1
|
Wang HY, Diao Y, Tan PZ, Liang H. Four centrosome-related genes to predict the prognosis and drug sensitivity of patients with colon cancer. World J Gastrointest Oncol 2024; 16:1908-1924. [PMID: 38764831 PMCID: PMC11099447 DOI: 10.4251/wjgo.v16.i5.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND As the primary microtubule organizing center in animal cells, centrosome abnormalities are involved in human colon cancer. AIM To explore the role of centrosome-related genes (CRGs) in colon cancer. METHODS CRGs were collected from public databases. Consensus clustering analysis was performed to separate the Cancer Genome Atlas cohort. Univariate Cox and least absolute shrinkage selection operator regression analyses were performed to identify candidate prognostic CRGs and construct a centrosome-related signature (CRS) to score colon cancer patients. A nomogram was developed to evaluate the CRS risk in colon cancer patients. An integrated bioinformatics analysis was conducted to explore the correlation between the CRS and tumor immune microenvironment and response to immunotherapy, chemotherapy, and targeted therapy. Single-cell transcriptome analysis was conducted to examine the immune cell landscape of core prognostic genes. RESULTS A total of 726 CRGs were collected from public databases. A CRS was constructed, which consisted of the following four genes: TSC1, AXIN2, COPS7A, and MTUS1. Colon cancer patients with a high-risk signature had poor survival. Patients with a high-risk signature exhibited decreased levels of plasma cells and activated memory CD4+ T cells. Regarding treatment response, patients with a high-risk signature were resistant to immunotherapy, chemotherapy, and targeted therapy. COPS7A expression was relatively high in endothelial cells and fibroblasts. MTUS1 expression was high in endothelial cells, fibroblasts, and malignant cells. CONCLUSION We constructed a centrosome-related prognostic signature that can accurately predict the prognosis of colon cancer patients, contributing to the development of individualized treatment for colon cancer.
Collapse
Affiliation(s)
- Hui-Yan Wang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin 150086, Heilongjiang Province, China
| | - Yan Diao
- Department of Clinical Laboratory, Heilongjiang Province Hospital, Harbin 150000, Heilongjiang Province, China
| | - Pei-Zhu Tan
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Huan Liang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
2
|
Zhou K, Wu C, Cheng W, Zhang B, Wei R, Cheng D, Li Y, Cao Y, Zhang W, Yao Z, Zhang X. Transglutaminase 3 regulates cutaneous squamous carcinoma differentiation and inhibits progression via PI3K-AKT signaling pathway-mediated Keratin 14 degradation. Cell Death Dis 2024; 15:252. [PMID: 38589352 PMCID: PMC11001918 DOI: 10.1038/s41419-024-06626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Cutaneous squamous carcinoma is the second most common epithelial malignancy, associated with significant morbidity, mortality, and economic burden. However, the mechanisms underlying cSCC remain poorly understood. In this study, we identified TGM3 as a novel cSCC tumor suppressor that acts via the PI3K-AKT axis. RT-qPCR, IHC and western blotting were employed to assess TGM3 levels. TGM3-overexpression/knockdown cSCC cell lines were utilized to detect TGM3's impact on epithelial differentiation as well as tumor cell proliferation, migration, and invasion in vitro. Additionally, subcutaneous xenograft tumor models were employed to examine the effect of TGM3 knockdown on tumor growth in vivo. Finally, molecular and biochemical approaches were employed to gain insight into the tumor-suppressing mechanisms of TGM3. TGM3 expression was increased in well-differentiated cSCC tumors, whereas it was decreased in poor-differentiated cSCC tumors. Loss of TGM3 is associated with poor differentiation and a high recurrence rate in patients with cSCC. TGM3 exhibited tumor-suppressing activity by regulating cell proliferation, migration, and invasion both in vitro and in vivo. As a novel cSCC tumor differentiation marker, TGM3 expression was positively correlated with cell differentiation. In addition, our results demonstrated an interaction between TGM3 and KRT14 that aids in the degradation of KRT14. TGM3 deficiency disrupts keratinocytes differentiation, and ultimately leads to tumorigenesis. Furthermore, RNA-sequence analysis revealed that loss of TGM3 enhanced EMT via the PI3K-AKT signaling pathway. Deguelin, a PI3K-AKT inhibitor, blocked cSCC tumor growth induced by TGM3 knockdown in vivo. Taken together, TGM3 inhibits cSCC tumor growth via PI3K-AKT signaling, which could also serve as a tumor differentiation marker and a potential therapeutic target for cSCC. Proposed model depicted the mechanism by which TGM3 suppress cSCC development. TGM3 reduces the phosphorylation level of AKT and degrades KRT14. In the epithelial cell layer, TGM3 exhibits a characteristic pattern of increasing expression from bottom to top, while KRT14 and pAKT are the opposite. Loss of TGM3 leads to reduced degradation of KRT14 and activation of pAKT, disrupting keratinocyte differentiation, and eventually resulting in the occurrence of low-differentiated cSCC.
Collapse
Affiliation(s)
- Kaili Zhou
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenglong Wu
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjie Cheng
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Boyuan Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruoqu Wei
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Daian Cheng
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Li
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Cao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Wenqing Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Zhirong Yao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xue Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Zhang C, Wang W, Wu B. Molecular mechanism of WWP1-mediated ubiquitination modification affecting proliferation and invasion/migration of liver cancer cells. Kaohsiung J Med Sci 2024; 40:255-268. [PMID: 37997542 DOI: 10.1002/kjm2.12786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Liver cancer is the most prevalent fatal malignancy across the globe. The present study aims to explore the molecular mechanism of E3 ligase WWP1 in liver cancer cell proliferation and invasion/migration. RT-qPCR and Western blot were performed to detect WWP1, KLF14, and VEPH1 expressions in liver cancer cell lines. Furthermore, WWP1 expression was silenced in cells, followed by the detection of cell viability, proliferation, and invasion/migration by CCK-8, colony formation, and Transwell assays, respectively. ChIP was used to analyze the binding relationship between WWP1 and KLF14. We measured the KLF14 ubiquitination level and KLF14 enrichment on the VEPH1 promoter after MG132 treatment. Dual-luciferase reporter assay was used to validate the binding relationship between KLF14 and VEPH1. Consequently, WWP1 was highly expressed in liver cancer cells; WWP1 silencing reduced the proliferation and invasion/migration of liver cancer cells. Mechanistically, WWP1 promoted KLF14 ubiquitination degradation; KLF14 was enriched on the VEPH1 promoter to promote its transcription and protein expression. Inhibiting KLF14 or VEPH1 partially minimized the inhibitory effect of WWP1 silencing on liver cancer cell proliferation and invasion/migration. In summary, WWP1 degrades KLF14 through ubiquitination, hence repressing VEPH1 expression and accelerating proliferation and invasion/migration of liver cancer cells.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Hepatobiliary Surgery, Wuhan No 1 Hospital, Wuhan, Hubei, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Wuhan No 1 Hospital, Wuhan, Hubei, China
