1
|
Mogna-Peláez P, Riezu-Boj JI, Milagro FI, Clemente-Larramendi I, Esteban Echeverría S, Herrero JI, Elorz M, Benito-Boillos A, Tobaruela-Resola AL, González-Muniesa P, Tur JA, Martínez JA, Abete I, Zulet MA. Sex-Dependent Gut Microbiota Features and Functional Signatures in Metabolic Disfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:4198. [PMID: 39683591 DOI: 10.3390/nu16234198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: This study investigates the gut microbiota's role in metabolic dysfunction-associated steatotic liver disease (MASLD), focusing on microbial and functional signatures and sex-based differences. Methods: Using baseline data from 98 MASLD patients and 45 controls from the Fatty Liver in Obesity (FLiO) study, the gut microbiota was profiled with 16S gene sequencing, followed by statistical and machine learning analyses to identify disease-associated microbial signatures. Results: Notable alpha and beta diversity differences were observed between MASLD patients and the controls, varying by sex. Machine learning models highlighted specific microbial signatures for each sex, achieving high accuracy (area under the receiver operating characteristic curves of 0.91 for women and 0.72 for men). The key microbial taxa linked to MASLD included Christensenella and Limosilactobacillus in women and Beduinibacterium and Anaerotruncus in men. Functional profiling showed that MASLD patients had increased pathways for amine biosynthesis and amino acid degradation, while the controls exhibited enhanced fermentation pathways. These microbial features were associated with systemic inflammation, insulin resistance, and metabolite production linked to gut dysbiosis. Conclusions: The findings support the potential of gut microbiota signatures to be used as non-invasive indicators of MASLD and highlight sex-specific variations that could inform personalized diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Paola Mogna-Peláez
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - José I Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Iñigo Clemente-Larramendi
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Sergio Esteban Echeverría
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - José I Herrero
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Liver Unit, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Biomedical Research Centre Network in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ana Luz Tobaruela-Resola
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josep A Tur
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS & IDISBA, 07122 Palma, Spain
| | - J Alfredo Martínez
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Precision Nutrition and Cardiovascular Health Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Itziar Abete
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - M Angeles Zulet
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Burra P, Zanetto A, Schnabl B, Reiberger T, Montano-Loza AJ, Asselta R, Karlsen TH, Tacke F. Hepatic immune regulation and sex disparities. Nat Rev Gastroenterol Hepatol 2024; 21:869-884. [PMID: 39237606 DOI: 10.1038/s41575-024-00974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
Chronic liver disease is a major cause of morbidity and mortality worldwide. Epidemiology, clinical phenotype and response to therapies for gastrointestinal and liver diseases are commonly different between women and men due to sex-specific hormonal, genetic and immune-related factors. The hepatic immune system has unique regulatory functions that promote the induction of intrahepatic tolerance, which is key for maintaining liver health and homeostasis. In liver diseases, hepatic immune alterations are increasingly recognized as a main cofactor responsible for the development and progression of chronic liver injury and fibrosis. In this Review, we discuss the basic mechanisms of sex disparity in hepatic immune regulation and how these mechanisms influence and modify the development of autoimmune liver diseases, genetic liver diseases, portal hypertension and inflammation in chronic liver disease. Alterations in gut microbiota and their crosstalk with the hepatic immune system might affect the progression of liver disease in a sex-specific manner, creating potential opportunities for novel diagnostic and therapeutic approaches to be evaluated in clinical trials. Finally, we identify and propose areas for future basic, translational and clinical research that will advance our understanding of sex disparities in hepatic immunity and liver disease.
