1
|
Anas M, Ward AK, McCarthy KL, Borowicz PP, Reynolds LP, Caton JS, Dahlen CR, Diniz WJS. Intergenerational effects of maternal rate of body weight gain on the multi-omics hepatic profiles of bovine fetuses. Gene 2025; 936:149082. [PMID: 39536959 DOI: 10.1016/j.gene.2024.149082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Maternal periconceptual nutrition affects the growth trajectory of developing fetuses by modulating gene expression. The regulatory mechanisms and their role in fetal development remain underexplored in livestock models. Herein, we investigated the effects of maternal rate of body weight (BW) gain during early gestation on the DNA methylation, microRNA profiles, and their interaction with the hepatic gene expression in female fetuses. At breeding, 36 crossbred beef heifers (∼13 months of age) were randomly assigned to a nutritional plane to gain Low (0.28 kg/day; LG, n = 18) or Moderate (0.79 kg/day; MG, n = 18) BW through the first 83 days of gestation. A subset of pregnant heifers (n = 17) was selected, and fetal liver samples were collected on day 83 of gestation for DNA methylation and miRNA-Sequencing. After data quality control, miRDeep2 and Bismark tools were used to analyze miRNA and methylation data, respectively. The bta-miR-206 was the only differentially expressed miRNA (FDR = 0.02). Eight differentially methylated genes were identified (DMGs, FDR < 0.1). The over-represented pathways and biological processes (adj. p < 0.05) for bta-miR-206 targeted genes were associated with embryonic development, energy metabolism, and mineral transport, whereas the DMGs regulated anatomical structural development and transcriptional regulation. Our results show that key genes involved with liver metabolism, tissue structure, and function were regulated by DNA methylation and the miR-206. However, further investigation is warranted to determine physiological responses and long-term consequences on animal performance.
Collapse
Affiliation(s)
- Muhammad Anas
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, United States.
| | - Alison K Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| | - Kacie L McCarthy
- Department of Animal Sciences, University of Nebraska, Lincoln, NE 68588, United States.
| | - Pawel P Borowicz
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, United States.
| | - Lawrence P Reynolds
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, United States.
| | - Joel S Caton
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, United States.
| | - Carl R Dahlen
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, United States.
| | - Wellison J S Diniz
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
2
|
Wang D, Yu X, Yang Y. Investigating SNHG3 as a potential therapeutic approach for HCC stem cells. Gene 2025; 935:149022. [PMID: 39427830 DOI: 10.1016/j.gene.2024.149022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Hepatocellular Carcinoma (HCC) is a common malignant tumor worldwide. Long Non-Coding RNA (lncRNA) has gained attention in tumor biology, and this study aims to investigate the role of lncRNA SNHG3 in HCC, specifically in the self-renewal and maintenance of liver cancer stem cells. METHODS The expression of lncRNA SNHG3 was analyzed in HCC and adjacent normal tissue using the TCGA database. The expression levels of SNHG3 in HCC cell lines (Hep3B, HepG2, Huh7) were detected using qRT-PCR and Western blot techniques. Functional assays, including CCK-8, soft agar colony formation, and tumor sphere formation, were performed to evaluate the impact of SNHG3 on HCC stem cell functionality. MeRIP-qPCR was also used to investigate the regulatory role of SNHG3 in m6A modification of ITGA6 mRNA mediated by METTL3. RESULTS The study found that SNHG3 was significantly upregulated in HCC tissue and cell lines compared to normal liver tissue. SNHG3 expression correlated with the pathological stage, metastasis status, and tumor size of liver cancer. Inhibiting SNHG3 reduced proliferation, colony formation, and tumor sphere formation ability in HCC stem cells. SNHG3 also played a role in regulating the m6A modification and expression of ITGA6 through METTL3. CONCLUSION This study emphasizes the upregulation of lncRNA SNHG3 and its role in HCC stem cell self-renewal. SNHG3 may regulate the m6A modification of ITGA6 mRNA through its interaction with METTL3, impacting the function of liver cancer stem cells. These findings support the potential of targeting SNHG3 as a therapeutic approach for HCC.