| | - Biao Wu
- Department of Gastrointestinal surgery, Wuhan No 1 Hospital, Wuhan, Hubei, China
| |
Collapse
|
4
|
Zhao N, Ni C, Zhang D, Che N, Li Y, Wang X. Identification of a vascular invasion-related signature based on lncRNA pairs for predicting prognosis in hepatocellular carcinoma. BMC Gastroenterol 2024; 24:33. [PMID: 38221614 PMCID: PMC10788995 DOI: 10.1186/s12876-023-03118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 12/31/2023] [Indexed: 01/16/2024] Open
Abstract
OBJECTIVES Most signatures are constructed on the basis of RNA or protein expression levels. The value of vascular invasion-related signatures based on lncRNA pairs, regardless of their specific expression level in hepatocellular carcinoma (HCC), is not yet clear. METHODS Vascular invasion-related differentially expressed lncRNA (DElncRNA) pairs were identified with a two-lncRNA combination strategy by using a novel modeling algorithm. Based on the optimal cutoff value of the ROC curve, patients with HCC were classified into high- and low-risk subgroups. We used KM survival analysis to evaluate the overall survival rate of patients in the high- and low-risk subgroups. The independent indicators of survival were identified using univariate and multivariate Cox analyses. RESULTS Five pairs of vascular invasion-related DElncRNAs were selected to develop a predictive model for HCC. High-risk subgroups were closely associated with aggressive clinicopathological characteristics and genes, chemotherapeutic sensitivity, and highly expressed immune checkpoint inhibitors. CONCLUSIONS We identified a signature composed of 5 pairs of vascular invasion-related lncRNAs that does not require absolute expression levels of lncRNAs and shows promising clinical predictive value for HCC prognosis. This predictive model provides deep insight into the value of vascular invasion-related lncRNAs in prognosis.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Pathology, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| | - Chunsheng Ni
- Department of Pathology, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Na Che
- Department of Pathology, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Xiao Wang
- Department of Pathology, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| |
Collapse
|
5
|
Nie X, Zhou Z, Chen Y, Chen S, Chen Y, Lei J, Wu X, He S. VEPH1 suppresses the progression of gastric cancer by regulating the Hippo-YAP signalling pathway. Dig Liver Dis 2024; 56:187-197. [PMID: 37244789 DOI: 10.1016/j.dld.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Ventricular zone-expressed PH domain-containing protein homologue 1 (VEPH1) is a recently discovered intracellular adaptor protein that plays an important role in human development. It has been reported that VEPH1 is closely related to the process of cellular malignancy, but its role in gastric cancer has not been elucidated. This study investigated the expression and function of VEPH1 in human gastric cancer (GC). METHODS We performed qRT‒PCR, Western blotting, and immunostaining assays in GC tissue samples to evaluate VEPH1 expression. Functional experiments were used to measure the malignancy of GC cells. A subcutaneous tumorigenesis model and peritoneal graft tumour model were established in BALB/c mice to determine tumour growth and metastasis in vivo. RESULTS VEPH1 expression is decreased in GC and correlates with the overall survival rates of GC patients. VEPH1 inhibits GC cell proliferation, migration, and invasion in vitro and suppresses tumour growth and metastasis in vivo. VEPH1 regulates the function of GC cells by inhibiting the Hippo-YAP signalling pathway, and YAP/TAZ inhibitor-1 treatment reverses the VEPH1 knockdown-mediated increase in the proliferation, migration and invasion of GC cells in vitro. Loss of VEPH1 is associated with increased YAP activity and accelerated epithelial-mesenchymal transition (EMT) in GC. CONCLUSION VEPH1 inhibited GC cell proliferation, migration, and invasion in vitro and in vivo and exerted its antitumour effects by inhibiting the Hippo-YAP signalling pathway and EMT process in GC.
Collapse
Affiliation(s)
- Xubiao Nie
- Department of Gastroenterology, Affiliated the Second Affiliated Hospital of Chongqing Medical University, PR. China
| | - Zhihang Zhou
- Department of Gastroenterology, Affiliated the Second Affiliated Hospital of Chongqing Medical University, PR. China
| | - Ying Chen
- Department of Medical Examination Center, Affiliated the Second Affiliated Hospital of Chongqing Medical University, PR. China
| | - Siyuan Chen
- Department of Gastroenterology, Affiliated the Second Affiliated Hospital of Chongqing Medical University, PR. China
| | - Yongyu Chen
- Department of Gastroenterology, Affiliated the Second Affiliated Hospital of Chongqing Medical University, PR. China
| | - Jing Lei
- Department of Gastroenterology, Affiliated the Second Affiliated Hospital of Chongqing Medical University, PR. China
| | - Xiaoling Wu
- Department of Gastroenterology, Affiliated the Second Affiliated Hospital of Chongqing Medical University, PR. China
| | - Song He
- Department of Gastroenterology, Affiliated the Second Affiliated Hospital of Chongqing Medical University, PR. China.
| |
Collapse
|
6
|
El-Sewedy T, Salama AF, Mohamed AE, Elbaioumy NM, El-Far AH, Albalawi AN, Elmetwalli A. Hepatocellular Carcinoma cells: activity of Amygdalin and Sorafenib in Targeting AMPK /mTOR and BCL-2 for anti-angiogenesis and apoptosis cell death. BMC Complement Med Ther 2023; 23:329. [PMID: 37726740 PMCID: PMC10508032 DOI: 10.1186/s12906-023-04142-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Sorafenib (Sor) is the only approved multikinase inhibitor indicated for the treatment of HCC. Previous studies have shown that amygdalin (Amy) possesses anticancer activities against several cancer cell lines; we suggested that these compounds might disrupt AMPK/mTOR and BCL-2. Therefore, the current study used integrated in vitro and in silico approaches to figure out Amy and Sor's possible synergistic activity in targeting AMPK/mTOR and BCL-2 for anti-angiogenesis and apoptosis cell death in HepG2 cells. RESULTS Notably, Amy demonstrated exceptional cytotoxic selectivity against HepG2 cells in comparison to normal WI-38 cells (IC50 = 5.21 mg/ml; 141.25 mg/ml), respectively. In contrast, WI-38 cells were far more sensitive to the toxicity of Sor. A substantial synergistic interaction between Amy and Sor was observed (CI50 = 0.56), which was connected to cell cycle arrest at the S and G2/M stages and increased apoptosis and potential necroptosis. Amy and Sor cotreatment resulted in the highest glutathione levels and induction of pro-autophagic genes AMPK, HGMB1, ATG5, Beclin 1, and LC3, suppressed the mTOR and BCL2 anti-apoptotic gene. Finally, the docking studies proposed that Amy binds to the active site of the AMPK enzyme, thus inhibiting its activity. This inhibition of AMPK ultimately leads to inhibition of mTOR and thus induces apoptosis in the HepG2 cells. CONCLUSION Although more in vivo research using animal models is needed to confirm the findings, our findings contribute to the evidence supporting Amy's potential anticancer effectiveness as an alternative therapeutic option for HCC.