Collapse
Affiliation(s)
- Patrizia Burra
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy.
| | - Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, Department of Medicine, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Tom Hemming Karlsen
- Department of Transplantation Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
3
|
Li Z, Sun T, He Z, Li Z, Xiong J, Xiang H. Intestinal Dysbacteriosis Contributes to Persistent Cognitive Impairment after Resolution of Acute Liver Failure. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2076-2090. [PMID: 39147234 DOI: 10.1016/j.ajpath.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Regulating the gut microbiota alleviates hepatic encephalopathy (HE). Whether it is imperative to withhold treatment for microbial imbalance after liver functional recovery remains unclear. The aim of this work was to elucidate the alterations in cognitive behavior, liver function, synaptic transmission, and brain metabolites in acute liver failure (ALF) mice before and after hepatic function recovery. Towards this end, thioacetamide was injected intraperitoneally to establish an ALF mouse model, which induced HE. Hierarchical clustering analysis indicated that while the liver functions normalized, cognitive dysfunction and intestinal dysbacteriosis occurred in the ALF mice 14 days after thioacetamide injection. In addition, fecal microbiota transplantation from the ALF mice with liver function recovery induced liver injury and cognitive impairment. Alterations in synaptic transmission were found in the ALF mice with liver function improvement, and the correlations between the gut bacteria and synaptic transmission in the cortex were significant. Finally, apparent alterations in the brain metabolic profiles of the ALF mice were detected after liver function improvement by performing 1H nuclear magnetic resonance spectroscopy, suggesting a risk of HE. These results showed that intestinal dysbacteriosis in ALF mice with liver function recovery is sufficient to induce liver injury and cognitive impairment. This indicates that continuous care may be necessary for monitoring microbial imbalance even in patients with ALF-induced HE whose liver function has recovered significantly.
Collapse
Affiliation(s)
- Zhen Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianning Sun
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhigang He
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiao Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiong
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongbing Xiang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China.
| |
Collapse
|
4
|
Wu JL, Chen JW, Huang MS, Deng XY, Deng JJ, Lau TY, Cao SY, Ran HY, Jiang ZB, Luo JY. The causal effect of gut microbiota on hepatic encephalopathy: a mendelian randomization analysis. BMC Med Genomics 2024; 17:216. [PMID: 39160503 PMCID: PMC11334368 DOI: 10.1186/s12920-024-01939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/18/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND There is growing evidence for a relationship between gut microbiota and hepatic encephalopathy (HE). However, the causal nature of the relationship between gut microbiota and HE has not been thoroughly investigated. METHOD This study utilized the large-scale genome-wide association studies (GWAS) summary statistics to evaluate the causal association between gut microbiota and HE risk. Specifically, two-sample Mendelian randomization (MR) approach was used to identify the causal microbial taxa for HE. The inverse variance weighted (IVW) method was used as the primary MR analysis. Sensitive analyses were performed to validate the robustness of the results. RESULTS The IVW method revealed that the genus Bifidobacterium (OR = 0.363, 95% CI: 0.139-0.943, P = 0.037), the family Bifidobacteriaceae (OR = 0.359, 95% CI: 0.133-0.950, P = 0.039), and the order Bifidobacteriales (OR = 0.359, 95% CI: 0.133-0.950, P = 0.039) were negatively associated with HE. However, no causal relationship was observed among them after the Bonferroni correction test. Neither heterogeneity nor horizontal pleiotropy was found in the sensitivity analysis. CONCLUSION Our MR study demonstrated a potential causal association between Bifidobacterium, Bifidobacteriaceae, and Bifidobacteriales and HE. This finding may provide new therapeutic targets for patients at risk of HE in the future.
Collapse
Affiliation(s)
- Jia-Lin Wu
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Jun-Wei Chen
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Ming-Sheng Huang
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Xin-Yi Deng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia-Jun Deng
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tsz Yu Lau
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shi-Yu Cao
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, China
| | - Hui-Ying Ran
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zai-Bo Jiang
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China.