Collapse
Affiliation(s)
- Dingmao Wang
- Department of Hepatobiliary Surgery, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China
| | - Xiao Yu
- The 2nd Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| | - Yijun Yang
- Department of Hepatobiliary Surgery, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China.
| |
Collapse
|
3
|
Saleh RO, Hamad HA, Najim MA, Menon SV, Kaur M, Sivaprasad GV, Abohassan M, Juan WT, Husseen B, Mustafa YF. Exosome-mediated Transfer of lncRNA in Liver Associated Diseases; Uncovered Truths. Cell Biochem Biophys 2024:10.1007/s12013-024-01617-x. [PMID: 39567423 DOI: 10.1007/s12013-024-01617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Exosomes are extracellular vesicles with a diameter ranging from 40 to 160 nm. They are produced by hepatocytes, cholangiocytes, hepatic stellate cells (HSCs), liver sinusoidal endothelial cells (LSECs) and Kupffer cells in liver tissue. The secretion of exosomes might vary in quantity and composition in reaction to multiple triggers and various stages of disease. They transport various payloads, such as proteins, DNAs, and RNAs, and enable cell interaction to regulate myriad physiological and pathological processes in liver tissue. Long non-coding RNAs (lncRNAs) are a crucial component of exosomes with an excellent capability to regulate multiple cellular activities such as differentiation, development, metabolism, proliferation, apoptosis, and activation. With the advancements in transcriptomic and genomic study methods and database management technology, the functions and mechanisms of exosomal lncRNAs in liver diseases have been well-studied. This article delves into the detailed role of exosomal lncRNAs in liver disease onset and progression, ranging from hepatocellular carcinoma (HCC) to liver fibrosis drug-induced liver damage (DILI) and steatotic liver diseases.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq.
| | - Hamad Ali Hamad
- Department of Pathological Analysis, Collage of Applied Sciences, University of Fallujah, Fallujah, Iraq
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Malaysia
| | | | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Wen-Tau Juan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Beneen Husseen
- Medical Laboratory Technique college, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique college, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique college, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
4
|
Anas M, Ward AK, McCarthy KL, Borowicz PP, Reynolds LP, Caton JS, Dahlen CR, Diniz WJS. lncRNA-gene network analysis reveals the effects of early maternal nutrition on mineral homeostasis and energy metabolism in the fetal liver transcriptome of beef heifers. J Nutr Biochem 2024; 132:109691. [PMID: 38879136 DOI: 10.1016/j.jnutbio.2024.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/21/2024]
Abstract
Maternal nutrition during pregnancy influences fetal development; however, the regulatory markers of fetal programming across different gestational phases remain underexplored in livestock models. Herein, we investigated the regulatory role of long non-coding RNAs (lncRNAs) on fetal liver gene expression, the impacts of maternal vitamin and mineral supplementation, and the rate of maternal body weight gain during the periconceptual period. To this end, crossbred Angus heifers (n=31) were randomly assigned to a 2×2 factorial design to evaluate the main effects of the rate of weight gain (low gain [LG, avg. daily gain of 0.28 kg/day] vs. moderate gain [MG, avg. daily gain of 0.79 kg/day]) and vitamins and minerals supplementation (VTM vs. NoVTM). On day 83±0.27 of gestation, fetuses were collected for morphometric measurements, and fetal liver was collected for transcriptomic and mineral analyses. The maternal diet significantly affected fetal liver development and mineral reserves. Using an RNA-Seq approach, we identified 320 unique differentially expressed genes (DEGs) across all six comparisons (FDR <0.05). Furthermore, lncRNAs were predicted through the FEELnc pipeline, revealing 99 unique differentially expressed lncRNAs (DELs). The over-represented pathways and biological processes (BPs) were associated with energy metabolism, Wnt signaling, CoA carboxylase activity, and fatty acid metabolism. The DEL-regulated BPs were associated with metal ion transport, pyrimidine metabolism, and classical energy metabolism-related glycolytic, gluconeogenic, and TCA cycle pathways. Our findings suggest that lncRNAs regulate mineral homeostasis- and energy metabolism-related gene networks in the fetal liver in response to early maternal nutrition.
Collapse
Affiliation(s)
- Muhammad Anas
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Alison K Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kacie L McCarthy
- Department of Animal Sciences, University of Nebraska, Lincoln, NE, USA
| | - Pawel P Borowicz
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Joel S Caton
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Carl R Dahlen
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | | |
Collapse
|
5
|
Matchett KP, Paris J, Teichmann SA, Henderson NC. Spatial genomics: mapping human steatotic liver disease. Nat Rev Gastroenterol Hepatol 2024; 21:646-660. [PMID: 38654090 DOI: 10.1038/s41575-024-00915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as non-alcoholic fatty liver disease) is a leading cause of chronic liver disease worldwide. MASLD can progress to metabolic dysfunction-associated steatohepatitis (MASH, formerly known as non-alcoholic steatohepatitis) with subsequent liver cirrhosis and hepatocellular carcinoma formation. The advent of current technologies such as single-cell and single-nuclei RNA sequencing have transformed our understanding of the liver in homeostasis and disease. The next frontier is contextualizing this single-cell information in its native spatial orientation. This understanding will markedly accelerate discovery science in hepatology, resulting in a further step-change in our knowledge of liver biology and pathobiology. In this Review, we discuss up-to-date knowledge of MASLD development and progression and how the burgeoning field of spatial genomics is driving exciting new developments in our understanding of human liver disease pathogenesis and therapeutic target identification.
Collapse
Affiliation(s)
- Kylie P Matchett
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Jasmin Paris
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Ma T, Wang M, Wang S, Hu H, Zhang X, Wang H, Wang G, Jin Y. BMSC derived EVs inhibit colorectal Cancer progression by transporting MAGI2-AS3 or something similar. Cell Signal 2024; 121:111235. [PMID: 38806109 DOI: 10.1016/j.cellsig.2024.111235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
In this study, we investigated the molecular mechanisms underlying the impact of extracellular vesicles (EVs) derived from bone marrow stromal cells (BMSCs) on colorectal cancer (CRC) development. The focus was on the role of MAGI2-AS3, delivered by BMSC-EVs, in regulating USP6NL DNA methylation-mediated MYC protein translation modification to promote CDK2 downregulation. Utilizing bioinformatics analysis, we identified significant enrichment of MAGI2-AS3 related to copper-induced cell death in CRC. In vitro experiments demonstrated the downregulation of MAGI2-AS3 in CRC cells, and BMSC-EVs were found to deliver MAGI2-AS3 to inhibit CRC cell proliferation, migration, and invasion. Further exploration revealed that MAGI2-AS3 suppressed MYC protein translation modification by regulating USP6NL DNA methylation, leading to CDK2 downregulation and prevention of colorectal cancer. Overexpression of MYC reversed the functional effects of BMSC-EVs-MAGI2-AS3. In vivo experiments validated the inhibitory impact of BMSC-EVs-MAGI2-AS3 on CRC tumorigenicity by promoting CDK2 downregulation through USP6NL DNA methylation-mediated MYC protein translation modification. Overall, BMSC-EVs-MAGI2-AS3 may serve as a potential intervention to prevent CRC occurrence by modulating key molecular pathways.
Collapse
Affiliation(s)
- Tianyi Ma
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Meng Wang
- Department of Colorectal Surgery, Zhejiang Cancer Hospital (Affiliated Cancer Hospital of the Chinese Academy of Sciences), Hangzhou 310000, China
| | - Song Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hanqing Hu
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xin Zhang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Hufei Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Guiyu Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| | - Yinghu Jin
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
7
|
Arjunan P, Kathirvelu D, Mahalingam G, Goel AK, Zacharaiah UG, Srivastava A, Marepally S. Lipid-nanoparticle-enabled nucleic acid therapeutics for liver disorders. Acta Pharm Sin B 2024; 14:2885-2900. [PMID: 39027251 PMCID: PMC11252464 DOI: 10.1016/j.apsb.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 07/20/2024] Open
Abstract
Inherited genetic disorders of the liver pose a significant public health burden. Liver transplantation is often limited by the availability of donor livers and the exorbitant costs of immunosuppressive therapy. To overcome these limitations, nucleic acid therapy provides a hopeful alternative that enables gene repair, gene supplementation, and gene silencing with suitable vectors. Though viral vectors are the most efficient and preferred for gene therapy, pre-existing immunity debilitating immune responses limit their use. As a potential alternative, lipid nanoparticle-mediated vectors are being explored to deliver multiple nucleic acid forms, including pDNA, mRNA, siRNA, and proteins. Herein, we discuss the broader applications of lipid nanoparticles, from protein replacement therapy to restoring the disease mechanism through nucleic acid delivery and gene editing, as well as multiple preclinical and clinical studies as a potential alternative to liver transplantation.
Collapse
Affiliation(s)
- Porkizhi Arjunan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
- Manipal academy for higher education, Mangalore 576104, Karnataka, India
| | - Durga Kathirvelu
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
| | - Gokulnath Mahalingam
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
| | - Ashish Kumar Goel
- Department of Hepatology, Christian Medical College & Hospital, Vellore 632004, Tamil Nadu, India
| | - