeting the EREG-MRTF-A axis may yield therapeutic solutions against liver fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Hepatobiliary Surgery, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Wenhui Dong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tianyi Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Longcheng Shang
- Department of Hepatobiliary Surgery, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengyi Zhu
- Department of Hepatobiliary Surgery, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Zhu
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
17
|
Yang Y, Yang G, Yu L, Lin L, Liu L, Fang M, Xu Y. An Interplay Between MRTF-A and the Histone Acetyltransferase TIP60 Mediates Hypoxia-Reoxygenation Induced iNOS Transcription in Macrophages. Front Cell Dev Biol 2020; 8:484. [PMID: 32626711 PMCID: PMC7315810 DOI: 10.3389/fcell.2020.00484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 05/22/2020] [Indexed: 01/23/2023] Open
Abstract
Cardiac ischemia-reperfusion injury (IRI) represents a major pathophysiological event associated with permanent loss of heart function. Several inter-dependent processes contribute to cardiac IRI that include accumulation of reactive oxygen species (ROS), aberrant inflammatory response, and depletion of energy supply. Inducible nitric oxide synthase (iNOS) is a pro-inflammatory mediator and a major catalyst of ROS generation. In the present study we investigated the epigenetic mechanism whereby iNOS transcription is up-regulated in macrophages in the context of cardiac IRI. We report that germline deletion or systemic inhibition of myocardin-related transcription factor A (MRTF-A) in mice attenuated up-regulation of iNOS following cardiac IRI in the heart. In cultured macrophages, depletion or inhibition of MRTF-A suppressed iNOS induction by hypoxia-reoxygenation (HR). In contrast, MRTF-A over-expression potentiated activation of the iNOS promoter by HR. MRTF-A directly binds to the iNOS promoter in response to HR stimulation. MRTF-A binding to the iNOS promoter was synonymous with active histone modifications including trimethylated H3K4, acetylated H3K9, H3K27, and H4K16. Further analysis revealed that MRTF-A interacted with H4K16 acetyltransferase TIP60 to synergistically activate iNOS transcription. TIP60 depletion or inhibition achieved equivalent effects as MRTF-A depletion/inhibition in terms of iNOS repression. Of interest, TIP60 appeared to form a crosstalk with the H3K4 trimethyltransferase complex to promote iNOS trans-activation. In conclusion, we data suggest that the MRTF-A-TIP60 axis may play a critical role in iNOS transcription in macrophages and as such be considered as a potential target for the intervention of cardiac IRI.
Collapse
Affiliation(s)
- Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Guang Yang
- Department of Pathology, Soochow Municipal Hospital Affiliated with Nanjing Medical University, Soochow, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ling Lin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Dong W, Kong M, Zhu Y, Shao Y, Wu D, Lu J, Guo J, Xu Y. Activation of TWIST Transcription by Chromatin Remodeling Protein BRG1 Contributes to Liver Fibrosis in Mice. Front Cell Dev Biol 2020; 8:340. [PMID: 32478075 PMCID: PMC7237740 DOI: 10.3389/fcell.2020.00340] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a complex pathophysiological process to which many different cell types contribute. Endothelial cells play versatile roles in the regulation of liver fibrosis. The underlying epigenetic mechanism is not fully appreciated. In the present study, we investigated the role of BRG1, a chromatin remodeling protein, in the modulation of endothelial cells in response to pro-fibrogenic stimuli in vitro and liver fibrosis in mice. We report that depletion of BRG1 by siRNA abrogated TGF-β or hypoxia induced down-regulation of endothelial marker genes and up-regulation of mesenchymal marker genes in cultured endothelial cells. Importantly, endothelial-specific BRG1 deletion attenuated CCl4 induced liver fibrosis in mice. BRG1 knockdown in vitro or BRG1 knockout in vivo was accompanied by the down-regulation of TWIST, a key regulator of endothelial phenotype. Mechanistically, BRG1 interacted with and was recruited to the TWIST promoter by HIF-1α to activate TWIST transcription. BRG1 silencing rendered a more repressive chromatin structure surrounding the TWIST promoter likely contributing to TWIST down-regulation. Inhibition of HIF-1α activity dampened liver fibrosis in mice. Similarly, pharmaceutical inhibition of TWIST alleviated liver fibrosis in mice. In conclusion, our data suggest that epigenetic activation of TWIST by BRG1 contributes to the modulation of endothelial phenotype and liver fibrosis. Therefore, targeting the HIF1α-BRG1-TWIST axis may yield novel therapeutic solutions to treat liver fibrosis.
Collapse
Affiliation(s)
- Wenhui Dong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yang Shao
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Dongmei Wu
- Key Laboratory of Biotechnology on Medical Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jun Lu
- Key Laboratory of Biotechnology on Medical Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Junli Guo
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
19
|
Deacetylation of MRTF-A by SIRT1 defies senescence induced down-regulation of collagen type I in fibroblast cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165723. [PMID: 32061777 DOI: 10.1016/j.bbadis.2020.165723] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/13/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Aging provokes both morphological and functional changes in cells, which are accompanied by a fundamental shift in gene expression patterns. One of the characteristic alterations associated with senescence in fibroblast cells is the down-regulation of collagen type I genes. In the present study, we investigated the contribution of myocardin-related transcription factor A, or MRTF-A, in this process. In mouse embryonic fibroblast (MEF) cells and human foreskin fibroblast (HFF) cells, senescence, induced by either progressive passage or treatment with hydrogen peroxide (H2O2), led to augmented lysine acetylation of MRTF-A paralleling down-regulation of collagen type I and SIRT1, a lysine deacetylase. SIRT1 interacted with MRTF-A to promote MRTF-A deacetylation. SIRT1 over-expression or activation by selective agonists enhanced trans-activation of the collagen promoters by MRTF-A. On the contrary, SIRT1 depletion or inhibition by specific antagonists suppressed trans-activation of the collagen promoters by MRTF-A. Likewise, mutation of four lysine residues within MRTF-A rendered it more potent in terms of activating the collagen promoters but unresponsive to SIRT1. Importantly, SIRT1 activation in senescent fibroblasts mitigated repression of collagen type I expression whereas SIRT1 inhibition promoted the loss of collagen type I expression prematurely in young fibroblasts. Mechanistically, SIRT1 enhanced the affinity of MRTF-A for the collagen type I promoters. In conclusion, our data unveil a novel mechanism that underscores aging-associated loss of collagen type I in fibroblasts via SIRT1-mediated post-translational modification of MRTF-A.