| | - Jun-Yang Luo
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
5
|
Smith ML, Wade JB, Wolstenholme J, Bajaj JS. Gut microbiome-brain-cirrhosis axis. Hepatology 2024; 80:465-485. [PMID: 36866864 PMCID: PMC10480351 DOI: 10.1097/hep.0000000000000344] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Cirrhosis is characterized by inflammation, degeneration, and fibrosis of liver tissue. Along with being the most common cause of liver failure and liver transplant, cirrhosis is a significant risk factor for several neuropsychiatric conditions. The most common of these is HE, which is characterized by cognitive and ataxic symptoms, resulting from the buildup of metabolic toxins with liver failure. However, cirrhosis patients also show a significantly increased risk for neurodegenerative diseases such as Alzheimer and Parkinson diseases, and for mood disorders such as anxiety and depression. In recent years, more attention has been played to communication between the ways the gut and liver communicate with each other and with the central nervous system, and the way these organs influence each other's function. This bidirectional communication has come to be known as the gut-liver-brain axis. The gut microbiome has emerged as a key mechanism affecting gut-liver, gut-brain, and brain-liver communication. Clinical studies and animal models have demonstrated the significant patterns of gut dysbiosis when cirrhosis is present, both with or without concomitant alcohol use disorder, and have provided compelling evidence that this dysbiosis also influences the cognitive and mood-related behaviors. In this review, we have summarized the pathophysiological and cognitive effects associated with cirrhosis, links to cirrhosis-associated disruption of the gut microbiome, and the current evidence from clinical and preclinical studies for the modulation of the gut microbiome as a treatment for cirrhosis and associated neuropsychiatric conditions.
Collapse
Affiliation(s)
- Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - James B Wade
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jennifer Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
6
|
Kulkarni AV, Avadhanam M, Karandikar P, Rakam K, Gupta A, Simhadri V, Premkumar M, Zuberi AA, Gujjarlapudi D, Narendran R, Shaik S, Sharma M, Iyengar S, Alla M, Venishetty S, Reddy DN, Rao PN. Antibiotics With or Without Rifaximin for Acute Hepatic Encephalopathy in Critically Ill Patients With Cirrhosis: A Double-Blind, Randomized Controlled (ARiE) Trial. Am J Gastroenterol 2024; 119:864-874. [PMID: 37942950 DOI: 10.14309/ajg.0000000000002575] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION Critically ill patients with cirrhosis admitted to the intensive care unit (ICU) are usually on broad-spectrum antibiotics because of suspected infection or as a hospital protocol. It is unclear if additional rifaximin has any synergistic effect with broad-spectrum antibiotics in ICU patients with acute overt hepatic encephalopathy (HE). METHODS In this double-blind trial, patients with overt HE admitted to ICU were randomized to receive antibiotics (ab) alone or antibiotics with rifaximin (ab + r). Resolution (or 2 grade reduction) of HE, time to resolution of HE, in-hospital mortality, nosocomial infection, and changes in endotoxin levels were compared between the 2 groups. A subgroup analysis of patients with decompensated cirrhosis and acute-on-chronic liver failure was performed. RESULTS Baseline characteristics and severity scores were similar among both groups (92 in each group). Carbapenems and cephalosporin with beta-lactamase inhibitors were the most commonly used ab. On Kaplan-Meier analysis, 44.6% (41/92; 95% confidence interval [CI], 32-70.5) in ab-only arm and 46.7% (43/92; 95% CI, 33.8-63) in ab + r arm achieved the primary objective ( P = 0.84).Time to achieve the primary objective (3.65 ± 1.82 days and 4.11 ± 2.01 days; P = 0.27) and in-hospital mortality were similar among both groups (62% vs 50%; P = 0.13). Seven percent and 13% in the ab and ab + r groups developed nosocomial infections ( P = 0.21). Endotoxin levels were unaffected by rifaximin. Rifaximin led to lower in-hospital mortality (hazard ratio: 0.39 [95% CI, 0.2-0.76]) in patients with decompensated cirrhosis but not in patients with acute-on-chronic liver failure (hazard ratio: 0.99 [95% CI, 0.6-1.63]) because of reduced nosocomial infections. DISCUSSION Reversal of overt HE in those on ab was comparable with those on ab + r.
