1
|
Hong Y, Xu L, Sun H, Wu W, Cai X, Lin Q, Chen X, Wang Y, Li C, Qu J, Sun D. A split-type near-infrared photoelectrochemical and colorimetric dual-mode biosensor for the high-performance determination of HepG2 cells. Talanta 2025; 287:127622. [PMID: 39874791 DOI: 10.1016/j.talanta.2025.127622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Hepatocellular carcinoma (HCC) stands as a grave illness characterized by elevated death rates. Early identification plays a vital role in improving patient survival. Herein, a novel split-type dual-mode biosensor featuring with near-infrared photoelectronchemical (PEC) and colorimetric sensing characteristics was developed for the high-performance detection of HepG2 cells. Biotin labeled aptamer (Bio-Apt1) was immobilized onto 96-well plates functionalized with streptavidin to capture HepG2 cells through specific binding. HepG2 cells were then labeled with another aptamer (Apt-2) by recognizing GPC3 on the surface of HepG2 cells. Apt 2 could form DNA double strand (dsDNA-ALP) with ALP-labeled complementary DNA (cDNA-ALP). Subsequently, ALP was released to catalyze AAP to form ascorbic acid (AA), and AA reduced HAuCl4 to form gold nanoparticles (AuNPs). Then the mixture containing AuNPs was introduced onto the surface of Y-MOFs/GCE to enhance the photocurrent response. The change of photocurrent corresponding to the concentration of HepG2 cells can be used for the PEC determination. ALP can catalyze the hydrolysis of disodium phenyl phosphate to produce phenol, followed by a reaction with 4-aminoantipyrine and potassium ferricyanide, resulting in a quinone derivative for the colorimetric determination. The photoelectrochemical and colorimetric detection models show excellent selectivity and sensitivity in identifying HepG2 cells, exhibiting a linear reaction range from 1.0 × 102 to 1.0 × 106 cells mL-1 and a detection limit of 13 cells mL-1 and 51 cells mL-1, respectively. The dual-mode split type biosensor avoided direct damage to biomolecules from high-energy light, and the independent signal transduction enabled the acquisition of reliable results.
Collapse
Affiliation(s)
- Yawen Hong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lian Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hengwei Sun
- Department of thyroid surgery, the first affiliated hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Wen Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaojun Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qingfeng Lin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan, 430074, China
| | - Xiaoyang Chen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan, 430074, China
| | - Yanying Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan, 430074, China
| | - Chunya Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan, 430074, China.
| | - Jinmiao Qu
- Department of thyroid surgery, the first affiliated hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Dong Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Dwyer BJ, Tirnitz-Parker JEE. Patient-derived organoid models to decode liver pathophysiology. Trends Endocrinol Metab 2025; 36:235-248. [PMID: 39191607 DOI: 10.1016/j.tem.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Liver diseases represent a growing global health challenge, and the increasing prevalence of obesity and metabolic disorders is set to exacerbate this crisis. To meet evolving regulatory demands, patient-specific in vitro liver models are essential for understanding disease mechanisms and developing new therapeutic approaches. Organoid models, which faithfully recapitulate liver biology, can be established from both non-malignant and malignant liver tissues, offering insight into various liver conditions, from acute injuries to chronic diseases and cancer. Improved understanding of liver microenvironments, innovative biomaterials, and advanced imaging techniques now facilitate comprehensive and unbiased data analysis, paving the way for personalised medicine. In this review, we discuss state-of-the-art patient-derived liver organoid models, recent technological advancements, and strategies to enhance their clinical impact.
Collapse
Affiliation(s)
- Benjamin J Dwyer
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; Liver Cancer Collaborative, Perth, WA, Australia; www.livercancercollaborative.au.
| | - Janina E E Tirnitz-Parker
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; Liver Cancer Collaborative, Perth, WA, Australia; www.livercancercollaborative.au.
| |
Collapse
|
3
|
Ke RS, Dai Y, Tu YL, Liu ZH, Huang KZ, Zhang FX. COLEC10: A potential tumor suppressor and prognostic biomarker in hepatocellular carcinoma through modulation of EMT and PI3K-AKT pathways. Open Life Sci 2025; 20:20220988. [PMID: 40026364 PMCID: PMC11868708 DOI: 10.1515/biol-2022-0988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 03/05/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a cancer with poor prognosis, underscoring the urgent need for enhanced detection and management. This study aimed to investigate the role of Collectin Subfamily Member 10 (COLEC10) in HCC, which was revealed to be associated with various diseases. Bioinformatics tools, including GEO, cBioPortal, and TCGA, were used to identify differentially expressed genes. The prognostic significance of COLEC10 was assessed in two patient cohorts, and its functional impact on Hep3B and SMMC7721 cells was evaluated through CCK-8 and Transwell assays. The underlying mechanisms of COLEC10 in HCC progression were explored using flow cytometry and western blot. COLEC10 was downregulated in HCC and associated with poorer overall survival and disease progression. The potential interaction of COLEC10, CCBE1, and FCN3 was predicted. COLEC10, CCBE1, and FCN3 were identified as prognostic indicators for HCC. Overexpression of COLEC10 inhibited the proliferation, migration, and invasion of HCC cells. COLEC10 overexpression induced G0/G1 cell cycle arrest and suppressed epithelial-mesenchymal transition (EMT), COLEC10 regulated protein expression in the Hedgehog pathway and phosphorylation of key proteins in the PI3K-AKT pathway. COLEC10 is an independent prognostic factor of HCC. COLEC10 regulates EMT, Hedgehog, and PI3K-AKT pathways, providing new ideas for targeted therapy of HCC.