Collapse
Affiliation(s)
- Tarek El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Afrah Fatthi Salama
- Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Amro E Mohamed
- Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Nashwa M Elbaioumy
- Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Aisha Nawaf Albalawi
- Biology Department, University College of Haqel, University of Tabuk, Tabuk, KSA, Saudi Arabia
| | - Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| |
Collapse
|
7
|
Yu X, Duan W, Wu F, Yang D, Wang X, Wu J, Zhou D, Shen Y. LncRNA-HOTAIRM1 promotes aerobic glycolysis and proliferation in osteosarcoma via the miR-664b-3p/Rheb/mTOR pathway. Cancer Sci 2023; 114:3537-3552. [PMID: 37316683 PMCID: PMC10475784 DOI: 10.1111/cas.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/08/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023] Open
Abstract
Osteosarcoma (OS), which is a common and aggressive primary bone malignancy, occurs mainly in children and adolescent. Long noncoding RNAs (lncRNAs) are reported to play a pivotal role in various cancers. Here, we found that the lncRNA HOTAIRM1 is upregulated in OS cells and tissues. A set of functional experiments suggested that HOTAIRM1 knockdown attenuated the proliferation and stimulated the apoptosis of OS cells. A subsequent mechanistic study revealed that HOTAIRM1 functions as a competing endogenous RNA to elevate ras homologue enriched in brain (Rheb) expression by sponging miR-664b-3p. Immediately afterward, upregulated Rheb facilitates proliferation and suppresses apoptosis by promoting the mTOR pathway-mediated Warburg effect in OS. In summary, our findings demonstrated that HOTAIRM1 promotes the proliferation and suppresses the apoptosis of OS cells by enhancing the Warburg effect via the miR-664b-3p/Rheb/mTOR axis. Understanding the underlying mechanisms and targeting the HOTAIRM1/miR-664b-3p/Rheb/mTOR axis are essential for OS clinical treatment.
Collapse
Affiliation(s)
- Xuecheng Yu
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Weihao Duan
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Furen Wu
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
- Dalian Medical UniversityDalianChina
| | - Daibin Yang
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
- Dalian Medical UniversityDalianChina
| | - Xin Wang
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Jingbin Wu
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Dong Zhou
- Changzhou No.6 People's HospitalNanjing Medical UniversityChangzhouChina
- Changzhou Medical CenterNanjing Medical UniversityChangzhouChina
- Department of OrthopedicsWuqia People's HospitalXinjiangChina
| | - Yifei Shen
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| |
Collapse
|
8
|
Luo J, Li H, Xiu J, Zeng J, Feng Z, Zhao H, Li Y, Wei W. Elevated ZNF704 expression is associated with poor prognosis of uveal melanoma and promotes cancer cell growth by regulating AKT/mTOR signaling. Biomark Res 2023; 11:38. [PMID: 37038184 PMCID: PMC10084591 DOI: 10.1186/s40364-023-00471-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/08/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Uveal melanoma (UM) is the most common intraocular malignancy in adults, with a poor survival prognosis. To date, limited understanding of UM's molecular mechanisms constitutes an obstacle to developing effective therapy. In this study, we examined key regulators mediating UM progression and their clinical relevance. METHODS Transcriptomics of UM patients and cells were analyzed via RNA sequencing and bioinformatic analysis. Zinc finger protein 704 (ZNF704) was identified as prognosis-related biomarker for UM based on clinical characteristics and RNA-seq data from The Cancer Genome Atlas (TCGA). Gene expression was knocked down by specific shRNAs/siRNAs and overexpressed by transfection with plasmids inserted with investigated gene cDNA. Cell proliferation, viability and invasion abilities were determined by CCK8, colony formation and transwell assays, respectively. For cell cycle and apoptosis, cells were PI or PI/Annexin V-APC stained and analyzed by flow cytometry. Standard immunoblotting and quantitative RT-PCR were employed to assess the mRNA and protein abundance. To determine tumor growth in vivo, 4-week-old BALB/c-nu immune-deficient nude mice were inoculated with tumor cells. RESULTS Analysis of differential expressed genes (DEGs) and survival analysis identified ZNF704 as a novel biomarker of UM. Prognostic analysis indicated ZNF704 as an independent predictor of UM overall survival. Expression of ZNF704 is elevated in UM tissues relative to adjacent normal choroid tissues. Knockdown of ZNF704 suppressed the growth and migration of UM cells and vice versa. In addition, expression of ZNF704 arrest UM cells at G0/G1 phase and inhibit cell apoptosis. RNA sequencing analysis indicated that SORBS3 were dysregulated after ZNF704 downregulation. Gene Set Enrichment Analysis (GSEA) revealed that upon ZNF704 knowndown, genes related with PI3K/AKT/mTOR, EMT and metastasis are enriched. Mechanistically, ZNF704 activates AKT/mTOR/glycolysis signaling pathway in UM cells. Moreover, expression of SORBS3 is downregulated by ZNF704 and knockdown of SORBS3 restored tumor cell viability in ZNF704 silenced cells. CONCLUSIONS ZNF704 predicts poor prognosis of UM and exhibit pro-oncogenic effect in UM progression in vivo and in vitro, mediated through AKT/mTOR signaling pathway and suppression of SORBS3 expression.
Collapse
Affiliation(s)
- Jingting Luo
- Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Haowen Li
- Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jingying Xiu
- Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jingyao Zeng
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaoxun Feng
- Department of Ophthalmology, University of Ottawa, 501 Smyth Rd, Ottawa, ON, K1H 8M2, Canada
| | - Hanqing Zhao
- Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yang Li
- Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Wenbin Wei
- Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
9
|
Kollara A, Burt BD, Ringuette MJ, Brown TJ. The adaptor protein VEPH1 interacts with the kinase domain of ERBB2 and impacts EGF signaling in ovarian cancer cells. Cell Signal 2023; 106:110634. [PMID: 36828346 DOI: 10.1016/j.cellsig.2023.110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Upregulation of ERBB2 and activating mutations in downstream KRAS/BRAF and PIK3CA are found in several ovarian cancer histotypes. ERBB2 enhances signaling by the ERBB family of EGF receptors, and contains docking positions for proteins that transduce signaling through multiple pathways. We identified the adaptor protein ventricular zone-expressed pleckstrin homology domain-containing protein 1 (VEPH1) as a potential interacting partner of ERBB2 in a screen of proteins co-immunoprecipitated with VEPH1. In this study, we confirm a VEPH1 - ERBB2 interaction by co-immunoprecipitation and biotin proximity labelling and show that VEPH1 interacts with the juxtamembrane-kinase domain of ERBB2. In SKOV3 ovarian cancer cells, which bear a PIK3CA mutation and ERBB2 overexpression, ectopic VEPH1 expression enhanced EGF activation of ERK1/2, and mTORC2 activation of AKT. In contrast, in ES2 ovarian cancer cells, which bear a BRAFV600E mutation with VEPH1 amplification but low ERBB2 expression, loss of VEPH1 expression enabled further activation of ERK1/2 by EGF and enhanced EGF activation of AKT. VEPH1 expression in SKOV3 cells enhanced EGF-induced cell migration consistent with increased Snail2 and decreased E-cadherin levels. In comparison, loss of VEPH1 expression in ES2 cells led to decreased cell motility independent of EGF treatment despite higher levels of N-cadherin and Snail2. Importantly, we found that loss of VEPH1 expression rendered ES2 cells less sensitive to BRAF and MEK inhibition. This study extends the range of adaptor function of VEPH1 to ERBB2, and indicates VEPH1 has differential effects on EGF signaling in ovarian cancer cells that may be influenced by driver gene mutations.
Collapse
Affiliation(s)
- Alexandra Kollara
- Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| | - Brian D Burt
- Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Maurice J Ringuette
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
A mixed blessing for liver transplantation patients - Rapamycin. Hepatobiliary Pancreat Dis Int 2023; 22:14-21. [PMID: 36328894 DOI: 10.1016/j.hbpd.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Liver transplantation (LT) is an effective treatment option for end-stage liver disease. Mammalian target of rapamycin (mTOR) inhibitors, such as rapamycin, are widely used post LT. DATA SOURCES In this review, we focused on the anti-cancer activities and metabolic side effects of rapamycin after LT. The literature available on PubMed for the period of January 1999-September 2022 was reviewed. The key words were rapamycin, sirolimus, liver transplantation, hepatocellular carcinoma, diabetes, and lipid metabolism disorder. RESULTS Rapamycin has shown excellent effects and is safer than other immunosuppressive regimens. It has exhibited excellent anti-cancer activity and has the potential in preventing hepatocellular carcinoma (HCC) recurrence post LT. Rapamycin is closely related to two long-term complications after LT, diabetes and lipid metabolism disorders. CONCLUSIONS Rapamycin prevents HCC recurrence post LT in some patients, but it also induces metabolic disorders. Reasonable use of rapamycin benefits the liver recipients.