Collapse
Affiliation(s)
| | | | | | - Kalyan Rakam
- Department of Critical Care Medicine, AIG Hospitals, Hyderabad, India
| | - Anand Gupta
- Department of Critical Care Medicine, AIG Hospitals, Hyderabad, India
| | - Venu Simhadri
- Department of Basic Sciences, Asian Healthcare Foundation, Hyderabad, India
| | | | | | | | | | - Sameer Shaik
- Department of Hepatology, AIG Hospitals, Hyderabad, India
| | - Mithun Sharma
- Department of Hepatology, AIG Hospitals, Hyderabad, India
| | - Sowmya Iyengar
- Department of Hepatology, AIG Hospitals, Hyderabad, India
| | - Manasa Alla
- Department of Hepatology, AIG Hospitals, Hyderabad, India
| | | | | | | |
Collapse
|
7
|
Zacharias HD, Kamel F, Tan J, Kimer N, Gluud LL, Morgan MY. Rifaximin for prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database Syst Rev 2023; 7:CD011585. [PMID: 37467180 PMCID: PMC10360160 DOI: 10.1002/14651858.cd011585.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
BACKGROUND Hepatic encephalopathy describes the spectrum of neuropsychiatric changes that may complicate the course of cirrhosis and detrimentally affect outcomes. Ammonia plays a key role in its development. Rifaximin is a non-absorbable antibiotic that inhibits urease-producing bacteria and reduces absorption of dietary and bacterial ammonia. OBJECTIVES To evaluate the beneficial and harmful effects of rifaximin versus placebo, no intervention, or non-absorbable disaccharides for: (i) the prevention of hepatic encephalopathy, and (ii) the treatment of minimal and overt hepatic encephalopathy, in people with cirrhosis, both when used alone and when combined with a non-absorbable disaccharide. SEARCH METHODS We searched the Cochrane Hepato-Biliary Group Clinical Trials Register, CENTRAL, MEDLINE, Embase, three other databases, the reference lists of identified papers, and relevant conference proceedings. We wrote to authors and pharmaceutical companies for information on other published, unpublished, or ongoing trials. Searches were performed to January 2023. SELECTION CRITERIA We included randomised clinical trials assessing prevention or treatment of hepatic encephalopathy with rifaximin alone, or with a non-absorbable disaccharide, versus placebo/no intervention, or a non-absorbable disaccharide alone. DATA COLLECTION AND ANALYSIS Six authors independently searched for studies, extracted data, and validated findings. We assessed the design, bias risk, and participant/intervention characteristics of the included studies. We assessed mortality, serious adverse events, health-related quality of life, hepatic encephalopathy, non-serious adverse events, blood ammonia, Number Connection Test-A, and length of hospital stay. MAIN RESULTS We included 41 trials involving 4545 people with, or at risk for, developing hepatic encephalopathy. We excluded 89 trials and identified 13 ongoing studies. Some trials involved participants with more than one type of hepatic encephalopathy or more than one treatment comparison. Hepatic encephalopathy was classed as acute (13 trials), chronic (7 trials), or minimal (8 trials), or else participants were considered at risk for its development (13 trials). The control groups received placebo (12 trials), no/standard treatment (1 trial), or a non-absorbable disaccharide (14 trials). Eighteen trials assessed rifaximin plus a non-absorbable disaccharide versus a non-absorbable disaccharide alone. We classified 11 trials as at high risk of overall bias for mortality and 28 for non-mortality outcomes, mainly due to lack of blinding, incomplete outcome data, and selective reporting. Compared to placebo/no intervention, rifaximin likely has no overall effect on mortality (risk ratio (RR) 0.83, 95% confidence interval (CI) 0.50 to 1.38; P = 48, I2 = 0%; 13 trials, 1007 participants; moderate-certainty evidence), and there may be no overall effect