Collapse
|
20
|
MKL1 promotes endothelial-to-mesenchymal transition and liver fibrosis by activating TWIST1 transcription. Cell Death Dis 2019; 10:899. [PMID: 31776330 PMCID: PMC6881349 DOI: 10.1038/s41419-019-2101-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Excessive fibrogenic response in the liver disrupts normal hepatic anatomy and function heralding such end-stage liver diseases as hepatocellular carcinoma and cirrhosis. Sinusoidal endothelial cells contribute to myofibroblast activation and liver fibrosis by undergoing endothelial-mesenchymal transition (EndMT). The underlying mechanism remains poorly defined. Here we report that inhibition or endothelial-specific deletion of MKL1, a transcriptional modulator, attenuated liver fibrosis in mice. MKL1 inhibition or deletion suppressed EndMT induced by TGF-β. Mechanistically, MKL1 was recruited to the promoter region of TWIST1, a master regulator of EndMT, and activated TWIST1 transcription in a STAT3-dependent manner. A small-molecule STAT3 inhibitor (C188-9) alleviated EndMT in cultured cells and bile duct ligation (BDL) induced liver fibrosis in mice. Finally, direct inhibition of TWIST1 by a small-molecule compound harmine was paralleled by blockade of EndMT in cultured cells and liver fibrosis in mice. In conclusion, our data unveil a novel mechanism underlying EndMT and liver fibrosis and highlight the possibility of targeting the STAT3-MKL1-TWIST1 axis in the intervention of aberrant liver fibrogenesis.
Collapse
|
21
|
Mao L, Liu L, Zhang T, Wu X, Zhang T, Xu Y. MKL1 mediates TGF-β-induced CTGF transcription to promote renal fibrosis. J Cell Physiol 2019; 235:4790-4803. [PMID: 31637729 DOI: 10.1002/jcp.29356] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
Aberrant fibrogenesis impairs the architectural and functional homeostasis of the kidneys. It also predicts poor diagnosis in patients with end-stage renal disease (ESRD). Renal tubular epithelial cells (RTEC) can trans-differentiate into myofibroblasts to produce extracellular matrix proteins and contribute to renal fibrosis. Connective tissue growth factor (CTGF) is a cytokine upregulated in RTECs during renal fibrosis. In the present study, we investigated the regulation of CTGF transcription by megakaryocytic leukemia 1 (MKL1). Genetic deletion or pharmaceutical inhibition of MKL1 in mice mitigated renal fibrosis following the unilateral ureteral obstruction procedure. Notably, MKL1 deficiency in mice downregulated CTGF expression in the kidneys. Likewise, MKL1 knockdown or inhibition in RTEs blunted TGF-β induced CTGF expression. Further, it was discovered that MKL1 bound directly to the CTGF promoter by interacting with SMAD3 to activate CTGF transcription. In addition, MKL1 mediated the interplay between p300 and WDR5 to regulate CTGF transcription. CTGF knockdown dampened TGF-β induced pro-fibrogenic response in RTEs. MKL1 activity was reciprocally regulated by CTGF. In conclusion, we propose that targeting the MKL1-CTGF axis may generate novel therapeutic solutions against aberrant renal fibrogenesis.
Collapse
Affiliation(s)
- Lei Mao
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Tianyi Zhang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China.,The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Tao Zhang
- Department of Geriatric Nephrology, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
22
|
Lu Y, Lv F, Kong M, Chen X, Duan Y, Chen X, Sun D, Fang M, Xu Y. A cAbl-MRTF-A Feedback Loop Contributes to Hepatic Stellate Cell Activation. Front Cell Dev Biol 2019; 7:243. [PMID: 31681772 PMCID: PMC6805704 DOI: 10.3389/fcell.2019.00243] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Trans-differentiation of quiescent hepatic stellate cells (HSC) to myofibroblasts is a hallmark event in liver fibrosis. Previous studies have led to the discovery that myocardin-related transcription factor A (MRTF-A) is a key regulator of HSC trans-differentiation or, activation. In the present study we investigated the interplay between MRTF-A and c-Abl (encoded by Abl1), a tyrosine kinase, in this process. We report that hepatic expression levels of c-Abl were down-regulated in MRTF-A knockout (KO) mice compared to wild type (WT) littermates in several different models of liver fibrosis. MRTF-A deficiency also resulted in c-Abl down-regulation in freshly isolated HSCs from the fibrotic livers of mice. MRTF-A knockdown or inhibition repressed c-Abl in cultured HSCs in vitro. Further analyses revealed that MRTF-A directly bound to the Abl1 promoter to activate transcription by interacting with Sp1. Reciprocally, pharmaceutical inhibition of c-Abl suppressed MRTF-A activity. Mechanistically, c-Abl activated extracellular signal-regulated kinase (ERK), which in turn phosphorylated MRTF-A and promoted MRTF-A nuclear trans-localization. In conclusion, our data suggest that a c-Abl-MRTF-A positive feedback loop contributes to HSC activation and liver fibrosis.
Collapse
Affiliation(s)
- Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fangqiao Lv
- Department of Cell Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xuyang Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yunfei Duan
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Donglin Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Mingming Fang
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Department of Clinical Medicine and Laboratory Center for Experimental Medicine, Jiangsu Vocational College of Medicine, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
23
|
Yu L, Yang G, Zhang X, Wang P, Weng X, Yang Y, Li Z, Fang M, Xu Y, Sun A, Ge J. Megakaryocytic Leukemia 1 Bridges Epigenetic Activation of NADPH Oxidase in Macrophages to Cardiac Ischemia-Reperfusion Injury. Circulation 2019; 138:2820-2836. [PMID: 30018168 DOI: 10.1161/circulationaha.118.035377] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Excessive accumulation of reactive oxygen species (ROS), catalyzed by the NADPH oxidases (NOX), is involved in the pathogenesis of ischemia-reperfusion (IR) injury. The underlying epigenetic mechanism remains elusive. METHODS We evaluated the potential role of megakaryocytic leukemia 1 (MKL1), as a bridge linking epigenetic activation of NOX to ROS production and cardiac ischemia-reperfusion injury. RESULTS Following IR injury, MKL1-deficient (knockout) mice exhibited smaller myocardial infarction along with improved heart function compared with wild-type littermates. Similarly, pharmaceutical inhibition of MKL1 with CCG-1423 also attenuated myocardial infarction and improved heart function in mice. Amelioration of IR injury as a result of MKL1 deletion or inhibition was accompanied by reduced ROS in vivo and in vitro. In response to IR, MKL1 levels were specifically elevated in macrophages, but not in cardiomyocytes, in the heart. Of note, macrophage-specific deletion (MϕcKO), instead of cardiomyocyte-restricted ablation (CMcKO), of MKL1 in mice led to similar improvements of infarct size, heart function, and myocardial ROS generation. Reporter assay and chromatin immunoprecipitation assay revealed that MKL1 directly bound to the promoters of NOX genes to activate NOX transcription. Mechanistically, MKL1 recruited the histone acetyltransferase MOF (male absent on the first) to modify the chromatin structure surrounding the NOX promoters. Knockdown of MOF in macrophages blocked hypoxia/reoxygenation-induced NOX transactivation and ROS accumulation. Of importance, pharmaceutical inhibition of MOF with MG149 significantly downregulated NOX1/NOX4 expression, dampened ROS production, and normalized myocardial function in mice exposed to IR injury. Finally, administration of a specific NOX1/4 inhibitor GKT137831 dampened ROS generation and rescued heart function after IR in mice. CONCLUSIONS Our data delineate an MKL1-MOF-NOX axis in macrophages that contributes to IR injury, and as such we have provided novel therapeutic targets in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Guang Yang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Xinjian Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Peng Wang
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| | - Xinyu Weng
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| | - Yuyu Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (Y.Y.)
| | - Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.).,Institute of Biomedical Research, Liaocheng University, Liaocheng, China (Z.L., Y.X.)
| | - Mingming Fang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.).,Institute of Biomedical Research, Liaocheng University, Liaocheng, China (Z.L., Y.X.)
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| |
Collapse
|
24
|
Kong M, Hong W, Shao Y, Lv F, Fan Z, Li P, Xu Y, Guo J. Ablation of serum response factor in hepatic stellate cells attenuates liver fibrosis. J Mol Med (Berl) 2019; 97:1521-1533. [PMID: 31435710 DOI: 10.1007/s00109-019-01831-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/19/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022]
Abstract
Trans-differentiation, or activation, of hepatic stellate cells (HSCs) is a hallmark event in liver fibrosis although the underlying mechanism is not fully appreciated. Serum response factor (SRF) is a pleiotropic sequence-specific transcription factor with a ubiquitous expression pattern. In the present study, we investigated the effect of HSC-specific ablation of SRF on liver fibrosis in vivo and the underlying mechanism. We report that SRF bound to the promoter regions of pro-fibrogenic genes, including collagen type I (Col1a1/Col1a2) and alpha smooth muscle actin (Acta2), with greater affinity in activated HSCs compared to quiescent HSCs. Ablation of SRF in HSCs in vitro downregulated the expression of fibrogenic genes by dampening the accumulation of active histone marks. SRF also interacted with MRTF-A, a well-documented co-factor involved in liver fibrosis, on the pro-fibrogenic gene promoters during HSC activation. In addition, SRF directly regulated MRTF-A transcription in activated HSCs. More importantly, HSC conditional SRF knockout (CKO) mice developed a less robust pro-fibrogenic response in the liver in response to CCl4 injection and BDL compared to wild-type littermates. In conclusion, our data demonstrate that SRF may play an essential role in HSC activation and liver fibrosis. KEY MESSAGES: • SRF deficiency decelerates activation of hepatic stellate cells (HSCs) in vitro. • SRF epigenetically activates pro-fibrogenic transcription to promote HSC maturation. • SRF interacts with MRTF-A and contributes to MRTF-A transcription. • Conditional SRF deletion in HSCs attenuates BDL-induced liver fibrosis in mice. • Conditional SRF ablation in HSCs attenuates CCl4-induced liver fibrosis in mice.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Wenxuan Hong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yang Shao
- Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Fangqiao Lv
- Department of Cell Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ping Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China. .,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China. .,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| | - Junli Guo
- Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
25
|
A non-autonomous role of MKL1 in the activation of hepatic stellate cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:609-618. [DOI: 10.1016/j.bbagrm.2019.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/07/2019] [Accepted: 03/30/2019] [Indexed: 01/20/2023]
|
26
|
Xu W, Zhao Q, Wu M, Fang M, Xu Y. MKL1 mediates TNF-α induced pro-inflammatory transcription by bridging the crosstalk between BRG1 and WDR5. J Biomed Res 2019; 33:164-172. [PMID: 29109331 PMCID: PMC6551423 DOI: 10.7555/jbr.32.20170025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a cytokine that can potently stimulate the synthesis of a range of pro-inflammatory mediators in macrophages. The underlying epigenetic mechanism, however, is underexplored. Here we report that the transcriptional modulator megakaryocytic leukemia 1 (MKL1) is associated with a histone H3K4 methyltransferase activity. Re-ChIP assay suggests that MKL1 interacts with and recruits WDR5, a component of the COMPASS complex responsible for H3K4 methylation, to the promoter regions of pro-inflammatory genes in macrophages treated with TNF-α. WDR5 enhances the ability of MKL1 to stimulate the promoter activities of pro-inflammatory genes. In contrast, silencing of WDR5 attenuates TNF-α induced production of pro-inflammatory mediators and erases the H3K4 methylation from the gene promoters. Of interest, the chromatin remodeling protein BRG1 also plays an essential role in maintaining H3K4 methylation on MKL1 target promoters by interacting with WDR5. MKL1 knockdown disrupts the interaction between BRG1 and WDR5. Together, our data illustrate a role for MKL1 in moderating the crosstalk between BRG1 and WDR5 to activate TNF-α induced pro-inflammatory transcription in macrophages.