Collapse
Affiliation(s)
- Rui-Sheng Ke
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian, China
| | - Yun Dai
- Endoscopic Diagnosis and Treatment Department, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Yan-ling Tu
- Department of Neurology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, 361001, China
| | - Zhao-Hui Liu
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen 361003, Fujian, China
| | - Kun-Zhai Huang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen 361003, Fujian, China
| | - Fu-Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen 361003, Fujian, China
| |
Collapse
|
4
|
Jin D, Qian L, Chen J, Yu Z, Dong J. Diagnostic accuracy of methylated SEPT9 for primary liver cancer: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2025; 16:1434174. [PMID: 40017695 PMCID: PMC11864958 DOI: 10.3389/fendo.2025.1434174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 01/23/2025] [Indexed: 03/01/2025] Open
Abstract
Background Primary live cancer (PLC), including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). This meta-analysis was conducted to evaluate the diagnostic efficacy of blood methylated septin 9 gene (mSEPT9) for PLC and to analyze its performance across various subgroups. Methods We conducted a comprehensive search across PubMed, the Cochrane Library, Embase, and China National Knowledge Infrastructure (CNKI), covering research up to May 10, 2024. The pooled sensitivity, specificity, diagnostic odds ratios, and area under the summary receiver operating characteristic (AUC) were calculated for the diagnostic performance of mSEPT9 for PLC. The quality of the studies was assessed using the QUADAS-2 tool, and the meta-analysis was performed using Stata16.0 software. Results Ten articles with 2,182 participants were included in the meta-analysis. The pooled sensitivity of mSEPT9 for detecting primary liver cancer was 0.51 (95% confidence interval [CI]: 0.37-0.65), and the pooled specificity was 0.93 (95% CI: 0.78-0.98). The pooled diagnostic odds ratio was 13 (95% CI: -58), and the area under the Summary Receiver Operator Characteristic Curve was 0.75 (95% CI: 0.71-0.79). Subgroup analyses showed that ICC, case-control studies, qPCR and Asian populations had higher specificities (0.99 [95% CI: 0.97-1.00], 0.93 [95% CI: 0.91-0.95], 0.90 [95% CI: 0.88-0.92] and 0.94 [95% CI: 0.92-0.96], respectively) and diagnostic odds ratios (62.04 [95% CI: 6.53-589.53], 17.62 [95% CI: 4.03-76.99], 13.03 [95% CI: 2.01-84.63] and 14.19 [95% CI: 2.42-83.11], respectively) compared to hepatocellular carcinoma, cohort Study, and Euramerican populations. Conclusions This study confirmed that mSEPT9 in blood has high specificity and moderate sensitivity for detecting primary liver cancer. The diagnostic performance of mSEPT9 varied across different subgroups, limiting its use as an independent screening tool and necessitating its use in conjunction with other methods for confirmatory diagnostics. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024549669.
Collapse
Affiliation(s)
- Danwen Jin
- Pathological Diagnosis Center, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Liyong Qian
- Pathological Diagnosis Center, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Jiayao Chen
- Department of Laboratory, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Ze Yu
- Laboratory of Cell Biology and Molecular Biology, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Jinliang Dong
- Department of Hepatobiliary Surgery, Zhoushan Hospital, Zhoushan, Zhejiang, China
| |
Collapse
|
5
|
Yang Z, Han T, Yang R, Zhang Y, Qin Y, Hou J, Huo F, Feng Z, Ding Y, Yang J, Zhou G, Wang S, Xie X, Lin P, Chen ZN, Wu J. Dicoumarol sensitizes hepatocellular carcinoma cells to ferroptosis induced by imidazole ketone erastin. Front Immunol 2025; 16:1531874. [PMID: 40007539 PMCID: PMC11852437 DOI: 10.3389/fimmu.2025.1531874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction Ferroptosis, an iron-dependent form of regulated cell death, is characterized by the lethal accumulation of lipid peroxides on cellular membranes. It not only inhibits tumor growth but also enhances immunotherapy responses and overcomes drug resistance in cancer therapy. The inhibition of the cystine-glutamate antiporter, system Xc-, induces ferroptosis. Imidazole ketone erastin (IKE), an inhibitor of the system Xc- functional subunit solute carrier family 7 member 11 (SLC7A11), is an effective and metabolically stable inducer of ferroptosis with potential in vivo applications. However, tumor cells exhibited differential sensitivity to IKE-induced ferroptosis. The intrinsic factors determining sensitivity to IKE-induced ferroptosis remain to be explored to improve its efficacy. Methods Bulk RNA-sequencing data from hepatocellular carcinoma (HCC) and normal liver tissues were collected from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Differentially expressed genes were identified and intersected with the ferroptosis-related genes (FRGs) listed in the FerrDb database, yielding the identification of 13 distinct FRGs. Results A ferroptosis signature index model (Risk Score) was developed to predict HCC prognosis. And SLC7A11 and NAD(P)H quinone dehydrogenase 1 (NQO1) were identified as candidate FRGs indicating poor prognosis of HCC. Dicoumarol (DIC), an inhibitor of NQO1, was subsequently employed to assess its sensitizing effects on IKE in HCC treatment. In HCC cell lines and the subcutaneous xenograft model, the combined suppression of SLC7A11 and NQO1 significantly enhanced the inhibitory effect on tumor growth by inducing ferroptosis. Discussion In conclusion, our findings demonstrate that DIC sensitized HCC cells to IKE-induced ferroptosis in HCC. Moreover, the identification of potential drugs that enhance the susceptibility of HCC cells to ferroptosis could provide novel therapeutic strategies for the treatment of HCC.
Collapse
Affiliation(s)
- Ziwei Yang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Tixin Han
- Shaanxi Key Laboratory of Bio-electromagnetic Detection and Intelligent Sensing, Military Biomedical Engineering School, Fourth Military Medical University, Xi'an, China
| | - Ruibin Yang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yinuo Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yifei Qin
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
- Institutes of Biomedicine and Department of Cell Biology, Jinan University, Guangzhou, China
| | - Jialu Hou
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Fei Huo
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Zhuan Feng
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yaxin Ding
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Jiali Yang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Gang Zhou
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Shijie Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Xiaohang Xie
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Peng Lin
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Jiao Wu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Giunco S, Del Mistro A, Morello M, Lidonnici J, Frayle H, Gori S, De Rossi A, Boscolo-Rizzo P. From infection to immortality: The role of HPV and telomerase in head and neck cancer. Oral Oncol 2025; 161:107169. [PMID: 39755000 DOI: 10.1016/j.oraloncology.2024.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of malignancies with multifactorial aetiologies. High-risk human papillomavirus (hrHPV) infections, particularly HPV16, and the dysregulation of telomerase activity, specifically through its catalytic subunit, telomerase reverse transcriptase (TERT) are among the key contributors to HNSCC development and progression. HPV promotes oncogenesis via the E6 and E7 oncoproteins, which inactivate tumour suppressors TP53 and RB1, leading to unchecked cellular proliferation. Concurrently, telomerase activation plays a critical role in HNSCC by maintaining telomere length, thus enabling cellular immortality, and facilitating tumour development and progression. The interplay between HPV and telomerase is significant; HPV oncoprotein E6 enhances telomerase activity through multiple regulatory mechanisms, including upregulating TERT expression. Beyond telomere maintenance, TERT influences signalling pathways, cellular metabolism, and the tumour microenvironment, contributing to aggressive tumour behaviour and poor prognosis. This review integrates the roles of HPV and telomerase in HNSCC, focusing on their molecular mechanisms and interactions that drive carcinogenesis and influence disease progression. Understanding the synergistic effects of HPV and TERT in HNSCC may be crucial for risk stratification, prognostic assessment, and the development of novel therapeutic strategies targeting these specific molecular pathways.