when compared to non-absorbable disaccharides (RR 0.99, 95% CI 0.49 to 1.97; P = 0.97, I2 = 0%; 10 trials, 786 participants; low-certainty evidence). However, there is likely a reduction in the overall risk of mortality when comparing rifaximin plus a non-absorbable disaccharide to a non-absorbable disaccharide alone (RR 0.69, 95% CI 0.55 to 0.86; number needed to treat for an additional beneficial outcome (NNTB) = 22; P = 0.001, I2 = 0%; 14 trials, 1946 participants; moderate-certainty evidence). There is likely no effect on the overall risk of serious adverse events when comparing rifaximin to placebo/no intervention (RR 1.05, 95% CI 0.83 to 1.32; P = 68, I2 = 0%; 9 trials, 801 participants; moderate-certainty evidence) and there may be no overall effect when compared to non-absorbable disaccharides (RR 0.97, 95% CI 0.66 to 1.40; P = 85, I2 = 0%; 8 trials, 681 participants; low-certainty evidence). However, there was very low-certainty evidence that use of rifaximin plus a non-absorbable disaccharide may be associated with a lower risk of serious adverse events than use of a non-absorbable disaccharide alone (RR 0.66, 95% CI 0.45 to 0.98; P = 0.04, I2 = 60%; 7 trials, 1076 participants). Rifaximin likely results in an overall effect on health-related quality of life when compared to placebo/no intervention (mean difference (MD) -1.43, 95% CI -2.87 to 0.02; P = 0.05, I2 = 81%; 4 trials, 214 participants; moderate-certainty evidence), and may benefit health-related quality of life in people with minimal hepatic encephalopathy (MD -2.07, 95% CI -2.79 to -1.35; P < 0.001, I2 = 0%; 3 trials, 176 participants). The overall effect on health-related quality of life when comparing rifaximin to non-absorbable disaccharides is very uncertain (MD -0.33, 95% CI -1.65 to 0.98; P = 0.62, I2 = 0%; 2 trials, 249 participants; very low-certainty evidence). None of the combined rifaximin/non-absorbable disaccharide trials reported on this outcome. There is likely an overall beneficial effect on hepatic encephalopathy when comparing rifaximin to placebo/no intervention (RR 0.56, 95% CI 0.42 to 0.77; NNTB = 5; P < 0.001, I2 = 68%; 13 trials, 1009 participants; moderate-certainty evidence). This effect may be more marked in people with minimal hepatic encephalopathy (RR 0.40, 95% CI 0.31 to 0.52; NNTB = 3; P < 0.001, I2 = 10%; 6 trials, 364 participants) and in prevention trials (RR 0.71, 95% CI 0.56 to 0.91; NNTB = 10; P = 0.007, I2 = 36%; 4 trials, 474 participants). There may be little overall effect on hepatic encephalopathy when comparing rifaximin to non-absorbable disaccharides (RR 0.85, 95% CI 0.69 to 1.05; P = 0.13, I2 = 0%; 13 trials, 921 participants; low-certainty evidence). However, there may be an overall beneficial effect on hepatic encephalopathy when comparing rifaximin plus a non-absorbable disaccharide to a non-absorbable disaccharide alone (RR 0.58, 95% CI 0.48 to 0.71; NNTB = 5; P < 0.001, I2 = 62%; 17 trials, 2332 participants; low-certainty evidence). AUTHORS' CONCLUSIONS Compared to placebo/no intervention, rifaximin likely improves health-related quality of life in people with minimal hepatic encephalopathy, and may improve hepatic encephalopathy, particularly in populations with minimal hepatic encephalopathy and when it is used for prevention. Rifaximin likely has no overall effect on mortality, serious adverse events, health-related quality of life, or hepatic encephalopathy compared to non-absorbable disaccharides. However, when used in combination with a non-absorbable disaccharide, it likely reduces overall mortality risk, the risk of serious adverse events, improves hepatic encephalopathy, reduces the length of hospital stay, and prevents the occurrence/recurrence of hepatic encephalopathy. The certainty of evidence for these outcomes is very low to moderate; further high-quality trials are needed.