Collapse
Affiliation(s)
- Wenping Xu
- Department of Medicine, Jiangsu Jiankang Vocational College, Nanjing, Jiangsu 211800, China
| | - Quanyi Zhao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Mingming Fang
- Department of Medicine, Jiangsu Jiankang Vocational College, Nanjing, Jiangsu 211800, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
27
|
Kong M, Wu J, Fan Z, Chen B, Wu T, Xu Y. The histone demethylase Kdm4 suppresses activation of hepatic stellate cell by inducing MiR-29 transcription. Biochem Biophys Res Commun 2019; 514:16-23. [PMID: 31014673 DOI: 10.1016/j.bbrc.2019.04.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 12/21/2022]
Abstract
One of the hallmark events during liver fibrosis is the transition of quiescent hepatic stellate cells (HSC) into activated myofibroblasts, which are responsible for the production and deposition of pro-fibrogenic proteins. The epigenetic mechanism underlying HSC trans-differentiation is not fully understood. In the present study we investigated the contribution of histone H3K9 demethylase KDM4 in this process. We report that expression levels of KDM4 were down-regulated during HSC activation paralleling the up-regulation of alpha smooth muscle cell actin (Acta2), a marker of mature myofibroblast. Furthermore, HSCs isolated from mice induced to develop liver fibrosis exhibit lowered KDM4 expression compared to the control mice. In accordance, KDM4 depletion with siRNA accelerated HSC activation. Of interest, the loss of KDM4 was mirrored by the repression of miR-29, an antagonist of liver fibrosis, during HSC activation both in vitro and in vivo. KDM4 knockdown resulted in the down-regulation of miR-29 expression. Mechanistically, the sequence-specific transcription factor SREBP2 interacted with KDM4 to activate miR-29 transcription. In conclusion, our data delineate a novel epigenetic mechanism underlying HSC activation. Targeting this axis may yield potential therapeutics against liver fibrosis.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Jiahao Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing, China
| | - Bin Chen
- Department of Nursing, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
28
|
Liu L, Hong W, Li M, Ren H, Wang J, Xu H, Shi X, Xu Y. A Cross Talk Between BRG1 and Males Absent on the First Contributes to Reactive Oxygen Species Production in a Mouse Model of Nonalcoholic Steatohepatitis. Antioxid Redox Signal 2019; 30:1539-1552. [PMID: 29963902 DOI: 10.1089/ars.2016.6822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aims: Accumulation of reactive oxygen species (ROS) in hepatocytes in response to excessive nutrients and the ensuing liver damages caused by ROS constitute a key pathophysiological event in nonalcoholic steatohepatitis (NASH). In the present study, we investigated the epigenetic mechanism underlying ROS production in NASH pathogenesis. Results: NASH was induced by feeding the mice with a methionine-and-choline-deficient (MCD) diet for 4 weeks. Compared with the control mice (wild type [WT]), mice with hepatocyte-specific deletion of Brg1 (HepcKO), a core component of the mammalian chromatin remodeling complex, developed a less severe form of NASH when fed on the MCD diet. Importantly, ROS levels were attenuated in HepcKO mice as opposed to WT mice. Brahma-related gene 1 (Brg1) deficiency downregulated the transcription of NADPH oxidases (NOX1, NOX2, and NOX4) both in vivo and in vitro. Mechanistically, Brg1 deletion rendered a more repressive chromatin structure surrounding the NOX promoters as characterized by reduced levels of acetylated histones. In addition, Brg1 interacted with the histone H4K16 acetyltransferase males absent on the first (MOF) to activate NOX transcription. MOF knockdown by small interfering RNA or pharmaceutical inhibition by MG149 suppressed NOX transcription and ameliorated ROS levels. Innovation: Our data highlight a novel epigenetic mechanism through which Brg1 and MOF cooperate to regulate ROS production in hepatocytes in response to pro-NASH stimuli. Conclusion: A cross talk between Brg1 and MOF epigenetically activates NOX transcription and elevates ROS synthesis contributing to NASH pathogenesis.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenxuan Hong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Li N, Li M, Hong W, Shao J, Xu H, Shimano H, Lu J, Xu Y. Brg1 regulates pro-lipogenic transcription by modulating SREBP activity in hepatocytes. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2881-2889. [DOI: 10.1016/j.bbadis.2018.05.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 01/07/2023]
|
30
|
Li Z, Chen B, Dong W, Xu W, Song M, Fang M, Guo J, Xu Y. Epigenetic activation of PERP transcription by MKL1 contributes to ROS-induced apoptosis in skeletal muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30177-9. [PMID: 30056131 DOI: 10.1016/j.bbagrm.2018.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022]
Abstract
Excessive reactive oxygen species (ROS) causes irreparable damages to cells and commit cells to programmed cell death or apoptosis. A panel of well-documented pro-apoptotic genes, including p53 apoptosis effector related to PMP-22 (PERP), are up-regulated and collectively mediate ROS induced apoptosis. The epigenetic mechanism whereby ROS stimulates PERP transcription, however, lacks in-depth characterization. Here we report that the transcriptional modulator megakaryocytic leukemia 1 (MKL1) is activated by H2O2 treatment in skeletal muscle cells (C2C12). Small interfering RNA (siRNA) mediated silencing or small-molecule compound (CCG-1423) mediated inhibition of MKL1 attenuated H2O2 induced apoptosis of C2C12 cells. Over-expression of MKL1 potentiated trans-activation of PERP whereas MKL1 ablation/inhibition abrogated the induction of PERP by H2O2 in C2C12 cells. Mechanistically, MKL1 interacted with and was recruited to the PERP promoter by the transcription factor E2F1. Once bound to the PERP promoter, MKL1 engaged the histone demethylase KDM3A to modulate the chromatin structure surrounding the PERP promoter thereby leading to PERP trans-activation. Depletion of either E2F1 or KDM3A blocked the induction of PERP by H2O2. In conclusion, our data illustrate a novel epigenetic pathway that links PERP transcription to ROS-induced apoptosis in skeletal muscle cells.
Collapse
Affiliation(s)
- Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Baoyu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenping Xu
- Department of Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Mingzi Song
- Department of Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Mingming Fang
- Department of Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Junli Guo
- Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
31
|
Abstract
Stellate cells are resident lipid-storing cells of the pancreas and liver that transdifferentiate to a myofibroblastic state in the context of tissue injury. Beyond having roles in tissue homeostasis, stellate cells are increasingly implicated in pathological fibrogenic and inflammatory programs that contribute to tissue fibrosis and that constitute a growth-permissive tumor microenvironment. Although the capacity of stellate cells for extracellular matrix production and remodeling has long been appreciated, recent research efforts have demonstrated diverse roles for stellate cells in regulation of epithelial cell fate, immune modulation, and tissue health. Our present understanding of stellate cell biology in health and disease is discussed here, as are emerging means to target these multifaceted cells for therapeutic benefit.
Collapse
Affiliation(s)
- Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon 97201, USA;
| |
Collapse
|
32
|
Hepatocyte-specific deletion of Brg1 alleviates methionine-and-choline-deficient diet (MCD) induced non-alcoholic steatohepatitis in mice. Biochem Biophys Res Commun 2018; 503:344-351. [PMID: 29890136 DOI: 10.1016/j.bbrc.2018.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022]
Abstract
Uncontrolled inflammatory response and augmented lipid accumulation represent two key pathophysiological events in the pathogenesis of non-alcoholic steatohepatitis (NASH). NF-κB and SREBP1c program transcriptional regulation of cellular inflammatory response and lipid metabolism, respectively. The epigenetic mechanism underlying NF-κB-dependent pro-inflammatory transcription and SREBP1c-dependent pro-lipogenic transcription remains incompletely understood. In the present study we investigated the involvement of Brg1, a chromatin remodeling protein, in NASH pathogenesis in a methionine-and-choline deficient diet (MCD) induced mouse model. Brg1 expression was up-regulated in the liver in mice fed on the MCD diet and in primary hepatocytes exposed to free fatty acids. Liver injury and hepatic inflammation attenuated in hepatocyte-specific Brg1 knockout (CKO) mice fed on the MCD diet compared to the wild type (WT) littermates. Likewise, synthesis of pro-inflammatory mediators was down-regulated in primary hepatocytes isolated from CKO mice compared to WT mice, which resulted in reduced macrophage chemotaxis. Brg1 contributed to the transcription of pro-inflammatory mediators possibly by regulating the interaction between NF-κB and its co-factor MRTF-A. On the other hand, accumulation of triglyceride and cholesterol was ameliorated in MCD-fed CKO mice with a concomitant reduction of SREBP1c target genes. Brg1 interacted with SREBP1c and modulated the transcription of SREB1c target genes in the liver in response to MCD feeding by influencing active histone modifications. In conclusion, targeting Brg1 may yield novel anti-NASH therapeutics by simultaneously normalizing hepatic inflammatory status and metabolic profile in NASH patients.
Collapse
|
33
|
Liu L, Wu X, Xu H, Yu L, Zhang X, Li L, Jin J, Zhang T, Xu Y. Myocardin-related transcription factor A (MRTF-A) contributes to acute kidney injury by regulating macrophage ROS production. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3109-3121. [PMID: 29908908 DOI: 10.1016/j.bbadis.2018.05.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/11/2018] [Accepted: 05/31/2018] [Indexed: 11/17/2022]
Abstract
A host of pathogenic factors induce acute kidney injury (AKI) leading to insufficiencies of renal function. In the present study we evaluated the role of myocardin-related transcription factor A (MRTF-A) in the pathogenesis of AKI. We report that systemic deletion of MRTF-A or inhibition of MRTF-A activity with CCG-1423 significantly attenuated AKI in mice induced by either ischemia-reperfusion or LPS injection. Of note, MRTF-A deficiency or suppression resulted in diminished renal ROS production in AKI models with down-regulation of NAPDH oxdiase 1 (NOX1) and NOX4 expression. In cultured macrophages, MRTF-A promoted NOX1 transcription in response to either hypoxia-reoxygenation or LPS treatment. Interestingly, macrophage-specific MRTF-A deletion ameliorated AKI in mice. Mechanistic analyses revealed that MRTF-A played a role in regulating histone H4K16 acetylation surrounding the NOX gene promoters by interacting with the acetyltransferase MYST1. MYST1 depletion repressed NOX transcription in macrophages. Finally, administration of a MYST1 inhibitor MG149 alleviated AKI in mice. Therefore, we data illustrate a novel epigenetic pathway that controls ROS production in macrophages contributing to AKI. Targeting the MRTF-A-MYST1-NOX axis may yield novel therapeutic strategies to combat AKI.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xinjian Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Luyang Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Jianliang Jin
- Department of Anatomy and Histology, Nanjing Medical University, Nanjing, China
| | - Tao Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Department of Renal Medicine, Jiangsu Remin Hospital affiliated to Nanjing Medical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
34
|
Han X, Hao C, Li L, Li J, Fang M, Zheng Y, Lu J, Li P, Xu Y. HDAC4 stimulates MRTF-A expression and drives fibrogenesis in hepatic stellate cells by targeting miR-206. Oncotarget 2018; 8:47586-47594. [PMID: 28548935 PMCID: PMC5564589 DOI: 10.18632/oncotarget.17739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Activation of hepatic stellate cells (HSCs) is a hallmark event during liver fibrogenesis. We have previously shown that the transcriptional modulator MRTF-A contributes to liver fibrosis by programming epigenetic activation of HSCs. In the present study we investigated the mechanism whereby MRTF-A expression is regulated in this process. We report here that MRTF-A protein levels, but not mRNA levels, were up-regulated in vivo in the livers of mice induced to develop hepatic fibrosis. Pro-fibrogenic stimuli (TGF-β and PDGF-BB) also activated MRTF-A expression post-transcriptionally in vitro in cultured HSCs. miR-206 bound to the 3′-UTR of MRTF-A presumably to inhibit translation. miR-206 levels were down-regulated in response to pro-fibrogenic stimuli in vivo and in vitro allowing MRTF-A proteins to accumulate. Mechanistically, histone deacetylase 4 (HDAC4) was induced by pro-fibrogenic stimuli and recruited to the miR-206 promoter to repress miR-206 transcription. HDAC4 stimulated MRTF-A expression and drove fibrogenesis in HSCs in a miR-206 dependent manner. Therefore, our data reveal an HDAC4-miR-206-MRTF-A axis that can play a potentially important role in HSC activation and liver fibrosis.
Collapse
Affiliation(s)
- Xinrui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chenzhi Hao
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Luyang Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Jianfei Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yuanlin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Ping Li
- Department of Gastroenterology, 2nd Affiliated Hospital to Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Protein inhibitor of activated STAT 4 (PIAS4) regulates pro-inflammatory transcription in hepatocytes by repressing SIRT1. Oncotarget 2018; 7:42892-42903. [PMID: 27285989 PMCID: PMC5189995 DOI: 10.18632/oncotarget.9864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/06/2016] [Indexed: 01/07/2023] Open
Abstract
Excessive nutrition promotes the pathogenesis of non-alcoholic steatohepatitis (NASH), characterized by the accumulation of pro-inflammation mediators in the liver. In the present study we investigated the regulation of pro-inflammatory transcription in hepatocytes by protein inhibitor of activated STAT 4 (PIAS4) in this process and the underlying mechanisms. We report that expression of the class III deacetylase SIRT1 was down-regulated in the livers of NASH mice accompanied by a simultaneous increase in the expression and binding activity of PIAS4. Exposure to high glucose stimulated the expression PIAS4 in cultured hepatocytes paralleling SIRT1 repression. Estrogen, a known NASH-protective hormone, ameliorated SIRT1 trans-repression by targeting PIAS4. Over-expression of PIAS4 enhanced, while PIAS4 knockdown alleviated, repression of SIRT1 transcription by high glucose. Lentiviral delivery of short hairpin RNA (shRNA) targeting PIAS4 attenuated hepatic inflammation in NASH mice by restoring SIRT1 expression. Mechanistically, PIAS4 promoted NF-κB-mediated pro-inflammatory transcription in a SIRT1 dependent manner. In conclusion, our study indicates that PIAS4 mediated SIRT1 repression in response to nutrient surplus contributes to the pathogenesis of NASH. Therefore, targeting PIAS4 might provide novel therapeutic strategies in the intervention of NASH.
Collapse
|
36
|
Tschumperlin DJ, Ligresti G, Hilscher MB, Shah VH. Mechanosensing and fibrosis. J Clin Invest 2018; 128:74-84. [PMID: 29293092 DOI: 10.1172/jci93561] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tissue injury disrupts the mechanical homeostasis that underlies normal tissue architecture and function. The failure to resolve injury and restore homeostasis gives rise to progressive fibrosis that is accompanied by persistent alterations in the mechanical environment as a consequence of pathological matrix deposition and stiffening. This Review focuses on our rapidly growing understanding of the molecular mechanisms linking the altered mechanical environment in injury, repair, and fibrosis to cellular activation. In particular, our focus is on the mechanisms by which cells transduce mechanical signals, leading to transcriptional and epigenetic responses that underlie both transient and persistent alterations in cell state that contribute to fibrosis. Translation of these mechanobiological insights may enable new approaches to promote tissue repair and arrest or reverse fibrotic tissue remodeling.
Collapse
Affiliation(s)
| | | | - Moira B Hilscher
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
37
|
Hepatic stellate cell-specific deletion of SIRT1 exacerbates liver fibrosis in mice. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3202-3211. [DOI: 10.1016/j.bbadis.2017.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/23/2017] [Accepted: 09/08/2017] [Indexed: 01/15/2023]
|
38
|
Upregulation of the actin cytoskeleton via myocardin leads to increased expression of type 1 collagen. J Transl Med 2017; 97:1412-1426. [PMID: 29035375 PMCID: PMC6437559 DOI: 10.1038/labinvest.2017.96] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 06/19/2017] [Accepted: 07/05/2017] [Indexed: 12/28/2022] Open
Abstract
Liver fibrosis, a model wound healing system, is characterized by excessive deposition of extracellular matrix (ECM) in the liver. Although many fibrogenic cell types may express ECM, the hepatic stellate cell (HSC) is currently considered to be the major effector. HSCs transform into myofibroblast-like cells, also known as hepatic myofibroblasts in a process known as activation; this process is characterized in particular by de novo expression of smooth muscle alpha actin (SM α-actin) and type 1 collagen. The family of actins, which form the cell's cytoskeleton, are essential in many cellular processes. β-actin and cytoplasmic γ-actin (γ-actin) are ubiquitously expressed, whereas SM α-actin defines smooth muscle cell and myofibroblast phenotypes. Thus, SM α-actin is tightly associated with multiple functional properties. However, the regulatory mechanisms by which actin isoforms might regulate type 1 collagen remain unclear. In primary HSCs from normal and fibrotic rat liver, we demonstrate that myocardin, a canonical SRF cofactor, is upregulated in hepatic myofibroblasts and differentially regulates SM α-actin, γ-actin, and β-actins through activation of an ATTA box in the SM α-actin and a CCAAT box in γ-actin and β-actin promoters, respectively; moreover, myocardin differentially activated serum response factor (SRF) in CArG boxes of actin promoters. In addition, myocardin-stimulated Smad2 phosphorylation and RhoA expression, leading to increased expression of type 1 collagen in an actin cytoskeleton-dependent manner. Myocardin also directly enhanced SRF expression and stimulated collagen 1α1 and 1α2 promoter activities. In addition, overexpression of myocardin in vivo during carbon tetrachloride-induced liver injury led to increased HSC activation and fibrogenesis. In summary, our data suggest that myocardin plays a critical role in actin cytoskeletal dynamics during HSC activation, in turn, specifically regulating type I collagen expression in hepatic myofibroblasts.
Collapse
|
39
|
Mechanosensing in liver regeneration. Semin Cell Dev Biol 2017; 71:153-167. [DOI: 10.1016/j.semcdb.2017.07.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
|
40
|
Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 2017; 121:27-42. [PMID: 28506744 DOI: 10.1016/j.addr.2017.05.007] [Citation(s) in RCA: 925] [Impact Index Per Article: 132.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023]
Abstract
Progressive liver fibrosis, induced by chronic viral and metabolic disorders, leads to more than one million deaths annually via development of cirrhosis, although no antifibrotic therapy has been approved to date. Transdifferentiation (or "activation") of hepatic stellate cells is the major cellular source of matrix protein-secreting myofibroblasts, the major driver of liver fibrogenesis. Paracrine signals from injured epithelial cells, fibrotic tissue microenvironment, immune and systemic metabolic dysregulation, enteric dysbiosis, and hepatitis viral products can directly or indirectly induce stellate cell activation. Dysregulated intracellular signaling, epigenetic changes, and cellular stress response represent candidate targets to deactivate stellate cells by inducing reversion to inactivated state, cellular senescence, apoptosis, and/or clearance by immune cells. Cell type- and target-specific pharmacological intervention to therapeutically induce the deactivation will enable more effective and less toxic precision antifibrotic therapies.
Collapse
|
41
|
Liu Y, Pan X, Li S, Yu Y, Chen J, Yin J, Li G. Endoplasmic reticulum stress restrains hepatocyte growth factor expression in hepatic stellate cells and rat acute liver failure model. Chem Biol Interact 2017; 277:43-54. [DOI: 10.1016/j.cbi.2017.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
|
42
|
HADC5 deacetylates MKL1 to dampen TNF-α induced pro-inflammatory gene transcription in macrophages. Oncotarget 2017; 8:94235-94246. [PMID: 29212224 PMCID: PMC5706870 DOI: 10.18632/oncotarget.21670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022] Open
Abstract
Macrophage-dependent inflammatory response on the one hand functions as a key line of defense in host immunity but on the other hand underlies the pathogenesis of a host of human pathologies when aberrantly activated. Our previous investigations have led to the identification of megakaryocytic leukemia 1 (MKL1) as a key co-factor of NF-κB/p65 participating in TNF-α induced pro-inflammatory transcription in macrophages. How post-translational modifications contribute to the modulation of MKL1 activity remains an underexplored subject matter. Here we report that the lysine deacetylase HDAC5 interacts with and deacetylates MKL1 in cells. TNF-α treatment down-regulates HDAC5 expression and expels HDAC5 from the promoters of pro-inflammatory genes in macrophages. In contrast, over-expression of HDAC5 attenuates TNF-α induced pro-inflammatory transcription. Mechanistically, HDAC5-mediated MKL1 deacetylation disrupts the interaction between MKL1 and p65. In addition, deacetylation of MKL1 by HDAC5 blocks its nuclear translocation in response to TNF-α treatment. In conclusion, our work has identified an important pathway that contributes to the regulation of pro-inflammatory response in macrophages.