Collapse
|
11
|
Lin XH, Liu ZY, Zhang DY, Zhang S, Tang WQ, Li DP, Zhang F, Chen RX, Weng SQ, Xue RY, Dong L. circRanGAP1/miR-27b-3p/NRAS Axis may promote the progression of hepatocellular Carcinoma. Exp Hematol Oncol 2022; 11:92. [PMID: 36348379 PMCID: PMC9644583 DOI: 10.1186/s40164-022-00342-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Though circular RNAs (circRNAs) are the key regulators in tumor carcinogenesis, they remain largely unexplored in hepatocellular carcinoma (HCC). METHODS The expression of RanGAP1-derived circRNAs (circ_0063531, circ_0063534, circ_0063513, circ_0063518, circ_0063507, circ_0063723) were evaluated in eight paired HCC and normal tissues, and the correlation between circRanGAP1 (circ_0063531) expression and clinicopathological characteristics in 40 HCC patients was determined. The association between miR-27b-3p and circRanGAP1 or NRAS was predicted using bioinformatics analysis. The expression of circRanGAP1, miR-27b-3p, and NRAS were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The potential oncogenic role of circ-RanGAP1 was assessed using CCK-8, colony formation, transwell assays in vitro, subcutaneous tumor mouse model, vein tail metastatic model, and orthotopically implanted intrahepatic HCC model in vivo. Luciferase reporter and RNA immunoprecipitation (RIP) assays were used to explore the binding site between miR-27b-3p and circ-RanGAP1 or NRAS. Protein expression was detected using western blotting. The localization of miR-27b-3p and circ-RanGAP1 was investigated using fluorescence in situ hybridization (FISH). The level of immune infiltration was assessed by bioinformatics analysis, flow cytometry, and orthotopically implanted intrahepatic HCC models. RESULTS Here, we found elevated circRanGAP1 in the cells and clinical tissues of patients with HCC. Increased circRanGAP1 levels are associated with enlarged tumors and the advanced stage of TNM. CircRanGAP1 promotes the growth, migration, and HCC cell invasion, concurrently with the growth and metastasis of tumors in-vivo. Moreover, circRanGAP1 is mainly located inside the cytoplasm. Mechanistically, circRanGAP1 as an oncogene promotes HCC progression by miR-27b-3p/NRAS/ERK axis, furthermore, affects the infiltration level of tumor-associated macrophages probably by sponging miR-27b-3p. Immune infiltration analysis shows that NRAS is positively correlated with the levels of CD68+ tumor-associated macrophages in HCC samples and that NRAS and CD68 are related to the poor outcome of HCC. CONCLUSION These results reveal that circRanGAP1 is a HCC oncogene that function by the miR-27b-3p/NRAS/ERK axis and regulates the infiltration levels of tumor-associated macrophages by sponging miR-27b-3p. Therefore, circRANGAP1/ NRAS axis may be an important potential treatment target against HCC.
Collapse
Affiliation(s)
- Xia-Hui Lin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Zhi-Yong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Dan-Ying Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wen-Qing Tang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Dong-Ping Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Feng Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Rong-Xin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Disease, Shanghai, 200032, China.
| | - Ru-Yi Xue
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Disease, Shanghai, 200032, China.
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Disease, Shanghai, 200032, China.
| |
Collapse
|
12
|
Testa U, Pelosi E, Castelli G. Clinical value of identifying genes that inhibit hepatocellular carcinomas. Expert Rev Mol Diagn 2022; 22:1009-1035. [PMID: 36459631 DOI: 10.1080/14737159.2022.2154658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
INTRODUCTION Primary liver cancer is a major health problem being the sixth most frequent cancer in the world and the fourth most frequent cause of cancer-related death in the world. The most common histological type of liver cancer is hepatocellular carcinoma (HCC, 75-80%). AREAS COVERED Based on primary literature, this review provides an updated analysis of studies of genetic characterization of HCC at the level of gene mutation profiling, copy number alterations and gene expression, with definition of molecular subgroups and identification of some molecular biomarkers and therapeutic targets. EXPERT OPINION A detailed and comprehensive study of the genetic abnormalities characterizing different HCC subsets represents a fundamental tool for a better understanding of the disease heterogeneity and for the identification of subgroups of patients responding or resistant to targeted treatments and for the discovery of new therapeutic targets. It is expected that a comprehensive characterization of these tumors may provide a fundamental contribution to improve the survival of a subset of HCC patients. Immunotherapy represents a new fundamental strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| | - Germana Castelli
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| |
Collapse
|
13
|
Immunoglobulin superfamily 9 (IGSF9) is trans-activated by p53, inhibits breast cancer metastasis via FAK. Oncogene 2022; 41:4658-4672. [PMID: 36088502 PMCID: PMC9546770 DOI: 10.1038/s41388-022-02459-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
AbstractMetastasis of breast cancer represents the major reason for its poor prognosis, leading to high mortality. In breast cancer, a tumor suppressor gene TP53 is commonly mutated. TP53 mutation leads to an altered expression of various genes, an event that is associated with aggressive tumor and is a strong independent marker for survival. In this study, we identified a novel p53 target gene, immunoglobulin superfamily 9 (IGSF9). IGSF9 is generally down-regulated in breast cancer tissues. Loss of IGSF9 is associated with frequent metastasis and poor prognosis of breast cancer patients. Wild-type p53, but not R175H mutant, trans-activates the transcription of IGSF9 via binding to its promoter (−137 to −131 bp), inhibits epithelial-mesenchymal transition (EMT), consequently the inhibition of breast cancer cells migration and invasion. IGSF9 interacts with focal adhesion kinase (FAK) and inhibits FAK/AKT signaling activity. PND1186, FAK inhibitor, inhibits breast cancer metastasis induced by IGSF9 knockdown in vitro and in vivo. Taken together, IGSF9 is trans-activated by p53 and inhibits breast cancer metastasis by modulating FAK/AKT signaling pathway. IGSF9 could serve as a prognostic marker and potential therapeutic target for breast cancer.
Collapse
|
14
|
Cai X, Li H, Wang M, Chu E, Wei N, Lin J, Hu Y, Dai J, Chen A, Zheng H, Zhang Q, Zhong Y, Chang R, Wu S, Xiao Y, Liu C. mTOR Participates in the Formation, Maintenance, and Function of Memory CD8 +T Cells Regulated by Glycometabolism. Biochem Pharmacol 2022; 204:115197. [PMID: 35926651 DOI: 10.1016/j.bcp.2022.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
Memory CD8+T cells participate in the fight against infection and tumorigenesis as well as in autoimmune disease progression because of their efficient and rapid immune response, long-term survival, and continuous differentiation. At each stage of their formation, maintenance, and function, the cell metabolism must be adjusted to match the functional requirements of the specific stage. Notably, enhanced glycolytic metabolism can generate sufficient levels of adenosine triphosphate (ATP) to form memory CD8+T cells, countering the view that glycolysis prevents the formation of memory CD8+T cells. This review focuses on how glycometabolism regulates memory CD8+T cells and highlights the key mechanisms through which the mammalian target of rapamycin (mTOR) signaling pathway affects memory CD8+T cell formation, maintenance, and function by regulating glycometabolism. In addition, different subpopulations of memory CD8+T cells exhibit different metabolic flexibility during their formation, survival, and functional stages, during which the energy metabolism may be critical. These findings which may explain why enhanced glycolytic metabolism can give rise to memory CD8+T cells. Modulating the metabolism of memory CD8+T cells to influence specific cell fates may be useful for disease treatment.