Collapse
Affiliation(s)
- Harry D Zacharias
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Fady Kamel
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Jaclyn Tan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Nina Kimer
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Lise Lotte Gluud
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Marsha Y Morgan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, London, UK
| |
Collapse
|
8
|
Zhang L, Zhang W, Wang J, Jin Q, Ma D, Huang R. Neutrophil-to-lymphocyte ratio predicts 30-, 90-, and 180-day readmissions of patients with hepatic encephalopathy. Front Med (Lausanne) 2023; 10:1185182. [PMID: 37457569 PMCID: PMC10348710 DOI: 10.3389/fmed.2023.1185182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Hepatic encephalopathy (HE) is a significant complication of cirrhosis, known to be associated with hospital readmission. However, few new serological indicators associated with readmission in HE patients have been identified and reported. The objective of our study was to identify simple and effective predictors reated to readmission in HE patients. Materials and methods We conducted a retrospective study at a single center on adult patients admitted with HE from January 2018 to December 2022. The primary endpoint was the first liver-related readmission within 30, 90, and 180 days, and we collected electronic medical records from our hospital for sociodemographic, clinical, and hospitalization characteristics. We utilized logistic regression analysis and multiple linear regression analysis to determine the predictors that were associated with the readmission rate and the length of the first hospitalization. Results A total of 424 patients were included in the study, among whom 24 (5.7%), 63 (14.8%), and 92 (21.7%) were readmitted within 30, 90, and 180 days, respectively. Logistic regression analysis showed that insurance status, alcoholic liver disease (ALD), ascites, the model for end-stage liver disease (MELD) score, and neutrophil-to-lymphocyte ratio (NLR) were significantly associated with 30-, 90-, and 180-day readmissions. Age and hepatocellular carcinoma (HCC) were predictors of 90- and 180-day readmissions. ALD was identified as a unique predictor of readmission in men, while hypertension was a predictor of 180-day readmission in women. Variceal bleeding, chronic kidney disease, and MELD score were associated with the length of the first hospitalization. Conclusions NLR at discharge was identified as a significant predictor of 30-, 90- and 180-day readmissions in patients with HE. Our findings suggest that incorporating NLR into routine clinical assessments could improve the evaluation of the prognosis of liver cirrhosis.
Collapse
|
9
|
Wang Q, Chen C, Zuo S, Cao K, Li H. Integrative analysis of the gut microbiota and faecal and serum short-chain fatty acids and tryptophan metabolites in patients with cirrhosis and hepatic encephalopathy. J Transl Med 2023; 21:395. [PMID: 37330571 PMCID: PMC10276405 DOI: 10.1186/s12967-023-04262-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023] Open
Abstract
OBJECTIVE The purpose of this study was to describe the changes in the gut microbiome of patients with cirrhosis and hepatic encephalopathy (HE), as well as quantify the variations in short-chain fatty acid (SCFA) and tryptophan metabolite levels in serum and faeces. METHODS Fresh faeces and serum were collected from 20 healthy volunteers (NC group), 30 cirrhosis patients (Cir group), and 30 HE patients (HE group). Then, 16S rRNA sequencing and metabolite measurements were performed using the faeces. Gas chromatography‒mass spectrometry and ultrahigh-performance liquid chromatography-tandem mass spectrometry were used to measure SCFA and tryptophan levels, respectively. The results were analysed by SIMCA16.0.2 software. Differences in species were identified using MetaStat and t tests. The correlations among the levels of gut microbes and metabolites and clinical parameters were determined using Spearman correlation analysis. RESULTS Patients with cirrhosis and HE had lower microbial species richness and diversity in faeces than healthy volunteers; these patients also had altered β-diversity. Serum valeric acid levels were significantly higher in the HE group than in the Cir group. Serum SCFA levels did not differ between the Cir and NC groups. Serum melatonin and 5-HTOL levels were significantly higher in the HE group than in the Cir group. The Cir and NC groups had significant differences in the levels of eight serum tryptophan metabolites. Furthermore, the levels of faecal SCFAs did not differ between the HE and Cir groups. Faecal IAA-Ala levels were significantly lower in the HE group than in the Cir group. There were significant differences in the levels of 6 faecal SCFAs and 7 faecal tryptophan metabolites between the Cir and NC groups. Certain gut microbes were associated with serum and faecal metabolites, and some metabolites were associated with certain clinical parameters. CONCLUSION Reduced microbial species richness and diversity were observed in patients with HE and cirrhosis. In both serum and faeces, the levels of different SCFAs and tryptophan metabolites showed varying patterns of change. In HE patients, the levels of some serum tryptophan metabolites, and not SCFAs, were correlated with liver function and systemic inflammation. Systemic inflammation in patients with cirrhosis was correlated with faecal acetic acid levels. In summary, this study identified metabolites important for HE and cirrhosis.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Chengxin Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Kun Cao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.