Collapse
Affiliation(s)
- Silvia Giunco
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy; Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, 35128 Padova, Italy
| | - Annarosa Del Mistro
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, 35128 Padova, Italy
| | - Marzia Morello
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, 35128 Padova, Italy
| | - Jacopo Lidonnici
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy
| | - Helena Frayle
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, 35128 Padova, Italy
| | - Silvia Gori
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, 35128 Padova, Italy
| | - Anita De Rossi
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy.
| | - Paolo Boscolo-Rizzo
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
7
|
Gopal P, Hu X, Robert ME, Zhang X. The evolving role of liver biopsy: Current applications and future prospects. Hepatol Commun 2025; 9:e0628. [PMID: 39774070 PMCID: PMC11717517 DOI: 10.1097/hc9.0000000000000628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Histopathologic evaluation of liver biopsy has played a longstanding role in the diagnosis and management of liver disease. However, the utility of liver biopsy has been questioned by some, given the improved imaging modalities, increased availability of noninvasive serologic tests, and development of artificial intelligence over the past several years. In this review, we discuss the current and future role of liver biopsy in both non-neoplastic and neoplastic liver diseases in the era of improved noninvasive laboratory, radiologic, and digital technologies.
Collapse
Affiliation(s)
- Purva Gopal
- Deparment of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaobang Hu
- Department of Pathology and Laboratory Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Marie E. Robert
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Lehrich BM, Delgado ER. Lipid Nanovesicle Platforms for Hepatocellular Carcinoma Precision Medicine Therapeutics: Progress and Perspectives. Organogenesis 2024; 20:2313696. [PMID: 38357804 PMCID: PMC10878025 DOI: 10.1080/15476278.2024.2313696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. HCC is highly heterogenous with diverse etiologies leading to different driver mutations potentiating unique tumor immune microenvironments. Current therapeutic options, including immune checkpoint inhibitors and combinations, have achieved limited objective response rates for the majority of patients. Thus, a precision medicine approach is needed to tailor specific treatment options for molecular subsets of HCC patients. Lipid nanovesicle platforms, either liposome- (synthetic) or extracellular vesicle (natural)-derived present are improved drug delivery vehicles which may be modified to contain specific cargos for targeting specific tumor sites, with a natural affinity for liver with limited toxicity. This mini-review provides updates on the applications of novel lipid nanovesicle-based therapeutics for HCC precision medicine and the challenges associated with translating this therapeutic subclass from preclinical models to the clinic.
Collapse
Affiliation(s)
- Brandon M. Lehrich
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evan R. Delgado
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Ma X, Zhou K, Yan T, Hu L, Xie S, Zheng H, Tong Y, Zhang H, Wang Y, Gong Z, Chen C, Tian Y, Guo L, Lu R. Calpain 2 promotes Lenvatinib resistance and cancer stem cell traits via both proteolysis-dependent and independent approach in hepatocellular carcinoma. MOLECULAR BIOMEDICINE 2024; 5:74. [PMID: 39739077 PMCID: PMC11688263 DOI: 10.1186/s43556-024-00242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025] Open
Abstract
Lenvatinib, an approved first-line regimen, has been widely applied in hepatocellular carcinoma (HCC). However, clinical response towards Lenvatinib was limited, emphasizing the importance of understanding the underlying mechanism of its resistance. Herein, we employed integrated bioinformatic analysis to identify calpain-2 (CAPN2) as a novel key regulator for Lenvatinib resistance in HCC, and its expression greatly increased in both Lenvatinib-resistant HCC cell lines and clinical samples. Further in vitro and in vivo experiments indicated that knocking down CAPN2 greatly sensitized HCC cells to Lenvatinib treatment, while overexpression of CAPN2 achieved opposite effects in a Lenvatinib-sensitive HCC cell line. Interestingly, we observed a close relationship between CAPN2 expression and cancer stem cell (CSC) traits in HCC cells, evidenced by impaired sphere-forming and CSC-related marker expressions after CAPN2 knockdown, and verse vice. Mechanistically, we strikingly discovered that CAPN2 exerted its function by both enzyme-dependent and enzyme-independent manner simultaneously: activating β-Catenin signaling through its enzyme activity, and preventing GLI1/GLI2 degradation through direct binding to YWHAE in an enzyme-independent manner, which disrupting the association between YWHAE and GLI1/GLI2 to inhibit YWHAE-induced degradation of GLIs. Notably, further co-immunoprecipitation assays revealed that YWHAE could promote the protein stability of CAPN2 via recruiting a deubiquitinase COPS5 to prevent ubiquitination-induced degradation of CAPN2. In summary, our data demonstrated that CAPN2 promoted Lenvatinib resistance via both catalytic activity-dependent and -independent approaches. Reducing CAPN2 protein rather than inhibiting its activity might be a promising strategy to improve Lenvatinib treatment efficiency in HCC.
Collapse
Affiliation(s)
- Xiaolu Ma
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Kaixia Zhou
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Tianqing Yan
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Ling Hu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Suhong Xie
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Hui Zheng
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Ying Tong
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Heng Zhang
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Zhiyun Gong
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Cuncun Chen
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Yanan Tian
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Lin Guo
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| | - Renquan Lu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| |
Collapse
|
10
|
Boon-yasidhi P, Karnsakul W. Non-Invasive Biomarkers and Breath Tests for Diagnosis and Monitoring of Chronic Liver Diseases. Diagnostics (Basel) 2024; 15:68. [PMID: 39795596 PMCID: PMC11720471 DOI: 10.3390/diagnostics15010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Chronic liver disease (CLD) presents a significant global health burden, demanding effective tools for diagnosis and monitoring. Traditionally, liver biopsy has been the gold standard for evaluating liver fibrosis and other chronic liver conditions. However, biopsy's invasiveness, associated risks, and sampling variability indicate the need for reliable, noninvasive alternatives. This review examines the utility of noninvasive tests (NITs) in assessing liver disease severity, progression, and therapeutic response in patients with CLD. Result: Key modalities discussed include serum biomarker panels (e.g., FIB-4, APRI, ELF), imaging techniques like transient elastography, and magnetic resonance elastography, each offering unique benefits in fibrosis staging. Emerging biomarkers such as extracellular vesicles and circulating microRNAs show promise in early detection and personalized monitoring. Comparative studies indicate that while no single NIT matches biopsy precision, combinations of these modalities improve diagnostic accuracy and patient outcomes by reducing unnecessary biopsies. Moreover, NITs are instrumental in monitoring dynamic changes in liver health, allowing for more responsive and patient-centered care. Conclusions: Challenges remain, including standardization across tests, cost considerations, and the need for larger, diverse population studies to validate findings. Despite these limitations, NITs are increasingly integrated into clinical practice, fostering a paradigm shift toward noninvasive, accessible liver disease management. Continued advancements in NITs are essential for improved patient outcomes and will likely shape the future standard of care for CLD.