Collapse
Affiliation(s)
- Xuepei Cai
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Haokun Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Manyi Wang
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Edward Chu
- Department of Oncology and Cancer Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ning Wei
- Department of Oncology and Cancer Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jiayu Lin
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yun Hu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Aijie Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hua Zheng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuxia Zhong
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoshui Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Functional Proteomics of Guangdong Province, Guangzhou, China; National Demonstration Center for Experimental Education of Basic Medical Sciences of China, Guangzhou, China.
| | - Yaomu Xiao
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Zhou Y, Qiu J, Liu S, Wang P, Ma D, Zhang G, Cao Y, Hu L, Wang Z, Wu J, Jiang C. CFDP1 promotes hepatocellular carcinoma progression through activating NEDD4/PTEN/PI3K/AKT signaling pathway. Cancer Med 2022; 12:425-444. [PMID: 35861040 PMCID: PMC9844661 DOI: 10.1002/cam4.4919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND AIMS It is being increasingly reported that the Cranio Facial Development Protein 1 (CFDP1) plays a significant role in the onset and progression of tumors. Nonetheless, the underlying mechanisms associated with CFDP1 that contribute to hepatocellular carcinoma (HCC) and the specific biological role of CFDP1 remain vague. METHODS The Gene Expression Omnibus (GEO) database was analyzed to obtain the gene expression profiles as well as the matching clinical data of HCC patients. The gene co-expression network was developed by means of weighted gene co-expression network analysis (WGCNA) to screen for possible biomarkers that could be used for the purpose of predicting prognosis. The Cancer Genome Atlas (TCGA) and Gene Expression Profile Interaction Analysis (GEPIA) databases were used to assess the relationship between survival and expression. In addition, we identified the underlying mechanism associated with CFDP1 by analyzing the KEGG pathway database, applying the GSEA and GeneCards analysis method. We performed a sequence of experiments (in vivo and in vitro) for the purpose of investigating the specific function of CFDP1 in liver cancer. RESULTS The obtained results revealed high expression of CFDP1 in HCC tissues and cell lines. A positive correlation between the overexpression of CFDP1 and the adverse clinicopathological features was observed. Moreover, we observed that the low recurrence-free survival and overall survival were associated with CFDP1 overexpression. In addition, GeneCards and GSEA analysis showed that CFDP1 may interact with NEDD4 and participate in PTEN regulation. Meanwhile, CFDP1 can promote the malignant development of liver cancer in vivo and in vitro. The western blotting technique was also employed so as to examine the samples, and the findings demonstrated that CFDP1 enhanced the malignancy of HCC via the NEDD4-mediated PTEN/PI3K/AKT pathway. CONCLUSION We highlighted that CFDP1 played an oncogenic role in HCC and was identified as a possible clinical prognostic factor and a potential novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Hepatobiliary SurgeryDrum Tower Clinical College of Nanjing Medical UniversityNanjingChina
| | - Jiannan Qiu
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNational Institute of Healthcare Data Science at Nanjing University, Medical School of Nanjing UniversityNanjingChina
| | - Siyuan Liu
- Department of Hepatobiliary SurgeryDrum Tower Clinical College of Nanjing Medical UniversityNanjingChina
| | - Peng Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNational Institute of Healthcare Data Science at Nanjing University, Medical School of Nanjing UniversityNanjingChina
| | - Ding Ma
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNational Institute of Healthcare Data Science at Nanjing University, Medical School of Nanjing UniversityNanjingChina
| | - Guang Zhang
- Department of Hepatobiliary SurgeryDrum Tower Clinical College of Nanjing Medical UniversityNanjingChina
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNational Institute of Healthcare Data Science at Nanjing University, Medical School of Nanjing UniversityNanjingChina
- Jinan Microecological Biomedicine Shandong LaboratoryShounuo City Light West BlockJinan CityChina
| | - Yin Cao
- Department of Hepatobiliary SurgeryDrum Tower Clinical College of Nanjing Medical UniversityNanjingChina
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNational Institute of Healthcare Data Science at Nanjing University, Medical School of Nanjing UniversityNanjingChina
- Jinan Microecological Biomedicine Shandong LaboratoryShounuo City Light West BlockJinan CityChina
| | - Lili Hu
- Department of Hepatobiliary SurgeryDrum Tower Clinical College of Nanjing Medical UniversityNanjingChina
| | - Zhongxia Wang
- Department of Hepatobiliary SurgeryDrum Tower Clinical College of Nanjing Medical UniversityNanjingChina
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNational Institute of Healthcare Data Science at Nanjing University, Medical School of Nanjing UniversityNanjingChina
- Jinan Microecological Biomedicine Shandong LaboratoryShounuo City Light West BlockJinan CityChina
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular MedicineNational Institute of Healthcare Data Science at Nanjing University, Medical School of Nanjing UniversityNanjingChina
- Jinan Microecological Biomedicine Shandong LaboratoryShounuo City Light West BlockJinan CityChina
| | - Chunping Jiang
- Department of Hepatobiliary SurgeryDrum Tower Clinical College of Nanjing Medical UniversityNanjingChina
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNational Institute of Healthcare Data Science at Nanjing University, Medical School of Nanjing UniversityNanjingChina
- Jinan Microecological Biomedicine Shandong LaboratoryShounuo City Light West BlockJinan CityChina
| |
Collapse
|
16
|
Chen T, Sun D, Wang Q, Zhou T, Tan J, Xu C, Cheng H, Shen W. α-Hederin Inhibits the Proliferation of Hepatocellular Carcinoma Cells via Hippo-Yes-Associated Protein Signaling Pathway. Front Oncol 2022; 12:839603. [PMID: 35311132 PMCID: PMC8927085 DOI: 10.3389/fonc.2022.839603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 12/30/2022] Open
Abstract
Aims Yes-associated protein (YAP), a downstream protein in the Hippo signaling pathway, plays an important role in tumor proliferation, including in hepatocellular carcinoma (HCC). α-hederin, a monodesmosidic triterpenoid saponin isolated from Fructus akebiae, displayed anti-cancer effects on several cancer cell lines but the precise mechanism has not been ascertained. In the present study, we explored the effects of α-hederin on cell proliferation and apoptosis in human HCC cell lines and the underlying mechanisms. Main Method Cell proliferation and apoptosis were assessed using 5-ethynyl-2’-deoxyuridine staining, colony formation, flow cytometry. The expression patterns of components of Hippo signaling pathway and apoptotic genes were further examined via RT-qPCR and immunoblotting. A xenograft tumor model in nude mice was used to evaluate the anti-HCC effects of α-hederin in vivo. Results α-hederin promoted the apoptosis and inhibited the proliferation of SMMC-7721 and HepG2 cells in vitro, and remarkably inhibited the tumor size and weight in the xenograft mouse model. Additionally, α-hederin increased the expression of pro-apoptosis proteins and suppressed the expression of anti-apoptosis proteins. Moreover, α-hederin treatment upregulated the expression of Hippo signaling pathway-related proteins and genes, while, effectively reduced the level of nuclear YAP, which resulted in the inhibition of proliferation and the induction of apoptosis of HCC cells. Finally, the effects of α-hederin on HCC cell proliferation and apoptosis were alleviated by XMU-MP-1, a Mst1/2 inhibitor in vitro. Significance We identified α-hederin is a novel agonist of Hippo signaling pathway and possesses an anti-HCC efficacy through inhibiting YAP activity.