| | - Haiyang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
10
|
Oliveira MM, Monnet-Aimard A, Bosoi CR, Tremblay M, Rose CF. Sex is associated with differences in oxidative stress and susceptibility to severe hepatic encephalopathy in bile-duct ligated rats. J Neurochem 2022; 162:337-351. [PMID: 35771118 DOI: 10.1111/jnc.15661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
Hepatic encephalopathy (HE) is a debilitating neurological complication of chronic liver disease (CLD). Hyperammonemia plays an important role in HE's pathogenesis, acting synergistically with systemic oxidative stress. During CLD, muscle plays a compensatory role in detoxifying ammonia, and therefore muscle loss leads to an increase in the risk of developing HE. With most animal studies involving males, sex's impact on the development of CLD and associated complications such as HE and muscle loss remains unknown. Therefore, we aimed to identify the impact of sex on CLD, HE, and muscle mass loss in a rodent model of CLD. Liver injury markers, hyperammonemia, oxidative stress, muscle mass and ammonia clearance were measured in female and male bile-duct ligated (BDL) rats. In addition, covert HE was assessed in females while ammonia-precipitated severe HE was assessed in female and male BDL rats, and male BDL rats treated with allopurinol (100mg/kg), an antioxidant (xanthine oxidase inhibitor). Female BDL developed CLD and HE (impaired motor-coordination and night activity) compared to respective SHAM. Hyperammonemia and muscle ammonia clearance were similar between female and male BDL. However, only female BDL rats did not develop muscle loss, brain edema, and short-term memory impairment (vs. female SHAM) and systemic oxidative stress and decreased albumin levels (vs. male BDL). Furthermore, both female BDL and allopurinol-treated male BDL rats were protected against ammonia-induced overt HE. In conclusion, female and male BDL rats develop distinct features of CLD and HE, with systemic oxidative stress playing a pivotal role in the susceptibility to ammonia precipitated overt HE.
Collapse
Affiliation(s)
- Mariana M Oliveira
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | - Alexis Monnet-Aimard
- Institut de Neurosciences de la Timone, Équipe inVibe, Université Aix-Marseille, France
| | - Cristina R Bosoi
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | - Mélanie Tremblay
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| |
Collapse
|
11
|
Liu YB, Chen MK. The impact of proton pump inhibitors in liver diseases and the effects on the liver. J Dig Dis 2022; 23:196-208. [PMID: 35357775 DOI: 10.1111/1751-2980.13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
Abstract
In this systematic and comprehensive overview, we aimed to evaluate the impact of proton pump inhibitors (PPIs) on chronic liver diseases, especially on cirrhosis. A manual and comprehensive search of the PubMed database was conducted to obtain relevant literatures. PPIs altered the composition and function of the intestinal microflora and might lead to small intestinal bacterial overgrowth and bacterial translocation, which were associated with adverse effects in liver diseases. They might increase the risk of hepatic encephalopathy, spontaneous bacterial peritonitis, infections, and are related to an increased mortality in cirrhosis. PPIs might lead to an increased risk of hepatocellular carcinoma, although the mechanism is unknown, and the results are controversial. PPIs also had an impact on the direct-acting antiviral regimen in patients with chronic hepatitis C. They were associated with an increased risk of liver abscess and increased mortality. Additionally, PPIs might lead to metabolic risk events, such as liver steatosis and weight gain. PPIs are associated with several adverse outcomes in liver diseases. Cautious use of PPIs is recommended and clinicians should be aware of the indications for their use in patients with liver diseases.