Collapse
|
43
|
Intrahepatic upregulation of MRTF-A signaling contributes to increased hepatic vascular resistance in cirrhotic rats with portal hypertension. Clin Res Hepatol Gastroenterol 2017; 41:303-310. [PMID: 28043789 DOI: 10.1016/j.clinre.2016.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/09/2016] [Accepted: 11/22/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Portal hypertension in cirrhosis is mediated, in part, by increased intrahepatic resistance, reflecting massive structural changes associated with fibrosis and intrahepatic vasoconstriction. Activation of the Rho/MRTF/SRF signaling pathway is essential for the cellular regulatory network of fibrogenesis. The aim of this study was to investigate MRTF-A-mediated regulation of intrahepatic fibrogenesis in cirrhotic rats. METHODS Portal hypertension was induced in rats via an injection of CCl4 oil. Hemodynamic measurements were obtained using a polyethylene PE-50 catheter and pressure transducers. Expression of hepatic fibrogenesis was measured using histological staining. Expression of protein was measured using western blotting. RESULTS Upregulation of MRTF-A protein expression in the livers of rats with CCl4-induced cirrhosis was relevant to intrahepatic resistance and hepatic fibrogenesis in portal hypertensive rats with increased modeling time. Inhibition of MRTF-A by CCG-1423 decelerated hepatic fibrosis, decreased intrahepatic resistance and portal pressure, and alleviated portal hypertension. CONCLUSION Increased intrahepatic resistance in rats with CCl4-induced portal hypertension is associated with an upregulation of MRTF-A signaling. Inhibition of this pathway in the liver can decrease hepatic fibrosis and intrahepatic resistance, as well as reduce portal pressure in cirrhotic rats with CCl4-induced portal hypertension.
Collapse
|
44
|
Shao J, Li L, Xu H, Yang L, Bian Y, Fang M, Xu Y. Suv39h2 deficiency ameliorates diet-induced steatosis in mice. Biochem Biophys Res Commun 2017; 485:658-664. [PMID: 28232186 DOI: 10.1016/j.bbrc.2017.02.093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/18/2017] [Indexed: 11/30/2022]
Abstract
Steatosis is a prototypical metabolic disorder characterized by accumulation of lipid droplets in the liver, extensive hepatic inflammation, and, in advanced stages, accelerated liver fibrogenesis. The molecular mechanism underlying steatosis is not completely understood. In the present study we investigated the involvement of the histone methyltransferase Suv39h2 in the pathogenesis of steatosis. Expression of Suv39h2 was up-regulated in the liver in two different mouse models of steatosis. Suv39h2 knockout (KO) mice developed a less severe form of steatosis fed on a methione-and-choline deficient (MCD) diet, compared to wild type (WT) littermates, as evidenced by reduced levels of plasma ALT, down-regulated expression of pro-inflammatory mediators, and decreased infiltration of macrophages. In addition, Masson's trichrome staining as well as qPCR measurements of fibrogenic genes suggested that liver fibrosis was attenuated in MCD diet-fed KO mice compared to WT mice. Further analysis found that Suv39h2 repressed SIRT1 expression in the liver by stimulating histone H3K9 trimethylation surrounding the SIRT1 promoter and that Suv39h2 deficiency alleviated SIRT1 expression in MCD diet-fed mice. Therefore, our data support a role of Suv39h2 in promoting steatosis in mice likely through contributing to SIRT1 trans-reperssion.
Collapse
Affiliation(s)
- Jing Shao
- College of Basic Medical Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Luyang Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Lili Yang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaoyao Bian
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingming Fang
- Department of Nursing, Jiangsu Jiankang Vocational College, Nanjing, China.
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Xu W, Xu H, Fang M, Wu X, Xu Y. MKL1 links epigenetic activation of MMP2 to ovarian cancer cell migration and invasion. Biochem Biophys Res Commun 2017; 487:500-508. [PMID: 28385531 DOI: 10.1016/j.bbrc.2017.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/02/2017] [Indexed: 11/15/2022]
Abstract
Responding to pro-metastatic cues such as low oxygen tension, cancer cells develop several different strategies to facilitate migration and invasion. During this process, expression levels of matrix metalloproteinases (MMPs) are up-regulated so that cancer cells can more easily enter or exit the circulation. In this report we show that message levels of the transcriptional modulator MKL1 were elevated in malignant forms of ovarian cancer tissues in humans when compared to more benign forms accompanying a similar change in MMP2 expression. MKL1 silencing blocked hypoxia-induced migration and invasion of ovarian cancer cells (SKOV-3) in vitro. Over-expression of MKL1 activated while MKL1 depletion repressed MMP2 transcription in SKOV-3 cells. MKL1 was recruited to the MMP2 promoter by NF-κB in response to hypoxia. Mechanistically, MKL1 recruited a histone methyltransferase, SET1, and a chromatin remodeling protein, BRG1, and coordinated their interaction to alter the chromatin structure surrounding the MMP2 promoter leading to transcriptional activation. Both BRG1 and SET1 were essential for hypoxia-induced MMP2 trans-activation. Finally, expression levels of SET1 and BRG1 were positively correlated with ovarian cancer malignancies in humans. Together, our data suggest that MKL1 promotes ovarian cancer cell migration and invasion by epigenetically activating MMP2 transcription.
Collapse
Affiliation(s)
- Wenping Xu
- Department of Pathophysiology, Jiangsu Jiankang Vocational College, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Department of Nursing, Jiangsu Jiankang Vocational College, Nanjing, China
| | - Xiaoyan Wu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
46
|
Xu W, Zeng S, Li M, Fan Z, Zhou B. Aggf1 attenuates hepatic inflammation and activation of hepatic stellate cells by repressing Ccl2 transcription. J Biomed Res 2017; 31:428-436. [PMID: 28958996 PMCID: PMC5706435 DOI: 10.7555/jbr.30.20160046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver injury represents a continuum of pathophysiological processes involving a complex interplay between hepatocytes, macrophages, and hepatic stellate cells. The mechanism whereby these intercellular interactions contribute to liver injury and fibrosis is not completely understood. We report here that angiogenic factor with G patch and FHA domains 1 (Aggf1) was downregulated in the livers of cirrhotic patients compared to healthy controls and in primary hepatocytes in response to carbon tetrachloride (CCl4) stimulation. Overexpression of Aggf1 attenuated macrophage chemotaxis. Aggf1 interacted with NF-κB to block its binding to theCcl2 gene promoter and repressed Ccl2 transcription in hepatocytes. Macrophages cultured in the conditioned media collected from Aggf1-overexpressing hepatocytes antagonized HSC activation. Taken together, our data illustrate a novel role for Aggf1 in regulating hepatic inflammation and provide insights on the development of interventional strategies against cirrhosis.
Collapse
Affiliation(s)
- Wenping Xu
- Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, Jiangsu 210029, China
| | - Sheng Zeng
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Min Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhiwen Fan
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bisheng Zhou
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
47
|
Finch-Edmondson M, Sudol M. Framework to function: mechanosensitive regulators of gene transcription. Cell Mol Biol Lett 2016; 21:28. [PMID: 28536630 PMCID: PMC5415767 DOI: 10.1186/s11658-016-0028-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Mechanobiology has shifted our understanding of fundamental cellular and physiological functions. Changes to the stiffness of the extracellular matrix, cell rigidity, or shape of the cell environment were considered in the past to be a consequence of aging or pathological processes. We now understand that these factors can actually be causative biological mediators of cell growth to control organ size. Mechanical cues are known to trigger a relatively fast translocation of specific transcriptional co-factors such as MRTFs, YAP and TAZ from the cytoplasm to the cell nucleus to initiate discrete transcriptional programs. The focus of this review is the molecular mechanisms by which biophysical stimuli that induce changes in cytoplasmic actin dynamics are communicated within cells to elicit gene-specific transcription via nuclear localisation or activation of specialized transcription factors, namely MRTFs and the Hippo pathway effectors YAP and TAZ. We propose here that MRTFs, YAP and TAZ closely collaborate as mechano-effectors.
Collapse
Affiliation(s)
- Megan Finch-Edmondson
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Lin School of Medicine, 2 Medical Drive, 117597 Singapore, Singapore
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Lin School of Medicine, 2 Medical Drive, 117597 Singapore, Singapore
| |
Collapse
|
48
|
Shao J, Zeng S, Zhou B, Xu H, Bian Y, Xu Y. Angiogenic factor with G patch and FHA domains 1 (Aggf1) promotes hepatic steatosis in mice. Biochem Biophys Res Commun 2016; 482:134-140. [PMID: 27865839 DOI: 10.1016/j.bbrc.2016.10.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 11/18/2022]
Abstract
Increased uptake of nutrients coupled with reduced activity leads to the development of a host of metabolic disorders in humans. In the present study we examined the role of angiogenic factor with G patch and FHA domains 1 (Aggf1) in the pathogenesis of steatosis, characterized by accumulation of lipids in the liver and consequently hepatic insulin resistance. We report here that Aggf1 expression was up-regulated in the liver in both genetically predisposed and diet-induced mouse model of steatosis. Aggf1 expression was also stimulated by free fatty acids in primary hepatocytes. Over-expression of Aggf1 in mice promoted steatosis. On the contrary, Aggf1 depletion ameliorated steatosis in mice. Mechanistically, Aggf1 activated the expression of gluconeogenesis gene and skewed the insulin signaling pathway to induce insulin resistance. Taken together, our data suggest that Aggf1 plays a role in steatosis in vivo and as such may be a new target in the development of therapeutics solutions against steatosis.
Collapse
Affiliation(s)
- Jing Shao
- College of Basic Medical Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Zeng
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Bisheng Zhou
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| | - Huihui Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yaoyao Bian
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
49
|
Molecular Cues Guiding Matrix Stiffness in Liver Fibrosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2646212. [PMID: 27800489 PMCID: PMC5075297 DOI: 10.1155/2016/2646212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/28/2016] [Indexed: 12/14/2022]
Abstract
Tissue and matrix stiffness affect cell properties during morphogenesis, cell growth, differentiation, and migration and are altered in the tissue remodeling following injury and the pathological progression. However, detailed molecular mechanisms underlying alterations of stiffness in vivo are still poorly understood. Recent engineering technologies have developed powerful techniques to characterize the mechanical properties of cell and matrix at nanoscale levels. Extracellular matrix (ECM) influences mechanical tension and activation of pathogenic signaling during the development of chronic fibrotic diseases. In this short review, we will focus on the present knowledge of the mechanisms of how ECM stiffness is regulated during the development of liver fibrosis and the molecules involved in ECM stiffness as a potential therapeutic target for liver fibrosis.
Collapse
|
50
|
Xu H, Fan Z, Tian W, Xu Y. Protein inhibitor of activated STAT 4 (PIAS4) regulates liver fibrosis through modulating SMAD3 activity. J Biomed Res 2016; 30:496-501. [PMID: 27924068 PMCID: PMC5138582 DOI: 10.7555/jbr.30.20160049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/29/2016] [Accepted: 07/11/2016] [Indexed: 01/04/2023] Open
Abstract
Excessive fibrogenesis disrupts normal liver structure, impairs liver function, and precipitates the development of cirrhosis, an irreversible end-stage liver disease. A host of factors including nutrition surplus contribute to liver fibrosis but the underlying mechanism is not fully understood. In the present study, we investigated the involvement of protein inhibitor for activated stat 4 (PIAS4) in liver fibrosis in a mouse model of non-alcoholic steatohepatitis (NASH). We report that PIAS4 silencing using short hairpin RNA (shRNA) attenuated high-fat high-carbohydrate (HFHC) diet induced liver fibrosis in mice. Quantitative PCR and Western blotting analyses confirmed that PIAS4 knockdown downregulated a panel of pro-fibrogenic genes including type I and type III collagens, smooth muscle actin, and tissue inhibitors of metalloproteinase. Mechanistically, PIAS4 silencing blocked the recruitment of SMAD3, a potent pro-fibrogenic transcription factor, to the promoter regions of pro-fibrogenic genes and dampened SMAD3 acetylation likely by upregulating SIRT1 expression. In conclusion, PIAS4 may contribute to liver fibrosis by modulating SIRT1-dependent SMAD3 acetylation.
Collapse
Affiliation(s)
- Huihui Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhiwen Fan
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wenfang Tian
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China;
| |
Collapse
|