Collapse
Affiliation(s)
- Pasawat Boon-yasidhi
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wikrom Karnsakul
- Pediatric Liver Center, Department of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| |
Collapse
|
11
|
Ganne-Carrié N, Nahon P. Differences between hepatocellular carcinoma caused by alcohol and other aetiologies. J Hepatol 2024:S0168-8278(24)02817-4. [PMID: 39710147 DOI: 10.1016/j.jhep.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/14/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024]
Abstract
Alcohol-related liver disease is the third cause of hepatocellular carcinoma worldwide and the leading cause in Europe. Additionally, the recent definition of Metabolic dysfunction-Associated Steatotic Liver Disease with increased alcoholic intake will enrich this population with a more nuanced phenotype, reflecting recent epidemiological trends. In these patients, hepatocellular carcinoma diagnosis is often delayed and less frequently detected through screening programs. Moreover, at the time of diagnosis, patients with alcohol-related hepatocellular carcinoma tend to have a poorer general condition, more severely impaired liver function, and a higher prevalence of comorbidities, leading to increased competitive mortality. However, when hepatocellular carcinoma is diagnosed during surveillance programs in patients with alcohol-related liver disease or metabolic dysfunction-Associated steatotic liver disease with increased alcoholic intake, the rate of allocation to first-line curative treatments is high (56%) and comparable to that of patients with virus-related hepatocellular carcinoma. As a consequence, the etiology of the underlying cirrhosis cannot be considered an independent prognostic factor in patients with hepatocellular carcinoma. Instead, prognosis is driven by liver function, general condition, and tumor burden. This underscores the crucial role of early diagnosis through periodic surveillance in patients with Alcohol-related liver disease or Metabolic dysfunction-Associated Steatotic Liver Disease with increased alcoholic intake -related cirrhosis.
Collapse
Affiliation(s)
- Nathalie Ganne-Carrié
- AP-HP, Hôpital Avicenne, Liver Unit, F-93000 Bobigny, France; University Sorbonne Paris Nord, UFR SMBH, F-93000 Bobigny, France; INSERM UMR-1168, Functional Genomics of Solid Tumours, F-75006 Paris, France.
| | - Pierre Nahon
- AP-HP, Hôpital Avicenne, Liver Unit, F-93000 Bobigny, France; University Sorbonne Paris Nord, UFR SMBH, F-93000 Bobigny, France; INSERM UMR-1168, Functional Genomics of Solid Tumours, F-75006 Paris, France
| |
Collapse
|
12
|
Lee J, Yoo JS, Kim JH, Lee DY, Yang K, Kim B, Choi JI, Jang JW, Choi JY, Yoon SK, Han JW, Sung PS. Prognostic significance of combined PD-L1 expression in malignant and infiltrating cells in hepatocellular carcinoma treated with atezolizumab and bevacizumab. Front Immunol 2024; 15:1506355. [PMID: 39720711 PMCID: PMC11666515 DOI: 10.3389/fimmu.2024.1506355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Background Programmed death-ligand 1 (PD-L1) expression is abundant not only in malignant cells but also in infiltrating cells within the tumor microenvironment (TME) of hepatocellular carcinoma (HCC). This study explored the association between PD-L1 expression in TME and outcomes in HCC patients treated with atezolizumab plus bevacizumab (AB), emphasizing the implications of PD-L1 expression in both malignant and tumor-infiltrating cells. Methods This study included 72 patients with HCC who underwent percutaneous core needle liver biopsy before AB treatment between September 2020 and December 2023. PD-L1 expression on tumor tissues was assessed using the combined positive score (CPS) with cutoff values of 1 and 10, utilizing antibody clone 22C3 (Dako). Results The distribution of PD-L1 CPS included 24 patients with CPS <1, 33 patients with CPS 1-10, and 15 patients with CPS ≥10. Significant differences in overall survival (OS) were observed across the three groups, with CPS ≥10 showing the highest survival rates (p = 0.010). Patients with CPS ≥10 had better OS than those with CPS <10 (median OS 14.8 vs. 8.3 months, P = 0.046), and CPS ≥1 had better OS than CPS <1 (P = 0.021). For progression-free survival (mPFS), the CPS ≥10 group had the highest median PFS of 11.0 months among the three groups (P = 0.044). Objective response rates (ORR) were higher in the PD-L1 CPS ≥10 group than in the 1-10 and <1 group (53.3%, 27.3%, and 16.7%, respectively; P = .047). Multivariate analysis identified that PD-L1 expression ≥10 and ≥1 were associated with favorable outcomes regarding OS (hazard ratio [HR] 0.283, P = .027 and HR 0.303, P = .006, respectively). Conclusions Combined analysis of PD-L1 expression in malignant and tumor-infiltrating cells can be a promising biomarker for the prognosis of HCC patients treated with AB.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/mortality
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/diagnosis
- B7-H1 Antigen/metabolism
- Male
- Female
- Bevacizumab/therapeutic use
- Bevacizumab/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Middle Aged
- Aged
- Prognosis
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Tumor Microenvironment/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Adult
- Biomarkers, Tumor/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Jaejun Lee
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| | - Jae-Sung Yoo
- School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Hoon Kim
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| | - Dong Yeup Lee
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| | - Keungmo Yang
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| | - Bohyun Kim
- Departmend of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republc of Korea, Seoul, Republic of Korea
| | - Joon-Il Choi
- Departmend of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republc of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| | - Ji Won Han
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| |
Collapse
|
13
|
Lehrich BM, Tao J, Liu S, Hirsch TZ, Yasaka TM, Cao C, Delgado ER, Guan X, Lu S, Pan L, Liu Y, Singh S, Poddar M, Bell A, Singhi AD, Zucman-Rossi J, Wang Y, Monga SP. Development of mutated β-catenin gene signature to identify CTNNB1 mutations from whole and spatial transcriptomic data in patients with HCC. JHEP Rep 2024; 6:101186. [PMID: 39583094 PMCID: PMC11582745 DOI: 10.1016/j.jhepr.2024.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 11/26/2024] Open
Abstract