Collapse
Affiliation(s)
- Yuan Bin Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ming Kai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
12
|
Trebicka J, Macnaughtan J, Schnabl B, Shawcross DL, Bajaj JS. The microbiota in cirrhosis and its role in hepatic decompensation. J Hepatol 2021; 75 Suppl 1:S67-S81. [PMID: 34039493 PMCID: PMC8973011 DOI: 10.1016/j.jhep.2020.11.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Cirrhosis - the common end-stage of chronic liver disease - is associated with a cascade of events, of which intestinal bacterial overgrowth and dysbiosis are central. Bacterial toxins entering the portal or systemic circulation can directly cause hepatocyte death, while dysbiosis also affects gut barrier function and increases bacterial translocation, leading to infections, systemic inflammation and vasodilation, which contribute to acute decompensation and organ failure. Acute decompensation and its severe forms, pre-acute-on-chronic liver failure (ACLF) and ACLF, are characterised by sudden organ dysfunction (and failure) and high short-term mortality. Patients with pre-ACLF and ACLF present with high-grade systemic inflammation, usually precipitated by proven bacterial infection and/or severe alcoholic hepatitis. However, no precipitant is identified in 30% of these patients, in whom bacterial translocation from the gut microbiota is assumed to be responsible for systemic inflammation and decompensation. Different microbiota profiles may influence the rate of decompensation and thereby outcome in these patients. Thus, targeting the microbiota is a promising strategy for the prevention and treatment of acute decompensation, pre-ACLF and ACLF. Approaches include the use of antibiotics such as rifaximin, faecal microbial transplantation and enterosorbents (e.g. Yaq-001), which bind microbial factors without exerting a direct effect on bacterial growth kinetics. This review focuses on the role of microbiota in decompensation and strategies targeting microbiota to prevent acute decompensation.
Collapse
Affiliation(s)
- Jonel Trebicka
- Translational Hepatology, Internal Medicine I, Goethe University Frankfurt, Germany; European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain; Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| | - Jane Macnaughtan
- Institute for Liver and Digestive Health, Royal Free Campus, University College London, United Kingdom
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Debbie L Shawcross
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, Denmark Hill Campus, London, United Kingdom
| | - Jasmohan S Bajaj
- Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA, USA
| |
Collapse
|
13
|
Acharya C, Bajaj JS. Chronic Liver Diseases and the Microbiome-Translating Our Knowledge of Gut Microbiota to Management of Chronic Liver Disease. Gastroenterology 2021; 160:556-572. [PMID: 33253686 PMCID: PMC9026577 DOI: 10.1053/j.gastro.2020.10.056] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Chronic liver disease is reaching epidemic proportions with the increasing prevalence of obesity, nonalcoholic liver disease, and alcohol overuse worldwide. Most patients are not candidates for liver transplantation even if they have end-stage liver disease. There is growing evidence of a gut microbial basis for many liver diseases, therefore, better diagnostic, prognostic, and therapeutic approaches based on knowledge of gut microbiota are needed. We review the questions that need to be answered to successfully translate our knowledge of the intestinal microbiome and the changes associated with liver disease into practice.
Collapse
|