Collapse
Affiliation(s)
- Tongqing Chen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Qijuan Wang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Tingting Zhou
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Jiani Tan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Weixing Shen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| |
Collapse
|
17
|
Sha J, Zhang R, Fan J, Gu Y, Pan Y, Han J, Xu X, Ren S, Gu J. The B-Cell-Specific Ablation of B4GALT1 Reduces Cancer Formation and Reverses the Changes in Serum IgG Glycans during the Induction of Mouse Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14051333. [PMID: 35267641 PMCID: PMC8909634 DOI: 10.3390/cancers14051333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary As serum IgG glycosylation is associated with various cancers, our goal is to explore whether serum IgG galactosylation and its associated glycans could be used as tumor markers associated with hepatocellular carcinoma (HCC). At the same time, we explore the effect of the B-cell-specific ablation of B4GALT1 on HCC and finally analyze whether the low incidence of female cancer was related to the findings from the above perspective. The results demonstrate that the tumor marker of serum IgG glycosylation is galactosylation and its associated glycans and that the B-cell-specific ablation of B4GALT1 reduces HCC formation by reducing serum IgG galactosylation levels and by modulating the associated glycans, meaning that the lower incidence of cancer in women may be related to minor changes in the B-cell B4GALT1 and unchanged serum IgG galactosylation levels. This study aims to provide a theoretical basis for the early diagnosis and prevention of HCC and to determine why it has such a high incidence in males. Abstract Serum immunoglobulin G (IgG) glycosylation, especially galactosylation, has been found to be related to a variety of tumors, including hepatocellular carcinoma (HCC). However, whether IgG glycan changes occur in the early stages of HCC formation remains unclear. We found that the galactosylation level increased and that the related individual glycans showed regular changes over the course of HCC induction. Then, the effect of the B-cell-specific ablation of β1,4galactosyltransferase 1 (CKO B4GALT1) and B4GALT1 defects on the IgG glycans that were modified during the model induction process and HCC formation is investigated in this study. CKO B4GALT1 reduces serum IgG galactosylation levels and reduces cancer formation. Furthermore, insignificant changes in the B-cell B4GALT1 and unchanged serum IgG galactosylation levels were found during cancer induction in female mice, which might contribute to the lower cancer incidence in female mice than in male mice. The gender differences observed during glycan and B4GALT1 modification also add more evidence that the B4GALT1 in B cells and in serum IgG galactosylation may play an important role in HCC. Therefore, the findings of the present research can be used to determine the methods for the early detection of HCC as well as for prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shifang Ren
- Correspondence: (S.R.); (J.G.); Tel.: +86-021-54237701 (S.R.)
| | - Jianxin Gu
- Correspondence: (S.R.); (J.G.); Tel.: +86-021-54237701 (S.R.)
| |
Collapse
|
18
|
Chen H, Wang Y, Luo J, Kang M, Hou J, Tang R, Zhao L, Shi F, Ye G, He X, Cui H, Guo H, Li Y, Tang H. Autophagy and apoptosis mediated nano-copper-induced testicular damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113039. [PMID: 34922170 DOI: 10.1016/j.ecoenv.2021.113039] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Nano-copper has been increasingly employed in various products. In previous studies, we showed that nano-copper caused damage in the rat testis, but it remains unclear whether the toxic reaction can affect the reproductive function. In this study, following 28 d of exposure to nano-copper at a dose of 44, 88, and 175 mg/kg/day, there was a decrease in sperm quality, fructose content, and the secretion of sex hormones. Nano-copper also increased the level of oxidative stress, sperm malformation rate, and induced abnormal structural changes in testicular tissue. Moreover, Nano-copper upregulated the expression of apoptosis-related protein Bax and autophagy-related protein Beclin, and downregulated the expression of Bcl2 and p62. Furthermore, nano-copper (175 mg/kg) downregulated the protein expression of AMPK, p-AKT, mTOR, p-mTOR, p-4E-BP1, p70S6K, and p-p70S6K, and upregulated the protein expression of p-AMPK. Therefore, nano-copper induced damage in testicular tissues and spermatogenesis is highly related to cell apoptosis and autophagy by regulating the Akt/mTOR signaling pathway. In summary, excess exposure to nano-copper may induce testicular apoptosis and autophagy through AKT/mTOR signaling pathways, and damage the reproductive system in adult males, which is associated with oxidative stress in the testes.
Collapse
Affiliation(s)
- Helin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Yanyan Wang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Jie Luo
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China; National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, Guizhou, China
| | - Min Kang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Jin Hou
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Ruoping Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xiaoli He
- College of Science, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China.
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China.
| |
Collapse
|
19
|
Yang M, Zhou Y, Deng H, Zhou H, Cheng S, Zhang D, He X, Mai L, Chen Y, Chen J. Ribosomal Protein L23 Drives the Metastasis of Hepatocellular Carcinoma via Upregulating MMP9. Front Oncol 2021; 11:779748. [PMID: 34926291 PMCID: PMC8677661 DOI: 10.3389/fonc.2021.779748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally. Tumor metastasis is one of the major causes of high mortality of HCC. Identifying underlying key factors contributing to invasion and metastasis is critical to understand the molecular mechanisms of HCC metastasis. Here, we identified RNA binding protein L23 (RPL23) as a tumor metastasis driver in HCC. RPL23 was significantly upregulated in HCC tissues compared to adjacent normal tissues, and closely related to poor clinical outcomes in HCC patients. RPL23 depletion inhibited HCC cell proliferation, migration and invasion, and distant metastasis. Mechanistically, RPL23 directly associated with 3'UTR of MMP9, therefore positively regulated MMP9 expression. In conclusion, we identified that RPL23 might play an important role in HCC metastasis in an MMP9-dependent manner and be a potential therapeutic target for HCC tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Minli Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yujiao Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Haijun Deng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hongzhong Zhou
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Dapeng Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xin He
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Li Mai
- Department of Clinical Laboratory, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yao Chen
- Medical Examination Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Liang Y, Yi L, Deng P, Wang L, Yue Y, Wang H, Tian L, Xie J, Chen M, Luo Y, Yu Z, Pi H, Zhou Z. Rapamycin antagonizes cadmium-induced breast cancer cell proliferation and metastasis through directly modulating ACSS2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112626. [PMID: 34411822 DOI: 10.1016/j.ecoenv.2021.112626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a carcinogen that stimulates breast cancer (BC) progression. Rapamycin is a macrolide antibiotic produced by Streptomyces hygroscopicus that possesses a wide array of pharmacological activities, including anti-BC activity. However, the effects of rapamycin on Cd-increased BC progression and the underlying mechanism have not been fully elucidated. Here, we hypothesize that rapamycin antagonizes Cd-induced BC cell proliferation and metastasis by directly modulating ACSS2. In this study, we found that rapamycin efficiently inhibited Cd-induced proliferation, invasion and migration in MCF-7 and T47-D cells. Moreover, a surface plasmon resonance (SPR) assay confirmed that rapamycin directly binds to the ACSS2 protein with a calculated equilibrium dissociation constant (KD) of 18.3 μM. Molecular docking showed that there are three binding sites in the ACSS2 protein and that rapamycin binds at the coenzyme A (COA) binding site with a docking score of - 12.26 and a binding free energy of - 26.34 kcal/mol. More importantly, rapamycin suppresses Cd-induced BC progression by activating ACSS2. After cells were cotreated with an ACSS2 inhibitor, the effects of rapamycin were abolished. In conclusion, our findings suggest that rapamycin suppresses Cd-augmented BC progression by upregulating ACSS2, and ACSS2 may serve as a direct target of rapamycin for inhibiting xenobiotic (e.g., Cd)-mediated BC progression.