Background & Aims Patients with β-catenin (encoded by CTNNB1)-mutated hepatocellular carcinoma (HCC) demonstrate heterogenous responses to first-line immune checkpoint inhibitors (ICIs). Precision-medicine based treatments for this subclass are currently in clinical development. Here, we report derivation of the Mutated β-catenin Gene Signature (MBGS) to predict CTNNB1-mutational status in patients with HCC for future application in personalized medicine treatment regimens. Methods Co-expression of mutant-Nrf2 and hMet ± mutant-β-catenin in murine livers in mice led to HCC development. The MBGS was derived using bulk RNA-seq and intersectional transcriptomic analysis of β-catenin-mutated and non-mutated HCC models. Integrated RNA/whole-exome-sequencing and spatial transcriptomic data from multiple cohorts of patients with HCC was assessed to address the ability of MBGS to detect CTNNB1 mutation, the tumor immune microenvironment, and/or predict therapeutic responses. Results Bulk RNA-seq comparing HCC specimens in mutant β-catenin-Nrf2, β-catenin-Met and β-catenin-Nrf2-Met to Nrf2-Met HCC model yielded 95 common upregulated genes. In The Cancer Genome Atlas (TCGA)-LIHC dataset, differential gene expression analysis with false discovery rate (FDR) = 0.05 and log2(fold change) >1.5 on the 95 common genes comparing CTNNB1-mutated vs. wild-type patients narrowed the gene panel to a 13-gene MBGS. MBGS predicted CTNNB1-mutations in TCGA (n = 374) and French (n = 398) patient cohorts with AUCs of 0.90 and 0.94, respectively. Additionally, a higher MBGS expression score was associated with lack of significant improvement in overall survival or progression-free survival in the atezolizumab-bevacizumab arm vs. the sorafenib arm in the IMbrave150 cohort. MBGS performed comparable or superior to other CTNNB1-mutant classifiers. MBGS overlapped with Hoshida S3, Boyault G5/G6, and Chiang CTNNB1 subclass tumors in TCGA and in HCC spatial transcriptomic datasets visually depicting these tumors to be situated in an immune excluded tumor microenvironment. Conclusions MBGS will aid in patient stratification to guide precision medicine therapeutics for CTNNB1-mutated HCC subclass as a companion diagnostic, as anti-β-catenin therapies become available. Impact and implications As precision medicine for liver cancer treatment becomes a reality, diagnostic tools are needed to help classify patients into groups for the best treatment choices. We have developed a molecular signature that could serve as a companion diagnostic and uses bulk or spatial transcriptomic data to identify a unique subclass of liver tumors. This subgroup of liver cancer patients derive limited benefit from the current standard of care and are expected to benefit from specialized directed therapies that are on the horizon.
Collapse
Affiliation(s)
- Brandon M. Lehrich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junyan Tao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Theo Z. Hirsch
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Tyler M. Yasaka
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine Cao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Evan R. Delgado
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xiangnan Guan
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Shan Lu
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Long Pan
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Yuqing Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minakshi Poddar
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron Bell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Aatur D. Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Yulei Wang
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Satdarshan P. Monga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Li B, Hu J, Xu H. Integrated single-cell and bulk RNA sequencing reveals immune-related SPP1+ macrophages as a potential strategy for predicting the prognosis and treatment of liver fibrosis and hepatocellular carcinoma. Front Immunol 2024; 15:1455383. [PMID: 39635536 PMCID: PMC11615077 DOI: 10.3389/fimmu.2024.1455383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Background Liver fibrosis is a pathological response to liver damage induced by multiple etiologies including NASH and CCl4, which may further lead to cirrhosis and hepatocellular carcinoma (HCC). Despite the increasing understanding of liver fibrosis and HCC, clinical prognosis and targeted therapy remain challenging. Methods This study integrated single-cell sequencing analysis, bulk sequencing analysis, and mouse models to identify highly expressed genes, cell subsets, and signaling pathways associated with liver fibrosis and HCC. Clinical prediction models and prognostic genes were established and verified through machine learning, survival analysis, as well as the utilization of clinical data and tissue samples from HCC patients. The expression heterogeneity of the core prognostic gene, along with its correlation with the tumor microenvironment and prognostic outcomes, was analyzed through single-cell analysis and immune infiltration analysis. In addition, the cAMP database and molecular docking techniques were employed to screen potential small molecule drugs for the treatment of liver fibrosis and HCC. Result We identified 40 pathogenic genes, 15 critical cell subsets (especially Macrophages), and regulatory signaling pathways related to cell adhesion and the actin cytoskeleton that promote the development of liver fibrosis and HCC. In addition, 7 specific prognostic genes (CCR7, COL3A1, FMNL2, HP, PFN1, SPP1 and TENM4) were identified and evaluated, and expression heterogeneity of core gene SPP1 and its positive correlation with immune infiltration and prognostic development were interpreted. Moreover, 6 potential small molecule drugs for the treatment of liver fibrosis and HCC were provided. Conclusion The comprehensive investigation, based on a bioinformatics and mouse model strategy, may identify pathogenic genes, cell subsets, regulatory mechanisms, prognostic genes, and potential small molecule drugs, thereby providing valuable insights into the clinical prognosis and targeted treatment of liver fibrosis and HCC.
Collapse
Affiliation(s)
- Bangjie Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Tonon F, Grassi C, Tierno D, Biasin A, Grassi M, Grassi G, Dapas B. Non-Coding RNAs as Potential Diagnostic/Prognostic Markers for Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:12235. [PMID: 39596302 PMCID: PMC11594412 DOI: 10.3390/ijms252212235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The increasing incidence of hepatocellular carcinoma (HCC), together with the poor effectiveness of the available treatments, make early diagnosis and effective screening of utmost relevance. Liquid biopsy represents a potential novel approach to early HCC detection and monitoring. The identification of blood markers has many desirable features, including the absence of any significant risk for the patients, the possibility of being used as a screening tool, and the ability to perform multiple tests, thus allowing for the real-time monitoring of HCC evolution. Unfortunately, the available blood markers for HCC have several limitations, mostly related to specificity and sensitivity. In this context, employing non-coding RNAs (ncRNAs) may represent an interesting and novel diagnostic approach. ncRNAs, which include, among others, micro interfering RNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate human gene expression via interactions with their target mRNA. Notably, their expression can be altered in HCC, thus reflecting disease status. In this review, we discuss some notable works that describe the use of miRNAs, lncRNAs, and circRNAs as HCC biomarkers. Despite some open aspects related to ncRNA use, the presented works strongly support the potential effectiveness of these molecules as diagnostic/prognostic markers for HCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/blood
- Liver Neoplasms/genetics
- Liver Neoplasms/diagnosis
- Liver Neoplasms/blood
- Biomarkers, Tumor/genetics
- Prognosis
- RNA, Untranslated/genetics
- RNA, Untranslated/blood
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/blood
- RNA, Circular/genetics
- Gene Expression Regulation, Neoplastic
- MicroRNAs/genetics
- MicroRNAs/blood
Collapse
Affiliation(s)
- Federica Tonon
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (F.T.); (D.T.)
| | - Chiara Grassi
- Degree Course in Medicine, University of Trieste, 34127 Trieste, Italy;
| | - Domenico Tierno
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (F.T.); (D.T.)
| | - Alice Biasin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6, 34127 Trieste, Italy; (A.B.); (M.G.)
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6, 34127 Trieste, Italy; (A.B.); (M.G.)
| | - Gabriele Grassi
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (F.T.); (D.T.)
| | - Barbara Dapas
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy;
| |
Collapse
|
16
|
Zhang C, Li T, Zhao Q, Ma R, Hong Z, Huang X, Gao P, Liu J, Zhao J, Wang Z. Advances and Prospects in Liquid Biopsy Techniques for Malignant Tumor Diagnosis and Surveillance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404709. [PMID: 39082395 DOI: 10.1002/smll.202404709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Indexed: 11/02/2024]
Abstract
Liquid biopsy technology provides invaluable support for the early diagnosis of tumors and surveillance of disease course by detecting tumor-related biomarkers in bodily fluids. Currently, liquid biopsy techniques are mainly divided into two categories: biomarker and label-free. Biomarker liquid biopsy techniques utilize specific antibodies or probes to identify and isolate target cells, exosomes, or molecules, and these techniques are widely used in clinical practice. However, they have certain limitations including dependence on tumor markers, alterations in cell biological properties, and high cost. In contrast, label-free liquid biopsy techniques directly utilize physical or chemical properties of cells, exosomes, or molecules for detection and isolation. These techniques have the advantage of not needing labeling, not impacting downstream analysis, and low detection cost. However, most are still in the research stage and not yet mature. This review first discusses recent advances in liquid biopsy techniques for early tumor diagnosis and disease surveillance. Several current techniques are described in detail. These techniques exploit differences in biomarkers, size, density, deformability, electrical properties, and chemical composition in tumor components to achieve highly sensitive tumor component identification and separation. Finally, the current research progress is summarized and the future research directions of the field are discussed.
Collapse
Affiliation(s)
- Chengzhi Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Tenghui Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Qian Zhao
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Rui Ma
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhengchao Hong
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Jingjing Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Junhua Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| |
Collapse
|
17
|
Xing H, Gu X, Liu Y, Xu L, He Y, Xue C. NSUN2 regulates Wnt signaling pathway depending on the m5C RNA modification to promote the progression of hepatocellular carcinoma. Oncogene 2024; 43:3469-3482. [PMID: 39375506 DOI: 10.1038/s41388-024-03184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
5-Methylcytosine (m5C) RNA modification is a highly abundant and important epigenetic modification in mammals. As an important RNA m5C methyltransferase, NOP2/Sun-domain family member 2 (NSUN2)-mediated m5C RNA modification plays an important role in the regulation of the biological functions in many cancers. However, little is known about the biological role of NSUN2 in hepatocellular carcinoma (HCC). In this study, we found that the expression of NSUN2 was significantly upregulated in HCC, and the HCC patients with higher expression of NSUN2 had a poorer prognosis than those with lower expression of NSUN2. NSUN2 could affect the tumor immune regulation of HCC in several ways. In vitro and in vivo experiments confirmed that NSUN2 knockdown significantly decreased the abilities of proliferation, colony formation, migration and invasion of HCC cells. The methylated RNA immunoprecipitation-sequencing (MeRIP-seq) showed NSUN2 knockdown significantly affected the abundance, distribution, and composition of m5C RNA modification in HCC cells. Functional enrichment analyses and in vitro experiments suggested that NSUN2 could promote the HCC cells to proliferate, migrate and invade by regulating Wnt signaling pathway. SARS2 were identified via the RNA immunoprecipitation-sequencing (RIP-Seq) and MeRIP-seq as downstream target of NSUN2, which may play an important role in tumor-promoting effect of NSUN2-mediated m5C RNA modification in HCC. In conclusion, NSUN2 promotes HCC progression by regulating Wnt signaling pathway and SARS2 in an m5C-dependent manner.
Collapse
Affiliation(s)
- Huiwu Xing
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yingru Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
18
|
Xiao Z, Yang F, Liu Z, Chen X, Ma S, Li H. An overview of risk assessment and monitoring of malignant transformation in cirrhotic nodules. Therap Adv Gastroenterol 2024; 17:17562848241293019. [PMID: 39493259 PMCID: PMC11528798 DOI: 10.1177/17562848241293019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Cirrhotic liver nodules can progress to hepatocellular carcinoma (HCC) through a multi-step carcinogenesis model, with dysplastic nodules being particularly high risk. Currently, monitoring the progression of non-HCC cirrhotic nodules is primarily through dynamic observation, but there is a lack of sensitive, efficient, and convenient methods. Dynamic monitoring and risk evaluation of malignant transformation are essential for timely treatment and improved patient survival rates. Routine liver biopsies are impractical for monitoring, and imaging techniques like ultrasound, computed tomography, and magnetic resonance imaging are not suitable for all patients or for accurately assessing subcentimeter nodules. Identifying serum biomarkers with high sensitivity, specificity, and stability, and developing a multi-index evaluation model, may provide a more convenient and efficient approach to monitoring pathological changes in cirrhotic nodules.
