1
|
Tsai YF, Fang MC, Chen CH, Yu IS, Shun CT, Tao MH, Sun CP, Lu J, Sheu JC, Hsu YC, Lin SW. Enhancement of adult liver regeneration in mice through the hepsin-mediated epidermal growth factor receptor signaling pathway. Commun Biol 2024; 7:1672. [PMID: 39702454 DOI: 10.1038/s42003-024-07357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Given the widespread use of partial hepatectomy for treating various liver pathologies, understanding the mechanisms of liver regeneration is vital for enhancing liver resection and transplantation therapies. Here, we demonstrate the critical role of the serine protease Hepsin in promoting hepatocyte hypertrophy and proliferation. Under steady-state conditions, liver-specific overexpression of Hepsin in adult wild-type mice triggers hepatocyte hypertrophy and proliferation, significantly increasing liver size. This effect is predominantly driven by the catalytic activity of Hepsin, engaging the EGFR-Raf-MEK-ERK signaling pathway. Significantly, administering Hepsin substantially enhances hepatocyte proliferation and facilitates liver regeneration following a 70% partial hepatectomy. Crucially, the proliferation induced by Hepsin is a transient event, without leading to long-term adverse effects such as liver fibrosis or hepatocellular carcinoma, as evidenced by extensive observation. These results offer substantial potential for future clinical applications and translational research endeavors in the field of liver regeneration post-hepatectomy.
Collapse
Affiliation(s)
- Yu-Fei Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mo-Chu Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Hung Chen
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Tung Shun
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pathology, Good Liver Clinic, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mi-Hua Tao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Pu Sun
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jin-Chuan Sheu
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
| | - Yu-Chen Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan.
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Shi X, Bortolussi G, Collaud F, Le Brun PR, Bloemendaal LT, Guerchet N, Rudi de Waart D, Sellier P, Duijst S, Veron P, Mingozzi F, Kishimoto TK, Ronzitti G, Bosma P, Muro AF. Repeated dosing of AAV-mediated liver gene therapy in juvenile rat and mouse models of Crigler-Najjar syndrome type I. Mol Ther Methods Clin Dev 2024; 32:101363. [PMID: 39618425 PMCID: PMC11607602 DOI: 10.1016/j.omtm.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/25/2024] [Indexed: 01/30/2025]
Abstract
Crigler-Najjar syndrome is an ultra-rare monogenic recessive liver disease caused by UGT1A1 gene mutations. Complete UGT1A1 deficiency results in severe unconjugated hyperbilirubinemia in newborns that, if not treated, may lead to brain damage and death. Treatment is based on intensive phototherapy, but its efficacy decreases with age, rendering liver transplantation the only curative option. Adeno-associated virus (AAV)-mediated gene therapy has shown long-term correction in adult patients, but loss of viral DNA and therapeutic efficacy are expected in younger patients associated with liver growth. Effective vector re-administration is hindered by anti-AAV neutralizing antibodies generated during the first administration. Here, we investigated AAV vector re-administration by modulating the immune response with rapamycin-loaded nanoparticles (ImmTOR) in Gunn rats (Ugt1a -/- ) and Ugt1a -/- mice. We administered a liver-specific AAV8 vector expressing a codon-optimized hUGT1A1 cDNA (1.0E11 vg/kg) in P25-P28 mutant animals and, upon loss of efficacy after 3 to 5 weeks, a higher second dose (1.0E12 or 5.0E12 vg/kg) was given. ImmTOR co-administration reduced anti-AAV neutralizing antibodies and immunoglobulin Gs generation in male animals of both models allowing effective re-dosing, underscored by a significant and long-term decrease in plasma bilirubin, although efficacy was affected by low-titer residual anti-AAV antibodies suggesting that re-administration in patients may require combination with other methods.
Collapse
Affiliation(s)
- Xiaoxia Shi
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116082, P.R. China
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Fanny Collaud
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Université d’Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | | | - Lysbeth ten Bloemendaal
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands
| | | | - Dirk Rudi de Waart
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands
| | - Pauline Sellier
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Université d’Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Suzanne Duijst
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands
| | | | | | | | - Giuseppe Ronzitti
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Université d’Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Piter Bosma
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
3
|
Chen Y, van Til NP, Bosma PJ. Gene Therapy for Inherited Liver Disease: To Add or to Edit. Int J Mol Sci 2024; 25:12514. [PMID: 39684224 DOI: 10.3390/ijms252312514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Patients suffering from an inherited severe liver disorder require lifelong treatment to prevent premature death. Until recently, the only curative treatment option was liver transplantation, which requires lifelong immune suppression. Now, liver-directed gene therapy, which is a much less invasive procedure, has become a market-approved treatment for hemophilia A and B. This may pave the way for it to become the treatment of choice for many other recessive inherited liver disorders with loss-of-function mutations. Inherited liver disease with toxic-gain-of-function or intrinsic hepatocyte damage may require alternative applications, such as integrating vectors or genome editing technologies, that can provide permanent or specific modification of the genome. We present an overview of currently available gene therapy strategies, i.e., gene supplementation, gene editing, and gene repair investigated in preclinical and clinical studies to treat inherited severe liver disorders. The advantages and limitations of these gene therapy applications are discussed in relation to the underlying disease mechanism.
Collapse
Affiliation(s)
- Yue Chen
- Amsterdam University Medical Center, Tytgat Institute for Liver and Intestinal Research, AG&M, University of Amsterdam, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | - Niek P van Til
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Piter J Bosma
- Amsterdam University Medical Center, Tytgat Institute for Liver and Intestinal Research, AG&M, University of Amsterdam, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| |
Collapse
|
4
|
Wang H, Ciccocioppo R, Terai S, Shoeibi S, Carnevale G, De Marchi G, Tsuchiya A, Ishii S, Tonouchi T, Furuyama K, Yang Y, Mito M, Abe H, Di Tinco R, Cardinale V. Targeted animal models for preclinical assessment of cellular and gene therapies in pancreatic and liver diseases: regulatory and practical insights. Cytotherapy 2024:S1465-3249(24)00934-4. [PMID: 39755978 DOI: 10.1016/j.jcyt.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 01/07/2025]
Abstract
Cellular and gene therapy (CGT) products have emerged as a popular approach in regenerative medicine, showing promise in treating various pancreatic and liver diseases in numerous clinical trials. Before these therapies can be tested in human clinical trials, it is essential to evaluate their safety and efficacy in relevant animal models. Such preclinical testing is often required to obtain regulatory approval for investigational new drugs. However, there is a lack of detailed guidance on selecting appropriate animal models for CGT therapies targeting specific pancreatic and liver conditions, such as pancreatitis and chronic liver diseases. In this review, the gastrointestinal committee for the International Society for Cell and Gene Therapy provides a summary of current recommendations for animal species and disease model selection, as outlined by the US Food and Drug Administration, with references to EU EMA and Japan PMDA. We discuss a range of small and large animal models, as well as humanized models, that are suitable for preclinical testing of CGT products aimed at treating pancreatic and liver diseases. For each model, we cover the associated pathophysiology, commonly used metrics for assessing disease status, the pros and limitations of the models, and the relevance of these models to human conditions. We also summarize the use and application of humanized mouse and other animal models in evaluating the safety and efficacy of CGT products. This review aims to provide comprehensive guidance for selecting appropriate animal species and models to help bridge the gap between the preclinical research and clinical trials using CGT therapies for specific pancreatic and liver diseases.
Collapse
Affiliation(s)
- Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph H Johnson Veteran Medical Center, Charleston, South Carolina, USA.
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sara Shoeibi
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia De Marchi
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Soichi Ishii
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takafumi Tonouchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kaito Furuyama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuan Yang
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Mito
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Wang S, Liu Q, Sun X, Wei W, Ding L, Zhao X. Identification of novel ABCB4 variants and genotype-phenotype correlation in progressive familial intrahepatic cholestasis type 3. Sci Rep 2024; 14:27381. [PMID: 39521930 PMCID: PMC11550383 DOI: 10.1038/s41598-024-79123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a severe hepatic disorder characterized by cholestasis. Elucidating the genotype-phenotype correlations and expanding the mutational spectrum of the ABCB4 gene are crucial for enhancing diagnostic accuracy and therapeutic strategies.Clinical and genetic data from 2 original PFIC3 patients from our institution, along with 118 additional cases identified through a comprehensive literature review, were integrated for a comprehensive analysis. The study included statistical analysis of clinical information, genetic analysis, multi-species sequence alignment, protein structure modeling, and pathogenicity assessment. Machine learning techniques were applied to identify genotype-phenotype relationships. We identified three novel ABCB4 mutations: two missense mutations (c.904G > T and c.2493G > C) and one splicing mutation (c.1230 + 1G > A). Homozygous mutations were associated with significantly earlier disease onset compared to compound heterozygous mutations (p < 0.0001). Missense mutations were predominant (76.9%), with Exon 7 being the most frequently affected region. A random forest model indicated that Exon 10 had the highest feature importance score (9.9%). Liver transplantation remains the most effective treatment modality for PFIC3. This investigation broadens the known mutation spectrum of the ABCB4 gene and identifies key variant sites associated with clinical manifestations. These insights lay a foundation for early diagnosis, optimal treatment selection, and further research into PFIC3.
Collapse
Affiliation(s)
- Senyan Wang
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Sun
- Department of Oncology, Henan Cancer Hospital, Zhengzhou University Affiliated Cancer Hospital, Zhengzhou, China
| | - Wenjuan Wei
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China
| | - Leilei Ding
- Department of Obstetrics and Gynecology, Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xiaofang Zhao
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
6
|
Hof WFJ, de Boer JF, Verkade HJ. Emerging drugs for the treatment of progressive familial intrahepatic cholestasis: a focus on phase II and III trials. Expert Opin Emerg Drugs 2024; 29:305-320. [PMID: 38571480 DOI: 10.1080/14728214.2024.2336986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Progressive familial intrahepatic cholestasis (PFIC) is a group of disorders characterized by inappropriate bile formation, causing hepatic accumulation of bile acids and, subsequently, liver injury. Until recently, no approved treatments were available for these patients. AREAS COVERED Recent clinical trials for PFIC treatment have focused on intestine-restricted ileal bile acid transporter (IBAT) inhibitors. These compounds aim to reduce the pool size of bile acids by interrupting their enterohepatic circulation. Other emerging treatments in the pipeline include systemic IBAT inhibitors, synthetic bile acid derivatives, compounds targeting bile acid synthesis via the FXR/FGF axis, and chaperones/potentiators that aim to enhance the residual activity of the mutated transporters. EXPERT OPINION Substantial progress has been made in drug development for PFIC patients during the last couple of years. Although data concerning long-term efficacy are as yet only scarcely available, new therapies have demonstrated robust efficacy in a considerable fraction of patients at least on the shorter term. However, a substantial fraction of PFIC patients do not respond to these novel therapies and thus still requires surgical treatment, including liver transplantation before adulthood. Hence, there is still an unmet medical need for long-term effective medical, preferably non-surgical, treatment for all PFIC patients.
Collapse
Affiliation(s)
- Willemien F J Hof
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Henkjan J Verkade
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Shen G, Liu J, Yang H, Xie N, Yang Y. mRNA therapies: Pioneering a new era in rare genetic disease treatment. J Control Release 2024; 369:696-721. [PMID: 38580137 DOI: 10.1016/j.jconrel.2024.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Rare genetic diseases, often referred to as orphan diseases due to their low prevalence and limited treatment options, have long posed significant challenges to our medical system. In recent years, Messenger RNA (mRNA) therapy has emerged as a highly promising treatment approach for various diseases caused by genetic mutations. Chemically modified mRNA is introduced into cells using carriers like lipid-based nanoparticles (LNPs), producing functional proteins that compensate for genetic deficiencies. Given the advantages of precise dosing, biocompatibility, transient expression, and minimal risk of genomic integration, mRNA therapies can safely and effectively correct genetic defects in rare diseases and improve symptoms. Currently, dozens of mRNA drugs targeting rare diseases are undergoing clinical trials. This comprehensive review summarizes the progress of mRNA therapy in treating rare genetic diseases. It introduces the development, molecular design, and delivery systems of mRNA therapy, highlighting their research progress in rare genetic diseases based on protein replacement and gene editing. The review also summarizes research progress in various rare disease models and clinical trials. Additionally, it discusses the challenges and future prospects of mRNA therapy. Researchers are encouraged to join this field and collaborate to advance the clinical translation of mRNA therapy, bringing hope to patients with rare genetic diseases.
Collapse
Affiliation(s)
- Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Männistö VT, Kaminska D, Haal S, Asteljoki J, Luukkonen PK, Käkelä P, Tavaglione F, van Weeghel M, Neuvonen M, Niemi M, Romeo S, Nieuwdorp M, Pihlajamäki J, Groen AK. Protein Phosphatase 1 Regulatory Subunit 3 Beta rs4240624 Genotype Is Associated With Gallstones and With Significant Changes in Bile Lipidome. GASTRO HEP ADVANCES 2024; 3:594-601. [PMID: 39165418 PMCID: PMC11330930 DOI: 10.1016/j.gastha.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/07/2024] [Indexed: 08/22/2024]
Abstract
Background and Aims Gallstone disease (GSD) associates with significant morbidity and mortality. Decreased secretion of bile acids has been suggested as a driving factor for GSD. Recently, we linked the protein phosphatase 1 regulatory subunit 3 beta (PPP1R3B) rs4240624 genotype to decreased bile acid levels in bile. In this study, we investigated whether these individuals had an increased risk for GSD as well as the differences in the lipid composition of the gallbladder bile of these individuals compared to controls and patients with GSD. Methods Bile acids, cholesterol, and phospholipid levels in gallbladder bile samples were enzymatically measured in 46 patients (34 female, age 45.7 ± 9.8 years, BMI 41.3 ± 4.4 kg/m2) who underwent elective laparoscopic Roux-en-Y gastric bypass. The lipidome of gallbladder bile was analyzed using high-performance liquid chromatography-mass spectrometry. Gallstone status was evaluated using abdominal ultrasonography before the surgery. Results The G allele of PPP1R3B rs4240624 was significantly associated with GSD in patients with obesity. We validated this association in the UK Biobank. Bile lipidomics demonstrated that 13 of the 17 minor lipid classes measured were higher in individuals with the G allele. The concentrations of bile acids, cholesterol, and phospholipids, as well as the cholesterol saturation index, were lower in patients with GSD than in those without gallstones. GSD had an effect similar to that of PPP1R3B genotype on minor lipids. Conclusion The PPP1R3B rs4240624 genotype is associated with gallstones and with changes in gallbladder bile similar to those observed in patients with gallstones, suggesting that the PPP1R3B genotype contributes to the risk of gallstones by altering the bile lipidome.
Collapse
Affiliation(s)
- Ville T. Männistö
- Departments of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Dorota Kaminska
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sylke Haal
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Juho Asteljoki
- Department of Internal Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Panu K. Luukkonen
- Department of Internal Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Pirjo Käkelä
- Department of Surgery, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Federica Tavaglione
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
- Department of Medicine and Surgery, Research Unit of Clinical Medicine and Hepatology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Michel van Weeghel
- Laboratory of Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Faculty of Medicine, Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Faculty of Medicine, Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Services, Helsinki University Hospital, Helsinki, Finland
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, University Magna Graecia, Catanzaro, Italy
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
- Department of Medicine, Endocrinology, and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Albert K. Groen
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Ceci L, Gaudio E, Kennedy L. Cellular Interactions and Crosstalk Facilitating Biliary Fibrosis in Cholestasis. Cell Mol Gastroenterol Hepatol 2024; 17:553-565. [PMID: 38216052 PMCID: PMC10883986 DOI: 10.1016/j.jcmgh.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Biliary fibrosis is seen in cholangiopathies, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). In PBC and PSC, biliary fibrosis is associated with worse outcomes and histologic scores. Within the liver, both hepatic stellate cells (HSCs) and portal fibroblasts (PFs) contribute to biliary fibrosis, but their roles can differ. PFs reside near the bile ducts and may be the first responders to biliary damage, whereas HSCs may be recruited later and initiate bridging fibrosis. Indeed, different models of biliary fibrosis can activate PFs and HSCs to varying degrees. The portal niche can be composed of cholangiocytes, HSCs, PFs, endothelial cells, and various immune cells, and interactions between these cell types drive biliary fibrosis. In this review, we discuss the mechanisms of biliary fibrosis and the roles of PFs and HSCs in this process. We will also evaluate cellular interactions and mechanisms that contribute to biliary fibrosis in different models and highlight future perspectives and potential therapeutics.
Collapse
Affiliation(s)
- Ludovica Ceci
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, University of Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, University of Rome, Italy
| | - Lindsey Kennedy
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
10
|
Jeyaraj R, Maher ER, Kelly D. Paediatric research sets new standards for therapy in paediatric and adult cholestasis. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:75-84. [PMID: 38006895 DOI: 10.1016/s2352-4642(23)00259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 11/27/2023]
Abstract
Children with Alagille syndrome and progressive familial intrahepatic cholestasis (PFIC) experience debilitating pruritus, for which there have been few effective treatment options. In the past 2 years, the ileal bile acid transporter (IBAT) inhibitors maralixibat and odevixibat have been approved for the management of cholestatic pruritus in these individuals, representing an important step forward in improving their quality of life. Emerging data suggest these drugs might also improve event-free survival, therefore potentially altering the typical disease course currently seen in these disorders. This Review will discuss how genetic advances have clarified the molecular basis of cholestatic disorders, facilitating the development of new therapeutic options that have only been evaluated in children. We focus specifically on the newly licensed IBAT inhibitors for patients with Alagille syndrome and PFIC and explore the next steps for these drugs in relation to other paediatric and adult cholestatic disorders, recognising that they have the potential to benefit a wider group of patients with gastrointestinal and liver disease.
Collapse
Affiliation(s)
- Rebecca Jeyaraj
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Deirdre Kelly
- The Liver Unit, Birmingham Women's and Children's Hospital, Birmingham, UK; University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
Gardin A, Ronzitti G. Current limitations of gene therapy for rare pediatric diseases: Lessons learned from clinical experience with AAV vectors. Arch Pediatr 2023; 30:8S46-8S52. [PMID: 38043983 DOI: 10.1016/s0929-693x(23)00227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gene therapy using adeno-associated viral (AAV) vectors is a promising therapeutic strategy for multiple inherited diseases. Following intravenous injection, AAV vectors carrying a copy of the missing gene or the genome-editing machinery reach their target cells and deliver the genetic material. Several clinical trials are currently ongoing and significant success has already been achieved with at least six AAV gene therapy products with market approval in Europe and the United States. Nonetheless, clinical trials and preclinical studies have uncovered several limitations of AAV gene transfer, which need to be addressed in order to improve the safety and enable the treatment of the largest patient population. Limitations include the occurrence of immune-mediated toxicities, the potential loss of correction in the long run, and the development of neutralizing antibodies against AAV vectors preventing re-administration. In this review, we summarize these limitations and discuss the potential technological developments to overcome them. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Antoine Gardin
- Genethon, 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000 Evry, France; Hépatologie et Transplantation Hépatique Pédiatriques, Centre de référence de l'atrésie des voies biliaires et des cholestases génétiques, FSMR FILFOIE, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Hôpital Bicêtre, AP-HP, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Giuseppe Ronzitti
- Genethon, 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000 Evry, France.
| |
Collapse
|
12
|
Gonzales E, Gardin A, Almes M, Darmellah-Remil A, Seguin H, Mussini C, Franchi-Abella S, Duché M, Ackermann O, Thébaut A, Habes D, Hermeziu B, Lapalus M, Falguières T, Combal JP, Benichou B, Valero S, Davit-Spraul A, Jacquemin E. Outcomes of 38 patients with PFIC3: Impact of genotype and of response to ursodeoxycholic acid therapy. JHEP Rep 2023; 5:100844. [PMID: 37701337 PMCID: PMC10494458 DOI: 10.1016/j.jhepr.2023.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 09/14/2023] Open
Abstract
Background & Aims Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare liver disease caused by biallelic variations in ABCB4. Data reporting on the impact of genotype and of response to ursodeoxycholic acid (UDCA) therapy on long-term outcomes are scarce. Methods We retrospectively describe a cohort of 38 patients with PFIC3 with a median age at last follow-up of 19.5 years (range 3.8-53.8). Results Twenty patients presented with symptoms before 1 year of age. Thirty-one patients received ursodeoxycholic acid (UDCA) therapy resulting in serum liver test improvement in 20. Twenty-seven patients had cirrhosis at a median age of 8.1 years of whom 18 received a liver transplant at a median age of 8.5 years. Patients carrying at least one missense variation were more likely to present with positive (normal or decreased) canalicular MDR3 expression in the native liver and had prolonged native liver survival (NLS; median 12.4 years [range 3.8-53.8]). In contrast, in patients with severe genotypes (no missense variation), there was no detectable canalicular MDR3 expression, symptom onset and cirrhosis occurred earlier, and all underwent liver transplantation (at a median age of 6.7 years [range 2.3-10.3]). The latter group was refractory to UDCA treatment, whereas 87% of patients with at least one missense variation displayed an improvement in liver biochemistry in response to UDCA. Biliary phospholipid levels over 6.9% of total biliary lipid levels predicted response to UDCA. Response to UDCA predicted NLS. Conclusions Patients carrying at least one missense variation, with positive canalicular expression of MDR3 and a biliary phospholipid level over 6.9% of total biliary lipid levels were more likely to respond to UDCA and to exhibit prolonged NLS. Impact and implications In this study, data show that genotype and response to ursodeoxycholic acid therapy predicted native liver survival in patients with PFIC3 (progressive familial intrahepatic cholestasis type 3). Patients carrying at least one missense variation, with positive (decreased or normal) immuno-staining for canalicular MDR3, and a biliary phospholipid level over 6.9% of total biliary lipids were more likely to respond to ursodeoxycholic acid therapy and to exhibit prolonged native liver survival.
Collapse
Affiliation(s)
- Emmanuel Gonzales
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Antoine Gardin
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Marion Almes
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Amaria Darmellah-Remil
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
| | - Hanh Seguin
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
| | - Charlotte Mussini
- Pathology, Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Stéphanie Franchi-Abella
- Pediatric Radiology, Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Mathieu Duché
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Pediatric Radiology, Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Oanez Ackermann
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Alice Thébaut
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Dalila Habes
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Bogdan Hermeziu
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Martine Lapalus
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | | | | | | | | | - Anne Davit-Spraul
- Biochemistry; Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Emmanuel Jacquemin
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| |
Collapse
|
13
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Therapeutic potential of gene therapy for gastrointestinal diseases: Advancements and future perspectives. Mol Ther Oncolytics 2023; 30:193-215. [PMID: 37663132 PMCID: PMC10471515 DOI: 10.1016/j.omto.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Advancements in understanding the pathogenesis mechanisms underlying gastrointestinal diseases, encompassing inflammatory bowel disease, gastrointestinal cancer, and gastroesophageal reflux disease, have led to the identification of numerous novel therapeutic targets. These discoveries have opened up exciting possibilities for developing gene therapy strategies to treat gastrointestinal diseases. These strategies include gene replacement, gene enhancement, gene overexpression, gene function blocking, and transgenic somatic cell transplantation. In this review, we introduce the important gene therapy targets and targeted delivery systems within the field of gastroenterology. Furthermore, we provide a comprehensive overview of recent progress in gene therapy related to gastrointestinal disorders and shed light on the application of innovative gene-editing technologies in treating these conditions. These developments are fueling a revolution in the management of gastrointestinal diseases. Ultimately, we discuss the current challenges (particularly regarding safety, oral efficacy, and cost) and explore potential future directions for implementing gene therapy in the clinical settings for gastrointestinal diseases.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen 518000, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong 516000, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| |
Collapse
|
14
|
Zuo Y, Zhang C, Zhou Y, Li H, Xiao W, Herzog RW, Xu J, Zhang J, Chen YE, Han R. Liver-specific in vivo base editing of Angptl3 via AAV delivery efficiently lowers blood lipid levels in mice. Cell Biosci 2023; 13:109. [PMID: 37322547 PMCID: PMC10273718 DOI: 10.1186/s13578-023-01036-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Gene editing has emerged as an exciting therapeutic development platform for numerous genetic and nongenetic diseases. Targeting lipid-modulating genes such as angiopoietin-related protein 3 (ANGPTL3) with gene editing offers hope for a permanent solution to lower cardiovascular disease risks associated with hypercholesterolemia. RESULTS In this study, we developed a hepatocyte-specific base editing therapeutic approach delivered by dual adeno-associated virus (AAV) to enable hepatocyte-specific targeting of Angptl3 to lower blood lipid levels. Systemic AAV9-mediated delivery of AncBE4max, a cytosine base editor (CBE), targeting mouse Angptl3 resulted in the installation of a premature stop codon in Angptl3 with an average efficiency of 63.3 ± 2.3% in the bulk liver tissue. A near-complete knockout of the ANGPTL3 protein in the circulation were observed within 2-4 weeks following AAV administration. Furthermore, the serum levels of triglyceride (TG) and total cholesterol (TC) were decreased by approximately 58% and 61%, respectively, at 4 weeks after treatment. CONCLUSIONS These results highlight the promise of liver-targeted Angptl3 base editing for blood lipid control.
Collapse
Affiliation(s)
- Yuanbojiao Zuo
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, P.R. China
| | - Chen Zhang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuan Zhou
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Haiwen Li
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Renzhi Han
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
15
|
Xie S, Wei S, Ma X, Wang R, He T, Zhang Z, Yang J, Wang J, Chang L, Jing M, Li H, Zhou X, Zhao Y. Genetic alterations and molecular mechanisms underlying hereditary intrahepatic cholestasis. Front Pharmacol 2023; 14:1173542. [PMID: 37324459 PMCID: PMC10264785 DOI: 10.3389/fphar.2023.1173542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Hereditary cholestatic liver disease caused by a class of autosomal gene mutations results in jaundice, which involves the abnormality of the synthesis, secretion, and other disorders of bile acids metabolism. Due to the existence of a variety of gene mutations, the clinical manifestations of children are also diverse. There is no unified standard for diagnosis and single detection method, which seriously hinders the development of clinical treatment. Therefore, the mutated genes of hereditary intrahepatic cholestasis were systematically described in this review.
Collapse
Affiliation(s)
- Shuying Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Xiao Ma
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruilin Wang
- Department of Pharmacy, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting He
- Department of Pharmacy, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhao Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Yang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawei Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Chang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Manyi Jing
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanling Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Weber ND, Odriozola L, Ros-Gañán I, García-Porrero G, Salas D, Argemi J, Combal JP, Kishimoto TK, González-Aseguinolaza G. Rescue of infant progressive familial intrahepatic cholestasis type 3 mice by repeated dosing of AAV gene therapy. JHEP Rep 2023; 5:100713. [PMID: 37096142 PMCID: PMC10121466 DOI: 10.1016/j.jhepr.2023.100713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 04/26/2023] Open
Abstract
Background & Aims Gene therapy using recombinant adeno-associated virus (rAAV) vector carrying multidrug resistance protein 3 (MDR3) coding sequence (AAV8-MDR3) represents a potential curative treatment for progressive familial intrahepatic cholestasis type 3 (PFIC3), which presents in early childhood. However, patients with the severest form of PFIC3 should receive treatment early after detection to prevent irreversible hepatic fibrosis leading ultimately to liver transplantation or death. This represents a challenge for rAAV-based gene therapy because therapeutic efficacy is expected to wane as rAAV genomes are lost owing to hepatocyte division, and the formation of AAV-specific neutralising antibodies precludes re-administration. Here, we tested a strategy of vector re-administration in infant PFIC3 mice with careful evaluation of its oncogenicity - a particular concern surrounding rAAV treatment. Methods AAV8-MDR3 was re-administered to infant Abcb4 -/- mice 2 weeks after a first dose co-administered with tolerogenic nanoparticles carrying rapamycin (ImmTOR) given at 2 weeks of age. Eight months later, long-term therapeutic efficacy and safety were assessed with special attention paid to the potential oncogenicity of rAAV treatment. Results Co-administration with ImmTOR mitigated the formation of rAAV-specific neutralising antibodies and enabled an efficacious second administration of AAV8-MDR3, resulting in stable correction of the disease phenotype, including a restoration of bile phospholipid content and healthy liver function, as well as the prevention of liver fibrosis, hepatosplenomegaly, and gallstones. Furthermore, efficacious repeat rAAV administration prevented the appearance of liver malignancies in an animal model highly prone to developing hepatocellular carcinoma. Conclusions These outcomes provide strong evidence for rAAV redosing through co-administration with ImmTOR, as it resulted in a long-term therapeutic effect in a paediatric liver metabolic disorder, including the prevention of oncogenesis. Impact and implications Redosing of gene therapy for inborn hepatobiliary disorders may be essential as effect wanes during hepatocyte division and renewal, particularly in paediatric patients, but the approach may carry long-term risks of liver cancer. Viral vectors carrying a therapeutic gene exerted a durable cure of progressive familial intrahepatic cholestasis type 3 in infant mice and reduced the risk of liver cancer only following a second administration.
Collapse
Affiliation(s)
- Nicholas D. Weber
- Vivet Therapeutics S.L., Pamplona, Spain
- Corresponding authors. Address: Vivet Therapeutics S.L., Av. Pio XII, 33, 31008 Pamplona, Spain. Tel.: +34-948-194700 x816022.
| | - Leticia Odriozola
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain
| | | | | | - David Salas
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain
| | - Josepmaria Argemi
- Liver Unit, Internal Medicine Department, Clínica Universidad de Navarra and Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- Division of Medicine, Gastroenterology and Hepatology Department, University of Pittsburgh, Pittsburgh, PA, USA
- Centro de Investigacion Biomedica en Red (CIBER-Ehd), Madrid, Spain
| | | | | | - Gloria González-Aseguinolaza
- Vivet Therapeutics S.L., Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain
- Corresponding authors. Address: Vivet Therapeutics S.L., Av. Pio XII, 33, 31008 Pamplona, Spain. Tel.: +34-948-194700 x816022.
| |
Collapse
|
17
|
Pakalniškytė D, Schönberger T, Strobel B, Stierstorfer B, Lamla T, Schuler M, Lenter M. Rosa26-LSL-dCas9-VPR: a versatile mouse model for tissue specific and simultaneous activation of multiple genes for drug discovery. Sci Rep 2022; 12:19268. [PMID: 36357523 PMCID: PMC9649745 DOI: 10.1038/s41598-022-23127-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
Transgenic animals with increased or abrogated target gene expression are powerful tools for drug discovery research. Here, we developed a CRISPR-based Rosa26-LSL-dCas9-VPR mouse model for targeted induction of endogenous gene expression using different Adeno-associated virus (AAV) capsid variants for tissue-specific gRNAs delivery. To show applicability of the model, we targeted low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9), either individually or together. We induced up to ninefold higher expression of hepatocellular proteins. In consequence of LDLR upregulation, plasma LDL levels almost abolished, whereas upregulation of PCSK9 led to increased plasma LDL and cholesterol levels. Strikingly, simultaneous upregulation of both LDLR and PCSK9 resulted in almost unaltered LDL levels. Additionally, we used our model to achieve expression of all α1-Antitrypsin (AAT) gene paralogues simultaneously. These results show the potential of our model as a versatile tool for optimized targeted gene expression, alone or in combination.
Collapse
Affiliation(s)
- Dalia Pakalniškytė
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, 88400 Biberach an der Riß, Germany
| | - Tanja Schönberger
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, 88400 Biberach an der Riß, Germany
| | - Benjamin Strobel
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, 88400 Biberach an der Riß, Germany
| | - Birgit Stierstorfer
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co. KG, Nonclinical Drug Safety Germany, 88400 Biberach an der Riß, Germany
| | - Thorsten Lamla
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co. KG, Discovery Research Coordination, 88400 Biberach an der Riß, Germany
| | - Michael Schuler
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, 88400 Biberach an der Riß, Germany
| | - Martin Lenter
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, 88400 Biberach an der Riß, Germany
| |
Collapse
|
18
|
Wang X, Delle C, Asiminas A, Akther S, Vittani M, Brøgger P, Kusk P, Vo CT, Radovanovic T, Konno A, Hirai H, Fukuda M, Weikop P, Goldman SA, Nedergaard M, Hirase H. Liver-secreted fluorescent blood plasma markers enable chronic imaging of the microcirculation. CELL REPORTS METHODS 2022; 2:100302. [PMID: 36313804 PMCID: PMC9606131 DOI: 10.1016/j.crmeth.2022.100302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 12/25/2022]
Abstract
Studying blood microcirculation is vital for gaining insights into vascular diseases. Blood flow imaging in deep tissue is currently achieved by acute administration of fluorescent dyes in the blood plasma. This is an invasive process, and the plasma fluorescence decreases within an hour of administration. Here, we report an approach for the longitudinal study of vasculature. Using a single intraperitoneal or intravenous administration of viral vectors, we express fluorescent secretory albumin-fusion proteins in the liver to chronically label the blood circulation in mice. This approach allows for longitudinal observation of circulation from 2 weeks to over 4 months after vector administration. We demonstrate the chronic assessment of vascular functions including functional hyperemia and vascular plasticity in micro- and mesoscopic scales. This genetic plasma labeling approach represents a versatile and cost-effective method for the chronic investigation of vasculature functions across the body in health and disease animal models.
Collapse
Affiliation(s)
- Xiaowen Wang
- Center for Translational Neuromedicine, Faculty of Health and Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine Delle
- Center for Translational Neuromedicine, Faculty of Health and Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Antonis Asiminas
- Center for Translational Neuromedicine, Faculty of Health and Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sonam Akther
- Center for Translational Neuromedicine, Faculty of Health and Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marta Vittani
- Center for Translational Neuromedicine, Faculty of Health and Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Brøgger
- Center for Translational Neuromedicine, Faculty of Health and Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Kusk
- Center for Translational Neuromedicine, Faculty of Health and Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Trang Vo
- Center for Translational Neuromedicine, Faculty of Health and Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tessa Radovanovic
- Center for Translational Neuromedicine, Faculty of Health and Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ayumu Konno
- Viral Vector Core, Gunma University Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Hirai
- Viral Vector Core, Gunma University Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Masahiro Fukuda
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Pia Weikop
- Center for Translational Neuromedicine, Faculty of Health and Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steven A. Goldman
- Center for Translational Neuromedicine, Faculty of Health and Life Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Life Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hajime Hirase
- Center for Translational Neuromedicine, Faculty of Health and Life Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
19
|
Novel Gene-Correction-Based Therapeutic Modalities for Monogenic Liver Disorders. Bioengineering (Basel) 2022; 9:bioengineering9080392. [PMID: 36004917 PMCID: PMC9404740 DOI: 10.3390/bioengineering9080392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The majority of monogenic liver diseases are autosomal recessive disorders, with few being sex-related or co-dominant. Although orthotopic liver transplantation (LT) is currently the sole therapeutic option for end-stage patients, such an invasive surgical approach is severely restricted by the lack of donors and post-transplant complications, mainly associated with life-long immunosuppressive regimens. Therefore, the last decade has witnessed efforts for innovative cellular or gene-based therapeutic strategies. Gene therapy is a promising approach for treatment of many hereditary disorders, such as monogenic inborn errors. The liver is an organ characterized by unique features, making it an attractive target for in vivo and ex vivo gene transfer. The current genetic approaches for hereditary liver diseases are mediated by viral or non-viral vectors, with promising results generated by gene-editing tools, such as CRISPR-Cas9 technology. Despite massive progress in experimental gene-correction technologies, limitations in validated approaches for monogenic liver disorders have encouraged researchers to refine promising gene therapy protocols. Herein, we highlighted the most common monogenetic liver disorders, followed by proposed genetic engineering approaches, offered as promising therapeutic modalities.
Collapse
|
20
|
Abstract
Bile acid transport is a complex physiologic process, of which disruption at any step can lead to progressive intrahepatic cholestasis (PFIC). The first described PFIC disorders were originally named as such before identification of a genetic cause. However, advances in clinical molecular genetics have led to the identification of additional disorders that can cause these monogenic inherited cholestasis syndromes, and they are now increasingly referred to by the affected protein causing disease. The list of PFIC disorders is expected to grow as more causative genes are discovered. Here forth, we present a comprehensive overview of known PFIC disorders.
Collapse
Affiliation(s)
- Sara Hassan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA. https://twitter.com/SaraHassanMD
| | - Paula Hertel
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Texas Children's Hospital, 6621 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Modern therapeutic approaches to liver-related disorders. J Hepatol 2022; 76:1392-1409. [PMID: 35589258 DOI: 10.1016/j.jhep.2021.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
The liver is a key production and processing site that is essential for health. Liver dysfunction can result in both systemic and liver-specific diseases. To combat these diseases, genetic approaches have been developed that have high liver tropism and are based on gene addition/editing or gene silencing. The gene addition/editing approach has yielded encouraging clinical data on the use of viral vectors in patients with haemophilia, as well as neuromuscular diseases, and has led to trials for liver-related disorders. However, the immune response and the long-term stability of exogenous expression remain important challenges. Gene editing and mRNA therapy have yielded first in-human proof-of-concept therapeutics and vaccines, but the road to the treatment of liver-related disorders remains long. Gene silencing is accomplished primarily via antisense oligonucleotides and small-interfering RNAs (siRNAs). siRNA modification with N-acetyl galactosamine results in hepatocellular-specific targeting and catapulted the liver to the centre of siRNA research. Several siRNA drugs for liver-related disorders have recently been approved, and the pipeline of drugs under investigation is crowded. Loss-of-function mutations might also be treated with enzyme substitution therapy. This review summarises current genetic approaches as well as key enzyme substitution therapies, focusing on recently approved compounds, potential adverse effects, and future challenges. Collectively, these recent advances place the liver at the forefront of precision medicine for metabolic and genetic diseases and are expected to transform the care and treatment of patients with both liver-specific and systemic diseases.
Collapse
|
22
|
Martínez-García J, Molina A, González-Aseguinolaza G, Weber ND, Smerdou C. Gene Therapy for Acquired and Genetic Cholestasis. Biomedicines 2022; 10:biomedicines10061238. [PMID: 35740260 PMCID: PMC9220166 DOI: 10.3390/biomedicines10061238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cholestatic diseases can be caused by the dysfunction of transporters involved in hepatobiliary circulation. Although pharmacological treatments constitute the current standard of care for these diseases, none are curative, with liver transplantation being the only long-term solution for severe cholestasis, albeit with many disadvantages. Liver-directed gene therapy has shown promising results in clinical trials for genetic diseases, and it could constitute a potential new therapeutic approach for cholestatic diseases. Many preclinical gene therapy studies have shown positive results in animal models of both acquired and genetic cholestasis. The delivery of genes that reduce apoptosis or fibrosis or improve bile flow has shown therapeutic effects in rodents in which cholestasis was induced by drugs or bile duct ligation. Most studies targeting inherited cholestasis, such as progressive familial intrahepatic cholestasis (PFIC), have focused on supplementing a correct version of a mutated gene to the liver using viral or non-viral vectors in order to achieve expression of the therapeutic protein. These strategies have generated promising results in treating PFIC3 in mouse models of the disease. However, important challenges remain in translating this therapy to the clinic, as well as in developing gene therapy strategies for other types of acquired and genetic cholestasis.
Collapse
Affiliation(s)
- Javier Martínez-García
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
| | - Angie Molina
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
| | - Gloria González-Aseguinolaza
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
| | - Nicholas D. Weber
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
- Correspondence: (N.D.W.); (C.S.); Tel.: +34-948194700 (N.D.W. & C.S.)
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain
- Correspondence: (N.D.W.); (C.S.); Tel.: +34-948194700 (N.D.W. & C.S.)
| |
Collapse
|
23
|
Pfister ED, Dröge C, Liebe R, Stalke A, Buhl N, Ballauff A, Cantz T, Bueltmann E, Stindt J, Luedde T, Baumann U, Keitel V. Extrahepatic manifestations of progressive familial intrahepatic cholestasis syndromes: Presentation of a case series and literature review. Liver Int 2022; 42:1084-1096. [PMID: 35184362 DOI: 10.1111/liv.15200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS Progressive familial intrahepatic cholestasis (PFIC) is a collective term for a heterogenous group of rare, inherited cholestasis syndromes. The number of genes underlying the clinical PFIC phenotype is still increasing. While progressive liver disease and its sequelae such as portal hypertension, pruritus and hepatocellular carcinoma determine transplant-free survival, extrahepatic manifestations may cause relevant morbidity. METHODS We performed a literature search for extrahepatic manifestations of PFIC associated with pathogenic gene variants in ATP8B1, ABCB11, ABCB4, TJP2, NR1H4 and MYO5B. To illustrate the extrahepatic symptoms described in the literature, PFIC cases from our centres were revisited. RESULTS Extrahepatic symptoms are common in PFIC subtypes, where the affected gene is expressed at high levels in other tissues. While most liver-associated complications resolve after successful orthotopic liver transplantation (OLT), some extrahepatic symptoms show no response or even worsen after OLT. CONCLUSION The spectrum of extrahepatic manifestations in PFIC highlights essential, non-redundant roles of the affected genes in other organs. Extrahepatic features contribute towards low health-related quality of life (HRQOL) and morbidity in PFIC. While OLT is often the only remaining, curative treatment, potential extrahepatic manifestations need to be carefully monitored and addressed.
Collapse
Affiliation(s)
- Eva-Doreen Pfister
- Division of Paediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Carola Dröge
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Medical Faculty of Otto von Guericke University, Magdeburg, Germany
| | - Roman Liebe
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Amelie Stalke
- Division of Paediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Hannover, Germany.,Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nicole Buhl
- Division of Paediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Hannover, Germany.,Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Antje Ballauff
- Department of Paediatrics, Helios Hospital, Krefeld, Germany
| | - Tobias Cantz
- Translational Hepatology and Stem Cell Biology, Department of Gastroenterology, Hepatology and Endocrinology, REBIRTH-Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Eva Bueltmann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Baumann
- Division of Paediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Hannover, Germany.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Medical Faculty of Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
24
|
Felzen A, Verkade HJ. The spectrum of Progressive Familial Intrahepatic Cholestasis diseases: Update on pathophysiology and emerging treatments. Eur J Med Genet 2021; 64:104317. [PMID: 34478903 DOI: 10.1016/j.ejmg.2021.104317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
The Progressive Familial Intrahepatic Cholestasis (PFIC) disease spectrum encompasses a variety of genetic diseases that affect the bile production and the secretion of bile acids. Typically, the first presentation of these diseases is in early childhood, frequently followed by a severe course necessitating liver transplantation before adulthood. Except for transplantation, treatment modalities have been rather limited and frequently only aim at the symptoms of cholestasis, such as cholestatic pruritus. In recent years, progress has been made in understanding the pathophysiology of these diseases and new treatment modalities have been emerging. Herewith we summarize the latest developments in the field and formulate the current key questions and opportunities for further progress.
Collapse
Affiliation(s)
- Antonia Felzen
- Pediatric Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Henkjan J Verkade
- Pediatric Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, the Netherlands.
| |
Collapse
|
25
|
RAB10 Interacts with ABCB4 and Regulates Its Intracellular Traffic. Int J Mol Sci 2021; 22:ijms22137087. [PMID: 34209301 PMCID: PMC8268348 DOI: 10.3390/ijms22137087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
ABCB4 (ATP-binding cassette subfamily B member 4) is an ABC transporter expressed at the canalicular membrane of hepatocytes where it ensures phosphatidylcholine secretion into bile. Genetic variations of ABCB4 are associated with several rare cholestatic diseases. The available treatments are not efficient for a significant proportion of patients with ABCB4-related diseases and liver transplantation is often required. The development of novel therapies requires a deep understanding of the molecular mechanisms regulating ABCB4 expression, intracellular traffic, and function. Using an immunoprecipitation approach combined with mass spectrometry analyses, we have identified the small GTPase RAB10 as a novel molecular partner of ABCB4. Our results indicate that the overexpression of wild type RAB10 or its dominant-active mutant significantly increases the amount of ABCB4 at the plasma membrane expression and its phosphatidylcholine floppase function. Contrariwise, RAB10 silencing induces the intracellular retention of ABCB4 and then indirectly diminishes its secretory function. Taken together, our findings suggest that RAB10 regulates the plasma membrane targeting of ABCB4 and consequently its capacity to mediate phosphatidylcholine secretion.
Collapse
|
26
|
Wei G, Cao J, Huang P, An P, Badlani D, Vaid KA, Zhao S, Wang DQH, Zhuo J, Yin L, Frassetto A, Markel A, Presnyak V, Gandham S, Hua S, Lukacs C, Finn PF, Giangrande PH, Martini PGV, Popov YV. Synthetic human ABCB4 mRNA therapy rescues severe liver disease phenotype in a BALB/c.Abcb4 -/- mouse model of PFIC3. J Hepatol 2021; 74:1416-1428. [PMID: 33340584 PMCID: PMC8188846 DOI: 10.1016/j.jhep.2020.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare lethal autosomal recessive liver disorder caused by loss-of-function variations of the ABCB4 gene, encoding a phosphatidylcholine transporter (ABCB4/MDR3). Currently, no effective treatment exists for PFIC3 outside of liver transplantation. METHODS We have produced and screened chemically and genetically modified mRNA variants encoding human ABCB4 (hABCB4 mRNA) encapsulated in lipid nanoparticles (LNPs). We examined their pharmacological effects in a cell-based model and in a new in vivo mouse model resembling human PFIC3 as a result of homozygous disruption of the Abcb4 gene in fibrosis-susceptible BALB/c.Abcb4-/- mice. RESULTS We show that treatment with liver-targeted hABCB4 mRNA resulted in de novo expression of functional hABCB4 protein and restored phospholipid transport in cultured cells and in PFIC3 mouse livers. Importantly, repeated injections of the hABCB4 mRNA effectively rescued the severe disease phenotype in young Abcb4-/- mice, with rapid and dramatic normalisation of all clinically relevant parameters such as inflammation, ductular reaction, and liver fibrosis. Synthetic mRNA therapy also promoted favourable hepatocyte-driven liver regeneration to restore normal homeostasis, including liver weight, body weight, liver enzymes, and portal vein blood pressure. CONCLUSIONS Our data provide strong preclinical proof-of-concept for hABCB4 mRNA therapy as a potential treatment option for patients with PFIC3. LAY SUMMARY This report describes the development of an innovative mRNA therapy as a potential treatment for PFIC3, a devastating rare paediatric liver disease with no treatment options except liver transplantation. We show that administration of our mRNA construct completely rescues severe liver disease in a genetic model of PFIC3 in mice.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/administration & dosage
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Cholestasis, Intrahepatic/drug therapy
- Cholestasis, Intrahepatic/genetics
- Cholestasis, Intrahepatic/metabolism
- Disease Models, Animal
- Gene Deletion
- HEK293 Cells
- Homozygote
- Humans
- Liposomes/chemistry
- Liver/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Nanoparticle Drug Delivery System/chemistry
- Nanoparticles/chemistry
- Phenotype
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- Transfection
- Treatment Outcome
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Guangyan Wei
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | - Pinzhu Huang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ping An
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Division of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Disha Badlani
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kahini A Vaid
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shuangshuang Zhao
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jenny Zhuo
- Rare Diseases, Moderna Inc, Cambridge, MA, USA
| | - Ling Yin
- Rare Diseases, Moderna Inc, Cambridge, MA, USA
| | | | - Arianna Markel
- Rare Diseases, Moderna Inc, Cambridge, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Serenus Hua
- Analytical Development, Moderna Inc, Cambridge, MA, USA
| | | | | | | | | | - Yury V Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Moreno AM, Alemán F, Catroli GF, Hunt M, Hu M, Dailamy A, Pla A, Woller SA, Palmer N, Parekh U, McDonald D, Roberts AJ, Goodwill V, Dryden I, Hevner RF, Delay L, Gonçalves Dos Santos G, Yaksh TL, Mali P. Long-lasting analgesia via targeted in situ repression of Na V1.7 in mice. Sci Transl Med 2021; 13:eaay9056. [PMID: 33692134 PMCID: PMC8830379 DOI: 10.1126/scitranslmed.aay9056] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/14/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Current treatments for chronic pain rely largely on opioids despite their substantial side effects and risk of addiction. Genetic studies have identified in humans key targets pivotal to nociceptive processing. In particular, a hereditary loss-of-function mutation in NaV1.7, a sodium channel protein associated with signaling in nociceptive sensory afferents, leads to insensitivity to pain without other neurodevelopmental alterations. However, the high sequence and structural similarity between NaV subtypes has frustrated efforts to develop selective inhibitors. Here, we investigated targeted epigenetic repression of NaV1.7 in primary afferents via epigenome engineering approaches based on clustered regularly interspaced short palindromic repeats (CRISPR)-dCas9 and zinc finger proteins at the spinal level as a potential treatment for chronic pain. Toward this end, we first optimized the efficiency of NaV1.7 repression in vitro in Neuro2A cells and then, by the lumbar intrathecal route, delivered both epigenome engineering platforms via adeno-associated viruses (AAVs) to assess their effects in three mouse models of pain: carrageenan-induced inflammatory pain, paclitaxel-induced neuropathic pain, and BzATP-induced pain. Our results show effective repression of NaV1.7 in lumbar dorsal root ganglia, reduced thermal hyperalgesia in the inflammatory state, decreased tactile allodynia in the neuropathic state, and no changes in normal motor function in mice. We anticipate that this long-lasting analgesia via targeted in vivo epigenetic repression of NaV1.7 methodology we dub pain LATER, might have therapeutic potential in management of persistent pain states.
Collapse
Affiliation(s)
- Ana M Moreno
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA
| | - Fernando Alemán
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA
| | - Glaucilene F Catroli
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA
| | - Matthew Hunt
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA
| | - Michael Hu
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA
| | - Amir Dailamy
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA
| | - Andrew Pla
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA
| | - Sarah A Woller
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA
| | - Nathan Palmer
- Division of Biological Sciences, University of California San Diego , San Diego, CA 92093, USA
| | - Udit Parekh
- Department of Electrical Engineering, University of California San Diego , San Diego, CA 92093, USA
| | - Daniella McDonald
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California San Diego, San Diego, San Diego, CA 92093, USA
| | - Amanda J Roberts
- Animal Models Core, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vanessa Goodwill
- Department of Neuropathology, University of California San Diego, San Diego, CA 92093, USA
| | - Ian Dryden
- Department of Neuropathology, University of California San Diego, San Diego, CA 92093, USA
| | - Robert F Hevner
- Department of Neuropathology, University of California San Diego, San Diego, CA 92093, USA
| | - Lauriane Delay
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA
| | | | - Tony L Yaksh
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA.
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
28
|
Männistö V, Kaminska D, Käkelä P, Neuvonen M, Niemi M, Alvarez M, Pajukanta P, Romeo S, Nieuwdorp M, Groen AK, Pihlajamäki J. Protein Phosphatase 1 Regulatory Subunit 3B Genotype at rs4240624 Has a Major Effect on Gallbladder Bile Composition. Hepatol Commun 2021; 5:244-257. [PMID: 33553972 PMCID: PMC7850313 DOI: 10.1002/hep4.1630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 02/04/2023] Open
Abstract
The protein phosphatase 1 regulatory subunit 3B (PPP1R3B) gene is a target of farnesoid X receptor (FXR), which is a major regulator of bile acid metabolism. Both PPP1R3B and FXR have been suggested to take part in glycogen metabolism, which may explain the association of PPP1R3B gene variants with altered hepatic computed tomography attenuation. We analyzed the effect of PPP1R3B rs4240624 variant on bile acid composition in individuals with obesity. The study cohort consisted of 242 individuals from the Kuopio Obesity Surgery Study (73 men, 169 women, age 47.6 ± 9.0 years, body mass index 43.2 ± 5.4 kg/m2) with PPP1R3B genotype and liver RNA sequencing (RNA-seq) data available. Fasting plasma and gallbladder bile samples were collected from 50 individuals. Bile acids in plasma did not differ based on the PPP1R3B rs4240624 genotype. However, the concentration of total bile acids (109 ± 55 vs. 35 ± 19 mM; P = 1.0 × 10-5) and all individual bile acids (also 7α-hydroxy-4-cholesten-3-one [C4]) measured from bile were significantly lower in those with the AG genotype compared to those with the AA genotype. In addition, total cholesterol (P = 0.011) and phospholipid (P = 0.001) levels were lower in individuals with the AG genotype, but cholesterol saturation index did not differ, indicating that the decrease in cholesterol and phospholipid levels was secondary to the change in bile acids. Liver RNA-seq data demonstrated that expression of PPP1R3B, tankyrase (TNKS), Homo sapiens chromosome 8 clone RP11-10A14.5 (AC022784.1 [LOC157273]), Homo sapiens chromosome 8 clone RP11-375N15.1 (AC021242.1), and Homo sapiens chromosome 8, clone RP11-10A14 (AC022784.6) associated with the PPP1R3B genotype. In addition, genes enriched in transmembrane transport and phospholipid binding pathways were associated with the genotype. Conclusion: The rs4240624 variant in PPP1R3B has a major effect on the composition of gallbladder bile. Other transcripts in the same loci may be important mediators of the variant effect.
Collapse
Affiliation(s)
- Ville Männistö
- Department of MedicineUniversity of Eastern Finland and Kuopio University HospitalKuopioFinland.,Department of Experimental Vascular MedicineAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Dorota Kaminska
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Pirjo Käkelä
- Department of SurgeryUniversity of Eastern Finland and Kuopio University HospitalKuopioFinland
| | - Mikko Neuvonen
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland.,Department of Clinical PharmacologyHUS Diagnostic Services, Helsinki University HospitalHelsinkiFinland.,Individualized Drug Therapy Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Mikko Niemi
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland.,Department of Clinical PharmacologyHUS Diagnostic Services, Helsinki University HospitalHelsinkiFinland.,Individualized Drug Therapy Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Marcus Alvarez
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCAUSA
| | - Päivi Pajukanta
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCAUSA.,Bioinformatics Interdepartmental ProgramUniversity of California Los AngelesLos AngelesCAUSA.,Institute for Precision HealthUniversity of California Los AngelesLos AngelesCAUSA
| | - Stefano Romeo
- Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden.,Cardiology DepartmentSahlgrenska University HospitalGothenburgSweden.,Clinical Nutrition Department of Medical and Surgical ScienceUniversity Magna GraeciaCatanzaroItaly
| | - Max Nieuwdorp
- Department of Experimental Vascular MedicineAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Albert K Groen
- Department of Experimental Vascular MedicineAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland.,Department of Medicine, Endocrinology, and Clinical NutritionKuopio University HospitalKuopioFinland
| |
Collapse
|
29
|
Moscoso CG, Steer CJ. Liver targeted gene therapy: Insights into emerging therapies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 34:9-19. [PMID: 33357766 DOI: 10.1016/j.ddtec.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
The large number of monogenic metabolic disorders originating in the liver poses a unique opportunity for development of gene therapy modalities to pursue curative approaches. Various disorders have been successfully treated via liver-directed gene therapy, though most of the advances have been in animal models, with only limited success in clinical trials. Pre-clinical data in animals using non-viral approaches, including the Sleeping Beauty transposon system, are discussed. The various advances with viral vectors for liver-directed gene therapy are also a focus of this review, including retroviral, adenoviral, recombinant adeno-associated viral, and SV40 vectors. Genome editing techniques, including zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats (CRISPR), are also described. Further, the various controversies in the field with regards to somatic vs. germline editing using CRISPR in humans are explored, while also highlighting the myriad of preclinical advances. Lastly, newer technologies are reviewed, including base editing and prime editing, which use CRISPR with exciting adjunctive properties to avoid double-stranded breaks and thus the recruitment of endogenous repair mechanisms. While encouraging results have been achieved recently, there are still significant challenges to overcome prior to the broad use of vector-based and genome editing techniques in the clinical arena. As these technologies mature, the promise of a cure for many disabling inherited metabolic disorders is within reach, and urgently needed.
Collapse
Affiliation(s)
- Carlos G Moscoso
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | - Clifford J Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA; Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455 USA.
| |
Collapse
|
30
|
Bosma PJ, Wits M, Oude-Elferink RPJ. Gene Therapy for Progressive Familial Intrahepatic Cholestasis: Current Progress and Future Prospects. Int J Mol Sci 2020; 22:E273. [PMID: 33383947 PMCID: PMC7796371 DOI: 10.3390/ijms22010273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Progressive Familial Intrahepatic Cholestasis (PFIC) are inherited severe liver disorders presenting early in life, with high serum bile salt and bilirubin levels. Six types have been reported, two of these are caused by deficiency of an ABC transporter; ABCB11 (bile salt export pump) in type 2; ABCB4 (phosphatidylcholine floppase) in type 3. In addition, ABCB11 function is affected in 3 other types of PFIC. A lack of effective treatment makes a liver transplantation necessary in most patients. In view of long-term adverse effects, for instance due to life-long immune suppression needed to prevent organ rejection, gene therapy could be a preferable approach, as supported by proof of concept in animal models for PFIC3. This review discusses the feasibility of gene therapy as an alternative for liver transplantation for all forms of PFIC based on their pathological mechanism. Conclusion: Using presently available gene therapy vectors, major hurdles need to be overcome to make gene therapy for all types of PFIC a reality.
Collapse
Affiliation(s)
- Piter J. Bosma
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AGEM, Amsterdam UMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.W.); (R.P.J.O.-E.)
| | | | | |
Collapse
|
31
|
Vats N, Sanal MG, Venugopal SK, Taneja P, Sarin SK. Cloning of human ABCB11 gene in E. coli required the removal of an intragenic Pribnow-Schaller Box before it's Insertion into genomic safe harbor AAVS1 site using CRISPR-Cas9. F1000Res 2020; 9:1498. [PMID: 33868646 PMCID: PMC8030117 DOI: 10.12688/f1000research.26659.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Genomic safe harbors are sites in the genome which are safe for gene insertion such that the inserted gene will function properly, and the disruption of the genomic location doesn't cause any foreseeable risk to the host. The AAVS1 site is the genetic location which is disrupted upon integration of adeno associated virus (AAV) and is considered a 'safe-harbor' in human genome because about one-third of humans are infected with AAV and so far there is no apodictic evidence that AAV is pathogenic or disruption of AAVS1 causes any disease in man. Therefore, we chose to target the AAVS1 site for the insertion of ABCB11, a bile acid transporter which is defective in progressive familial intra hepatic cholestasis type-2 (PFIC-2), a lethal disease of children where cytotoxic bile salts accumulate inside hepatocytes killing them and eventually the patient. Methods: We used the CRISPR Cas9 a genome editing system to insert the ABCB11 gene at AAVS1 site in human cell-lines. Results: We found that human ABCB11 sequence has a "Pribnow- Schaller Box" which allows its expression in bacteria and expression of ABCB11 protein which is toxic to E. coli; the removal of this was required for successful cloning. We inserted ABCB11 at AAVS1 site in HEK 293T using CRISPR-Cas9 tool. We also found that the ABCB11 protein has similarity with E. coli endotoxin (lipid A) transporter MsbA. Conclusions: We inserted ABCB11 at AAVS1 site using CRISPR-Cas9; however, the frequency of homologous recombination was very low for this approach to be successful in vivo.
Collapse
Affiliation(s)
- Nisha Vats
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, Delhi, 110070, India
| | - Madhusudana Girija Sanal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, Delhi, 110070, India
| | | | - Pankaj Taneja
- Department of Biotechnology, Sharda University, Noida, Uttar Pradesh, 201310, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, Delhi, 110070, India
| |
Collapse
|
32
|
Amirneni S, Haep N, Gad MA, Soto-Gutierrez A, Squires JE, Florentino RM. Molecular overview of progressive familial intrahepatic cholestasis. World J Gastroenterol 2020; 26:7470-7484. [PMID: 33384548 PMCID: PMC7754551 DOI: 10.3748/wjg.v26.i47.7470] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/05/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
Cholestasis is a clinical condition resulting from the imapairment of bile flow. This condition could be caused by defects of the hepatocytes, which are responsible for the complex process of bile formation and secretion, and/or caused by defects in the secretory machinery of cholangiocytes. Several mutations and pathways that lead to cholestasis have been described. Progressive familial intrahepatic cholestasis (PFIC) is a group of rare diseases caused by autosomal recessive mutations in the genes that encode proteins expressed mainly in the apical membrane of the hepatocytes. PFIC 1, also known as Byler’s disease, is caused by mutations of the ATP8B1 gene, which encodes the familial intrahepatic cholestasis 1 protein. PFIC 2 is characterized by the downregulation or absence of functional bile salt export pump (BSEP) expression via variations in the ABCB11 gene. Mutations of the ABCB4 gene result in lower expression of the multidrug resistance class 3 glycoprotein, leading to the third type of PFIC. Newer variations of this disease have been described. Loss of function of the tight junction protein 2 protein results in PFIC 4, while mutations of the NR1H4 gene, which encodes farnesoid X receptor, an important transcription factor for bile formation, cause PFIC 5. A recently described type of PFIC is associated with a mutation in the MYO5B gene, important for the trafficking of BSEP and hepatocyte membrane polarization. In this review, we provide a brief overview of the molecular mechanisms and clinical features associated with each type of PFIC based on peer reviewed journals published between 1993 and 2020.
Collapse
Affiliation(s)
- Sriram Amirneni
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Nils Haep
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Mohammad A Gad
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - James E Squires
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Division of Gastroenterology, Hepatology, and Nutrition, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Rodrigo M Florentino
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| |
Collapse
|
33
|
Goubran M, Aderibigbe A, Jacquemin E, Guettier C, Girgis S, Bain V, Mason AL. Case report: progressive familial intrahepatic cholestasis type 3 with compound heterozygous ABCB4 variants diagnosed 15 years after liver transplantation. BMC MEDICAL GENETICS 2020; 21:238. [PMID: 33256620 PMCID: PMC7708126 DOI: 10.1186/s12881-020-01173-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis (PFIC) type 3 is an autosomal recessive disorder arising from mutations in the ATP-binding cassette subfamily B member 4 (ABCB4) gene. This gene encodes multidrug resistance protein-3 (MDR3) that acts as a hepatocanalicular floppase that transports phosphatidylcholine from the inner to the outer canalicular membrane. In the absence of phosphatidylcholine, the detergent activity of bile salts is amplified and this leads to cholangiopathy, bile duct loss and biliary cirrhosis. Patients usually present in infancy or childhood and often progress to end-stage liver disease before adulthood. CASE PRESENTATION We report a 32-year-old female who required cadaveric liver transplantation at the age of 17 for cryptogenic cirrhosis. When the patient developed chronic ductopenia in the allograft 15 years later, we hypothesized that the patient's original disease was due to a deficiency of a biliary transport protein and the ductopenia could be explained by an autoimmune response to neoantigen that was not previously encountered by the immune system. We therefore performed genetic analyses and immunohistochemistry of the native liver, which led to a diagnosis of PFIC3. However, there was no evidence of humoral immune response to the MDR3 and therefore, we assumed that the ductopenia observed in the allograft was likely due to chronic rejection rather than autoimmune disease in the allograft. CONCLUSIONS Teenage patients referred for liver transplantation with cryptogenic liver disease should undergo work up for PFIC3. An accurate diagnosis of PFIC 3 is key for optimal management, therapeutic intervention, and avoidance of complications before the onset of end-stage liver disease.
Collapse
Affiliation(s)
- Mariam Goubran
- Department of Medicine, University of Alberta Hospital, Edmonton, Canada
| | - Ayodeji Aderibigbe
- Department of Medicine, University of Alberta Hospital, Edmonton, Canada
| | - Emmanuel Jacquemin
- Paediatric Hepatology & Paediatric Liver Transplant Department, Reference Center for Rare Paediatric Liver Diseases, FILFOIE, ERN RARE LIVER, Assistance Publique-Hôpitaux de Paris, Faculty of Medicine and University Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France
| | - Catherine Guettier
- Pathology Department, Assistance Publique-Hôpitaux de Paris, Faculty of Medicine and University Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France
| | - Safwat Girgis
- Department of Laboratory Medicine and Pathology, University of Alberta Hospital, Edmonton, Canada
| | - Vincent Bain
- Department of Medicine, University of Alberta Hospital, Edmonton, Canada
| | - Andrew L Mason
- Department of Medicine, University of Alberta Hospital, Edmonton, Canada.
- Division of Gastroenterology, 7-142 KGR, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
34
|
An Exon-Specific Small Nuclear U1 RNA (ExSpeU1) Improves Hepatic OTC Expression in a Splicing-Defective spf/ ash Mouse Model of Ornithine Transcarbamylase Deficiency. Int J Mol Sci 2020; 21:ijms21228735. [PMID: 33228018 PMCID: PMC7699343 DOI: 10.3390/ijms21228735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022] Open
Abstract
OTC splicing mutations are generally associated with the severest and early disease onset of ornithine transcarbamylase deficiency (OTCD), the most common urea cycle disorder. Noticeably, splicing defects can be rescued by spliceosomal U1snRNA variants, which showed their efficacy in cellular and animal models. Here, we challenged an U1snRNA variant in the OTCD mouse model (spf/ash) carrying the mutation c.386G > A (p.R129H), also reported in OTCD patients. It is known that the R129H change does not impair protein function but affects pre-mRNA splicing since it is located within the 5′ splice site. Through in vitro studies, we identified an Exon Specific U1snRNA (ExSpeU1O3) that targets an intronic region downstream of the defective exon 4 and rescues exon inclusion. The adeno-associated virus (AAV8)-mediated delivery of the ExSpeU1O3 to mouse hepatocytes, although in the presence of a modest transduction efficiency, led to increased levels of correct OTC transcripts (from 6.1 ± 1.4% to 17.2 ± 4.5%, p = 0.0033). Consistently, this resulted in increased liver expression of OTC protein, as demonstrated by Western blotting (~3 fold increase) and immunostaining. Altogether data provide the early proof-of-principle of the efficacy of ExSpeU1 in the spf/ash mouse model and encourage further studies to assess the potential of RNA therapeutics for OTCD caused by aberrant splicing.
Collapse
|
35
|
Piccolo P, Rossi A, Brunetti-Pierri N. Liver-directed gene-based therapies for inborn errors of metabolism. Expert Opin Biol Ther 2020; 21:229-240. [PMID: 32880494 DOI: 10.1080/14712598.2020.1817375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Inborn errors of metabolism include several genetic disorders due to disruption of cellular biochemical reactions. Although individually rare, collectively they are a large and heterogenous group of diseases affecting a significant proportion of patients. Available treatments are often unsatisfactory. Liver-directed gene therapy has potential for treatment of several inborn errors of metabolism. While lentiviral vectors and lipid nanoparticle-mRNA have shown attractive features in preclinical studies and still have to be investigated in humans, adeno-associated virus (AAV) vectors have shown clinical success in both preclinical and clinical trials for in vivo liver-directed gene therapy. AREAS COVERED In this review, we discussed the most relevant clinical applications and the challenges of liver-directed gene-based approaches for therapy of inborn errors of metabolism. EXPERT OPINION Challenges and prospects of clinical gene therapy trials and preclinical studies that are believed to have the greatest potential for clinical translation are presented.
Collapse
Affiliation(s)
- Pasquale Piccolo
- Telethon Institute of Genetics and Medicine , Pozzuoli, Italy.,Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| | - Alessandro Rossi
- Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine , Pozzuoli, Italy.,Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| |
Collapse
|
36
|
Moscoso CG, Steer CJ. The Evolution of Gene Therapy in the Treatment of Metabolic Liver Diseases. Genes (Basel) 2020; 11:genes11080915. [PMID: 32785089 PMCID: PMC7463482 DOI: 10.3390/genes11080915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Monogenic metabolic disorders of hepatic origin number in the hundreds, and for many, liver transplantation remains the only cure. Liver-targeted gene therapy is an attractive treatment modality for many of these conditions, and there have been significant advances at both the preclinical and clinical stages. Viral vectors, including retroviruses, lentiviruses, adenovirus-based vectors, adeno-associated viruses and simian virus 40, have differing safety, efficacy and immunogenic profiles, and several of these have been used in clinical trials with variable success. In this review, we profile viral vectors and non-viral vectors, together with various payloads, including emerging therapies based on RNA, that are entering clinical trials. Genome editing technologies are explored, from earlier to more recent novel approaches that are more efficient, specific and safe in reaching their target sites. The various curative approaches for the multitude of monogenic hepatic metabolic disorders currently at the clinical development stage portend a favorable outlook for this class of genetic disorders.
Collapse
Affiliation(s)
- Carlos G. Moscoso
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Correspondence: (C.G.M.); (C.J.S.); Tel.: +1-612-625-8999 (C.G.M. & C.J.S.); Fax: +1-612-625-5620 (C.G.M. & C.J.S.)
| | - Clifford J. Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Correspondence: (C.G.M.); (C.J.S.); Tel.: +1-612-625-8999 (C.G.M. & C.J.S.); Fax: +1-612-625-5620 (C.G.M. & C.J.S.)
| |
Collapse
|
37
|
Goldberg A, Mack CL. Inherited Cholestatic Diseases in the Era of Personalized Medicine. Clin Liver Dis (Hoboken) 2020; 15:105-109. [PMID: 32257121 PMCID: PMC7128029 DOI: 10.1002/cld.872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/04/2023] Open
Abstract
http://aasldpubs.onlinelibrary.wiley.com/hub/journal/10.1002/(ISSN)2046-2484/video/15-3-reading-mack a video presentation of this article.
Collapse
Affiliation(s)
- Alyssa Goldberg
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology & NutritionChildren's Hospital Colorado, Digestive Health Institute–Pediatric Liver Center, University of Colorado School of MedicineAuroraCO
| | - Cara L. Mack
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology & NutritionChildren's Hospital Colorado, Digestive Health Institute–Pediatric Liver Center, University of Colorado School of MedicineAuroraCO,Hewit/Andrews Chair in Pediatric Liver DiseasesUniversity of Colorado School of MedicineAuroraCO
| |
Collapse
|
38
|
Weber ND, Odriozola L, Martínez-García J, Ferrer V, Douar A, Bénichou B, González-Aseguinolaza G, Smerdou C. Gene therapy for progressive familial intrahepatic cholestasis type 3 in a clinically relevant mouse model. Nat Commun 2019; 10:5694. [PMID: 31836711 PMCID: PMC6910969 DOI: 10.1038/s41467-019-13614-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare monogenic disease caused by mutations in the ABCB4 gene, resulting in a reduction in biliary phosphatidylcholine. Reduced biliary phosphatidylcholine cannot counteract the detergent effects of bile salts, leading to cholestasis, cholangitis, cirrhosis and ultimately liver failure. Here, we report results from treating two- or five-week-old Abcb4-/- mice with an AAV vector expressing human ABCB4, resulting in significant decreases of PFIC3 disease biomarkers. All male mice achieved a sustained therapeutic effect up through 12 weeks, but the effect was achieved in only 50% of females. However, two-week-old females receiving a second inoculation three weeks later maintained the therapeutic effect. Upon sacrifice, markers of PFIC3 disease such as, hepatosplenomegaly, biliary phosphatidylcholine and liver histology were significantly improved. Thus, AAV-mediated gene therapy successfully prevented PFIC3 symptoms in a clinically relevant mouse model, representing a step forward in improving potential therapy options for PFIC3 patients.
Collapse
Affiliation(s)
| | - Leticia Odriozola
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain
| | - Javier Martínez-García
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain
| | | | - Anne Douar
- Vivet Therapeutics S.A.S., Paris, France
| | | | - Gloria González-Aseguinolaza
- Vivet Therapeutics S.L., Pamplona, Spain.
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.
| |
Collapse
|
39
|
Zabaleta N, Hommel M, Salas D, Gonzalez-Aseguinolaza G. Genetic-Based Approaches to Inherited Metabolic Liver Diseases. Hum Gene Ther 2019; 30:1190-1203. [PMID: 31347416 DOI: 10.1089/hum.2019.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Nerea Zabaleta
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Mirja Hommel
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - David Salas
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Gloria Gonzalez-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
- Vivet Therapeutics, Pamplona, Spain
| |
Collapse
|