Collapse
Affiliation(s)
- Yidan Liang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lai Yi
- Department of Hematology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine (Central Hospital of Zhuzhou City), Central South University, Zhuzhou, Hunan, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| | - Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Hui Wang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Zhengping Yu
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China; Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China.
| | - Zhou Zhou
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China; Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Sun Y, Tang X, Ye B, Ding K. DNA and RNA Sequencing Recapitulated Aberrant Tumor Metabolism in Liver Cancer Cell Lines. J Hepatocell Carcinoma 2021; 8:823-836. [PMID: 34350138 PMCID: PMC8327295 DOI: 10.2147/jhc.s318724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
AIM Metabolic reprogramming has recently attracted extensive attention for understanding cancer development. We aimed to demonstrate a genomic and transcriptomic landscape of metabolic reprogramming underlying liver cancer cell lines. METHODS We investigated metabolic aberrant at both the transcriptome and genome levels using transcriptome and whole-exome sequencing data from 12 human liver cancer cell lines (hLCCLs) and one normal liver cell line. RESULTS Three subgroups of hLCCLs characterized from transcriptome sequencing data exhibit significantly different aberrations in various metabolic processes, including amino acid, lipid, energy, and carbohydrate metabolism. Furthermore, whole-exome sequencing revealed distinct mutational signatures among different subgroups of hLCCLs and identified a total of 19 known driver genes implicated in metabolism. CONCLUSION Our findings highlighted differential metabolic mechanisms in the development of liver cancer and provided a resource for further investigating its metabolic mechanisms.
Collapse
Affiliation(s)
- Yihong Sun
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 410006, People’s Republic of China
| | - Xia Tang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 410006, People’s Republic of China
| | - Bo Ye
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 410006, People’s Republic of China
| | - Keyue Ding
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 410006, People’s Republic of China
- Medical Genetic Institute of Henan Province, Henan Provincial People’s Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defect Prevention, Henan Provincial People’s Hospital of Henan University, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450003, People's Republic of China
| |
Collapse
|
22
|
Zhao Y, Yao D, Li Y, Zhang S, Tao Z, Zhang L, Hu X, Wang B, Chen S. Loss of polarity protein Par3 is mediated by transcription factor Sp1 in breast cancer. Biochem Biophys Res Commun 2021; 561:172-179. [PMID: 34023783 DOI: 10.1016/j.bbrc.2021.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 01/16/2023]
Abstract
Loss of polarity protein Par3 promotes breast cancer tumorigenesis and metastasis. The underlying molecular mechanisms of Par3 down-regulation and related prognostic significance in breast cancer remain unclear. Here, we discovered that Par3 down-regulation was associated with shorter relapse-free survival in Luminal A subtype of breast cancer. Par3 knockdown promoted breast cancer cells migration and invasion. Importantly, we identified that transcription factor Sp1 bound to PARD3 promoter region and induced Par3 expression. Breast cancer patients with low Sp1 showed significantly worse RFS and low expression level of Par3. Par3 over-expression partially reversed Sp1 knockdown induced migration and invasion. Together, decreased Sp1 level mediates Par3 down-regulation, which correlated with poor prognosis of ER + breast cancer patients, via reduced binding with PARD3 promoter.
Collapse
Affiliation(s)
- Yannan Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Xuhui District, Shanghai, 200032, PR China; NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, PR China
| | - Dingjin Yao
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, PR China
| | - Yi Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Xuhui District, Shanghai, 200032, PR China; NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, PR China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, PR China
| | - Zhonghua Tao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Xuhui District, Shanghai, 200032, PR China
| | - Li Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, PR China
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Xuhui District, Shanghai, 200032, PR China.
| | - Biyun Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Xuhui District, Shanghai, 200032, PR China.
| | - She Chen
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, PR China.
| |
Collapse
|
23
|
Wang XX, Zhang S, Dong PP, Li YH, Zhang L, Shi SH, Yu ZQ, Chen S. MRCKβ links Dasm1 to actin rearrangements to promote dendrite development. J Biol Chem 2021; 296:100730. [PMID: 33933448 PMCID: PMC8191314 DOI: 10.1016/j.jbc.2021.100730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023] Open
Abstract
Proper dendrite morphogenesis and synapse formation are essential for neuronal development and function. Dasm1, a member of the immunoglobulin superfamily, is known to promote dendrite outgrowth and excitatory synapse maturation in vitro. However, the in vivo function of Dasm1 in neuronal development and the underlying mechanisms are not well understood. To learn more, Dasm1 knockout mice were constructed and employed to confirm that Dasm1 regulates dendrite arborization and spine formation in vivo. We performed a yeast two-hybrid screen using Dasm1, revealing MRCKβ as a putative partner; additional lines of evidence confirmed this interaction and identified cytoplasmic proline-rich region (823–947 aa) of Dasm1 and MRCKβ self-activated kinase domain (CC1, 410–744 aa) as necessary and sufficient for binding. Using co-immunoprecipitation assay, autophosphorylation assay, and BS3 cross-linking assay, we show that Dasm1 binding triggers a change in MRCKβ’s conformation and subsequent dimerization, resulting in autophosphorylation and activation. Activated MRCKβ in turn phosphorylates a class 2 regulatory myosin light chain, which leads to enhanced actin rearrangement, causing the dendrite outgrowth and spine formation observed before. Removal of Dasm1 in mice leads to behavioral abnormalities. Together, these results reveal a crucial molecular pathway mediating cell surface and intracellular signaling communication to regulate actin dynamics and neuronal development in the mammalian brain.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ping-Ping Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Surgery, Faculty of Medicine, Centre for Cancer Research, The University of Hong Kong, Hong Kong, China
| | - Yao-Hua Li
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Song-Hai Shi
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China; Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zhi-Qiang Yu
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China; Eye Department, Eye & ENT Hospital, Fudan University, Shanghai, China.
| | - She Chen
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Deng R, Cui X, Dong Y, Tang Y, Tao X, Wang S, Wang J, Chen L. Construction of circRNA-Based ceRNA Network to Reveal the Role of circRNAs in the Progression and Prognosis of Hepatocellular Carcinoma. Front Genet 2021; 12:626764. [PMID: 33719338 PMCID: PMC7953168 DOI: 10.3389/fgene.2021.626764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background Circular RNAs (circRNAs) are now under hot discussion as novel promising biomarkers for patients with hepatocellular carcinoma (HCC). The purpose of our study is to identify several competing endogenous RNA (ceRNA) networks related to the prognosis and progression of HCC and to further investigate the mechanism of their influence on tumor progression. Methods First, we obtained gene expression data related to liver cancer from The Cancer Genome Atlas (TCGA) database (http://www.portal.gdc.cancer.gov/), including microRNA (miRNA) sequence, RNA sequence, and clinical information. A co-expression network was constructed through the Weighted Correlation Network Analysis (WGCNA) software package in R software. The differentially expressed messenger RNAs (DEmRNAs) in the key module were analyzed with the Database for Annotation Visualization and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/summary.jsp) to perform functional enrichment analysis including Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). The data of miRNA expression and clinical information downloaded from TCGA were utilized for survival analysis to detach the prognostic value of the DEmiRNAs of the key module. Results The 201 differentially expressed miRNAs (DEmiRNAs) and 3,783 DEmRNAs were preliminarily identified through differential expression analysis. The co-expression networks of DEmiRNAs and DEmRNAs were constructed with WGCNA. Further analysis confirmed four miRNAs in the most significant module (blue module) were associated with the overall survival (OS) of patients with liver cancer, including hsa-miR-92b-3p, hsa-miR-122-3p, hsa-miR-139-5p, and hsa-miR-7850-5p. DAVID was used for functional enrichment analysis of 286 co-expressed mRNAs. The GO analysis results showed that the top enriched GO terms were oxidation–reduction process, extracellular exosome, and iron ion binding. In KEGG pathway analysis, the top three enriched terms included metabolic pathways, fatty acid degradation, and valine, leucine, and isoleucine degradation. In addition, we intersected the miRNA–mRNA interaction prediction results with the differentially expressed and prognostic mRNAs. We found that hsa-miR-92b-3p can be related to CPEB3 and ACADL. By overlapping the data of predicted circRNAs by circBank and differentially expressed circRNAs of GSE94508, we screened has_circ_0077210 as the upstream regulatory molecule of hsa-miR-92b-3p. Hsa_circ_0077210/hsa-miR-92b-3p/cytoplasmic polyadenylation element binding protein-3 (CPEB3) and acyl-Coenzyme A dehydrogenase, long chain (ACADL) were validated in HCC tissue. Conclusion Our research provides a mechanistic elucidation of the unknown ceRNA regulatory network in HCC. Hsa_circ_0077210 might serve a momentous therapeutic role to restrain the occurrence and development of HCC.
Collapse
Affiliation(s)
- Rong Deng
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaohan Cui
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yuxiang Dong
- Department of General Surgery, First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yanqiu Tang
- Department of General Surgery, First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xuewen Tao
- Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Shuyu Wang
- Department of General Surgery, First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Jincheng Wang
- Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Hepatic NOD2 promotes hepatocarcinogenesis via a RIP2-mediated proinflammatory response and a novel nuclear autophagy-mediated DNA damage mechanism. J Hematol Oncol 2021; 14:9. [PMID: 33413510 PMCID: PMC7791875 DOI: 10.1186/s13045-020-01028-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/25/2020] [Indexed: 12/24/2022] Open
Abstract
Background Key hepatic molecules linking gut dysbiosis and hepatocarcinogenesis remain largely unknown. Gut-derived gut microbiota contains pathogen-associated molecular patterns (PAMPs) that may circulate into the liver and, consequently, be recognized by hepatic pattern recognition receptors (PRRs). NOD2, a general intracellular PRR, recognizes muramyl dipeptide (MDP), present in both gram (+) and gram (−) bacteria. Here, we investigated the role of NOD2 as a molecular sensor translating gut dysbiosis signaling into hepatocarcinogenesis. Methods NOD2 expression was measured in clinical hepatocellular carcinoma (HCC) samples using qPCR (80 pairs), western blotting (30 pairs) and immunostaining (141 pairs). The role of NOD2 in hepatocarcinogenesis was examined in the hepatocyte-specific Nod2-knockout (Nod2△hep), Rip2-knockout (Rip2△hep), Lamin A/C-knockout (Lamn△hep) and Rip2/Lamin A/C double-knockout (Rip2/Lamn△hep) mice models of diethylnitrosamine (DEN)/CCl4-induced HCC. Results NOD2 was upregulated and activated in HCC samples, and high NOD2 expression correlated with poor prognosis in HCC patients. Hepatic NOD2 deletion in vivo decreased DEN/CCl4-induced HCC by reducing the inflammatory response, DNA damage and genomic instability. NOD2 activation increased liver inflammation via RIP2-dependent activation of the MAPK, NF-κB and STAT3 pathways. Notably, a novel RIP2-independent mechanism was discovered, whereby NOD2 activation induces the nuclear autophagy pathway. We showed that NOD2 undergoes nuclear transport and directly binds to a component of nuclear laminae, lamin A/C, to promote its protein degradation, leading to impaired DNA damage repair and increased genomic instability. Conclusions We reveal a novel bridge, bacterial sensor NOD2, linking gut-derived microbial metabolites to hepatocarcinogenesis via induction of the inflammatory response and nuclear autophagy. Thus, we propose hepatic NOD2 as a promising therapeutic target against HCC.
Collapse
|
26
|
Qiu J, Zhang S, Wang P, Wang H, Sha B, Peng H, Ju Z, Rao J, Lu L. BUB1B promotes hepatocellular carcinoma progression via activation of the mTORC1 signaling pathway. Cancer Med 2020; 9:8159-8172. [PMID: 32977361 PMCID: PMC7643650 DOI: 10.1002/cam4.3411] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/13/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Aims Accumulating studies identified that BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) is integrally involved in the initiation and development of tumors. Nevertheless, the precise biological role and underlying mechanisms of BUB1B in hepatocellular carcinoma (HCC) remain indistinct. Method To figure out the role of BUB1B in HCC, we first assessed its expression using The Cancer Genome Atlas (TCGA) and Gene Expression Profiling Interactive Analysis (GEPIA) databases. We then verified BUB1B expression in HCC tissues, nontumor tissues, and HCC cell lines through western blotting, quantitative reverse transcription‐polymerase chain reaction, and immunohistochemistry. To explore the specific function of BUB1B in HCC in vivo and in vitro, we performed the flow cytometry, Cell Counting Kit‐8, 5‐ethynyl‐2′‐deoxyuridine incorporation, colony formation, Transwell, wound‐healing, subcutaneous tumor growth, and metastasis assays. Additionally, we identified the BUB1B‐regulated pathways involved in HCC by using gene set enrichment analysis. Results Our data displayed that higher BUB1B expression was detected in HCC tissues and HCC cell lines. The overexpression of BUB1B was positively correlated with adverse clinicopathological characteristics. Survival analyses showed that lower recurrence‐free and overall survival rates were correlated with the overexpression of BUB1B in patients with HCC. Moreover, the malignancy of HCC was facilitated by BUB1B both in vivo and in vitro. Lastly, the results were confirmed by western blots, which showed that BUB1B upregulated mTORC1 signaling pathway in HCC. Meanwhile, the oncogenic effect of BUB1B will be impaired when the mTORC1 signaling pathway was inhibited by rapamycin. Conclusion We highlighted that BUB1B played an oncogenic role in HCC and was identified as a possible clinical prognostic factor and a potential novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Jiannan Qiu
- The Affiliated Cancer Hospital ( Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China.,Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Shaopeng Zhang
- The Affiliated Cancer Hospital ( Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China.,Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Peng Wang
- The Affiliated Cancer Hospital ( Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China.,Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hao Wang
- The Affiliated Cancer Hospital ( Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China.,Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Bowen Sha
- The Affiliated Cancer Hospital ( Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China.,Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hao Peng
- The Affiliated Cancer Hospital ( Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China.,Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zheng Ju
- The Affiliated Cancer Hospital ( Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China.,Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jianhua Rao
- The Affiliated Cancer Hospital ( Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China.,Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ling Lu
- The Affiliated Cancer Hospital ( Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China.,Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|