Collapse
Affiliation(s)
- Zhun Xiao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Fangming Yang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zheng Liu
- Department of Combination of Traditional Chinese Medicine and Western Medicine, Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinju Chen
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Suping Ma
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19 Renmin Road, Zhengzhou 450000, China
| | - Heng Li
- Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
19
|
Choi JH, Thung SN. Pathology and diagnostic approaches to well-differentiated hepatocellular lesions: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 42:5. [PMID: 39442859 PMCID: PMC11812079 DOI: 10.12701/jyms.2024.00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Well-differentiated hepatocellular lesions (WDHLs) are liver tumors or nonneoplastic lesions in which the cells closely resemble normal hepatocytes. These lesions often include focal nodular hyperplasia, hepatocellular adenoma, macroregenerative nodule, dysplastic nodule, and well-differentiated hepatocellular carcinoma. The diagnosis of these lesions remains challenging because of their morphological similarities, particularly when examined using needle biopsy. The accurate diagnosis of WDHLs is crucial for patient management and prognosis. This review addresses the histopathological characteristics and diagnostic approaches of WDHLs.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
| | - Swan N. Thung
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
Fang H, Chen X, Zhong Y, Wu S, Ke Q, Huang Q, Wang L, Zhang K. Integrating anoikis and ErbB signaling insights with machine learning and single-cell analysis for predicting prognosis and immune-targeted therapy outcomes in hepatocellular carcinoma. Front Immunol 2024; 15:1446961. [PMID: 39464883 PMCID: PMC11502379 DOI: 10.3389/fimmu.2024.1446961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) poses a significant global health challenge due to its poor prognosis and limited therapeutic modalities. Anoikis and ErbB signaling pathways are pivotal in cancer cell proliferation and metastasis, but their relevance in HCC remains insufficiently explored. Methods This study evaluates the prognostic significance of anoikis and ErbB signaling pathways in HCC by utilizing data from The Cancer Genome Atlas (TCGA), the International Cancer Genome Consortium (ICGC), three additional independent validation cohorts, and an in-house cohort. Advanced bioinformatics analyses and 167 machine learning models based on leave-one-out cross-validation (LOOCV) were used to predict HCC prognosis and assess outcomes of immune-targeted therapies. Additionally, key biological processes of the anoikis and ErbB signaling pathways in HCC were further investigated. Results The single sample Gene Set Enrichment Analysis revealed a strong correlation between upregulated ErbB signaling in high anoikis-expressing tumors and poor clinical outcomes. The development of the Anoikis-ErbB Related Signature (AERS) using the LASSO + RSF model demonstrated robust predictive capabilities, as validated across multiple patient cohorts, and proved effective in predicting responses to immune-targeted therapies. Further investigation highlighted activated NOTCH signaling pathways and decreased macrophage infiltration was associated with resistance to sorafenib and immune checkpoint inhibitors, as evidenced by bulk and single-cell RNA sequencing (scRNA-seq). Conclusion AERS provides a novel tool for clinical prognosis and paves the way for immune-targeted therapeutic approaches, underscoring the potential of integrated molecular profiling in enhancing treatment strategies for HCC.
Collapse
Affiliation(s)
- Huipeng Fang
- Department of General Surgery, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xingte Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yaqi Zhong
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Shiji Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Qiao Ke
- Department of Hepatopancreatobiliary Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Qizhen Huang
- Department of Radiation Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lei Wang
- Department of Radiation Oncology, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Kun Zhang
- Department of General Surgery, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
Chu YD, Chen MC, Yeh CT, Lai MW. Hijacking host extracellular vesicle machinery by hepatotropic viruses: current understandings and future prospects. J Biomed Sci 2024; 31:97. [PMID: 39369194 PMCID: PMC11453063 DOI: 10.1186/s12929-024-01063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 10/07/2024] Open
Abstract
Recent advances in studies exploring the roles of extracellular vesicles (EVs) in viral transmission and replication have illuminated hepatotropic viruses, such as hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV). While previous investigations have uncovered these viruses' ability to exploit cellular EV pathways for replication and transmission, most have focused on the impacts of exosomal pathways. With an improved understanding of EVs, four main subtypes, including exosomes, microvesicles, large oncosomes, and apoptotic bodies, have been categorized based on size and biogenic pathways. However, there remains a noticeable gap in comprehensive reviews summarizing recent findings and outlining future perspectives for EV studies related to hepatotropic viruses. This review aims to consolidate insights into EV pathways utilized by hepatotropic viruses, offering guidance for the future research direction in this field. By comprehending the diverse range of hepatotropic virus-associated EVs and their role in cellular communication during productive viral infections, this review may offer valuable insights for targeting therapeutics and devising strategies to combat virulent hepatotropic virus infections and the associated incidence of liver cancer.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Mi-Chi Chen
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
22
|
Yu B, Ma W. Biomarker discovery in hepatocellular carcinoma (HCC) for personalized treatment and enhanced prognosis. Cytokine Growth Factor Rev 2024; 79:29-38. [PMID: 39191624 DOI: 10.1016/j.cytogfr.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading contributor to cancer-related deaths worldwide and presents significant challenges in diagnosis and treatment due to its heterogeneous nature. The discovery of biomarkers has become crucial in addressing these challenges, promising early detection, precise diagnosis, and personalized treatment plans. Key biomarkers, such as alpha fetoprotein (AFP) glypican 3 (GPC3) and des gamma carboxy prothrombin (DCP) have shown potential in improving clinical results. Progress in proteomic technologies, including next-generation sequencing (NGS), mass spectrometry, and liquid biopsies detecting circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), has deepened our understanding of HCC's molecular landscape. Immunological markers, like PD-L1 expression and tumor-infiltrating lymphocytes (TILs), also play a crucial role in guiding immunotherapy decisions. Despite these advancements, challenges remain in biomarker validation, standardization, integration into clinical practice, and cost-related barriers. Emerging technologies like single-cell sequencing and machine learning offer promising avenues for further exploration. Continued investment in research and collaboration among researchers, healthcare providers, and policymakers is vital to harness the potential of biomarkers fully, ultimately revolutionizing HCC management and improving patient outcomes through personalized treatment approaches.
Collapse
Affiliation(s)
- Baofa Yu
- Taimei Baofa Cancer Hospital, Dongping, Shandong 271500, China; Jinan Baofa Cancer Hospital, Jinan, Shandong 250000, China; Beijing Baofa Cancer Hospital, Beijing, 100010, China; Immune Oncology Systems, Inc, San Diego, CA 92102, USA.
| | - Wenxue Ma
- Department of Medicine, Sanford Stem Cell Institute, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Li M, Bhoori S, Mehta N, Mazzaferro V. Immunotherapy for hepatocellular carcinoma: The next evolution in expanding access to liver transplantation. J Hepatol 2024; 81:743-755. [PMID: 38848767 DOI: 10.1016/j.jhep.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/09/2024]
Abstract
Immunotherapy has revolutionised the treatment of advanced hepatocellular carcinoma (HCC). In addition, several phase III trials of immunotherapy in combination with surgical or locoregional therapies for early-to intermediate-stage HCC have recently reported positive results, and other phase III trials in the same patient population are currently in progress. As the application of immunotherapy is shifting to include patients with earlier stages of HCC, one looming question now emerges: What is the role of immunotherapy in the pre-liver transplant population? Liver transplantation is a potentially curative therapy for HCC and confers the additional advantage of restoring a normal, healthy liver. In pre-transplant patients, immunotherapy may improve downstaging success and tumour control at the cost of some immunologic risks. These include immune-related toxicities, which are particularly relevant in a uniquely vulnerable population with chronic liver disease, and the possibility of acute rejection after transplantation. Ultimately, the goal of immunotherapy in this population will be to effectively expand access to liver transplantation while preserving pre- and post-transplant outcomes. In this review, we discuss the mechanisms supporting combination immunotherapy, summarise key recent clinical data from major immunotherapy trials, and explore how immunotherapy can be applied in the neoadjuvant setting prior to liver transplantation in selected high-risk patients.
Collapse
Affiliation(s)
- Michael Li
- Division of Gastroenterology and Hepatology, University of California, San Francisco, San Francisco CA, USA
| | - Sherrie Bhoori
- Division of HPB Surgery, Hepatology and Liver Transplantation, University of Milan, and Fondazione IRCCS Istituto Nazionale Tumori, Milan Italy
| | - Neil Mehta
- Division of Gastroenterology and Hepatology, University of California, San Francisco, San Francisco CA, USA.
| | - Vincenzo Mazzaferro
- Division of HPB Surgery, Hepatology and Liver Transplantation, University of Milan, and Fondazione IRCCS Istituto Nazionale Tumori, Milan Italy.
| |
Collapse
|
24
|
Kale SR, Karande G, Gudur A, Garud A, Patil MS, Patil S. Recent Trends in Liver Cancer: Epidemiology, Risk Factors, and Diagnostic Techniques. Cureus 2024; 16:e72239. [PMID: 39583507 PMCID: PMC11584332 DOI: 10.7759/cureus.72239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Liver cancer, particularly hepatocellular carcinoma (HCC), poses a significant global health challenge due to its high mortality rate. Hepatocellular carcinoma and intrahepatic cholangiocarcinoma (ICC) are the two main types of primary liver cancer (PLC), each with its own set of complexities. Secondary or metastatic liver cancer is more common than PLC. It is frequently observed in malignancies such as colorectal, pancreatic, melanoma, lung, and breast cancer. Liver cancer is often diagnosed at an advanced stage, making it difficult to treat. This highlights the need for focused research on early detection and effective treatment strategies. This review explores the epidemiology, risk factors, and diagnostic techniques for HCC. The development of HCC involves various risk factors, including chronic liver diseases, hepatitis B and C infections, alcohol consumption, obesity, smoking, and genetic predispositions. Various invasive and non-invasive diagnostic techniques, such as biopsy, liquid biopsy, and imaging modalities like ultrasonography, computed tomography scans (CT scans), magnetic resonance imaging (MRI), and positron emission tomography (PET) scans, are utilized for HCC detection and monitoring. Advances in imaging technology and biomarker research have led to more accurate and sensitive methods for early HCC detection. We also reviewed advanced research on emerging techniques, including next-generation sequencing, metabolomics, epigenetic biomarkers, and microbiome analysis, which show great potential for advancing early diagnosis and personalized treatment strategies. This literature review provides insights into the current state of liver cancer diagnosis and promising future advancements. Ongoing research and innovation in these areas are essential for improving early diagnosis and reducing the global burden of liver cancer.
Collapse
Affiliation(s)
- Shivani R Kale
- Molecular Biology and Genetics, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Geeta Karande
- Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Anand Gudur
- Oncology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Aishwarya Garud
- Molecular Biology and Genetics, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Monika S Patil
- Molecular Biology and Genetics, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Satish Patil
- Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
25
|
Ahn JC, Yang JD. Unveiling etiology-specific blood biomarkers in hepatocellular carcinoma: A gateway to personalized medicine: Editorial on "Multiomics profiling of buffy coat and plasma unveils etiology-specific signatures in hepatocellular carcinoma". Clin Mol Hepatol 2024; 30:689-691. [PMID: 38741236 PMCID: PMC11540397 DOI: 10.3350/cmh.2024.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Joseph C. Ahn
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Ju Dong Yang
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
26
|
Zhang RN, Fan JG. Lipid metabolism-related long noncoding RNAs: A potential prognostic biomarker for hepatocellular carcinoma. World J Gastroenterol 2024; 30:3799-3802. [PMID: 39351428 PMCID: PMC11438626 DOI: 10.3748/wjg.v30.i33.3799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
The incidence rates of hepatocellular carcinoma (HCC) have increased in recent decades. Despite advancements in therapy and early diagnosis improving short-term prognosis, long-term outcomes remain poor. Long noncoding RNAs (lncRNAs) and lipid metabolism play crucial roles in the development and progression of HCC. Enhanced lipid synthesis promotes HCC progression, and lncRNAs can reprogram the expression of lipogenic enzymes. Consequently, lipid metabolism-related (LMR)-lncRNAs regulate lipid anabolism, accelerating the onset and progression of HCC. This suggests that LMR-lncRNAs could serve as novel prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Rui-Nan Zhang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
27
|
Yang X, Li Q, Zeng T. Peripheral CD4 + T cells correlate with response and survival in patients with advanced non-small cell lung cancer receiving chemo-immunotherapy. Front Immunol 2024; 15:1364507. [PMID: 38650951 PMCID: PMC11033411 DOI: 10.3389/fimmu.2024.1364507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Background The aim of the present study was to explore the potential of peripheral immune cells in predicting the response and prognosis of patients with advanced non-small cell lung cancer (NSCLC) receiving anti-PD-1 immunotherapy and platinum-based chemotherapy. Participants and Methods We utilized flow cytometry to examine the levels and dynamics of blood immune cells in 79 advanced NSCLC patients treated with the chemoimmunotherapy between December 2019 and January 2022. The pre- and post-treatment blood samples were collected within 3 days prior to the initiation of the first and third cycle of combination treatment, respectively. Progression-free survival (PFS) and overall survival (OS) analyses were conducted using Kaplan-Meier method and Cox regression models. Results The pre-treatment CD4+/Total T cells ratio was significantly higher in responders than non-responders (P < 0.05). The levels of pre-treatment total lymphocytes (P = 0.012), total B lymphocytes (P = 0.025), and NK cells (P = 0.022), and post-treatment NK cells (P = 0.011) and NKT cells (P = 0.035) were significantly associated with OS. Post-treatment CD8+/Total T cells ratio was positively correlated with OS (P = 0.038). In multivariate analysis, post-treatment NK cells and post-treatment CD4+CD8+/Total T cells ratio were negatively associated with OS (hazard ratio [HR] = 10.30, P = 0.038) and PFS (HR = 1.95, P = 0.022), respectively. Notably, significantly positive correlations were observed between CD4+/Total T cells ratio and prognosis both before and after treatment (P < 0.05). Conclusion To summarize, our finding reveals that high CD4+/total T cells ratio was associated with favorable response and prognosis, highlighting its potential as a predictive biomarker to guide the selection of likely responders to platinum and anti-PD-1 combination therapy.
Collapse
Affiliation(s)
- Xin Yang
- Department of Cardio-Thoracic Surgery, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Qiao Li
- Department of Pathology, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Tianyang Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|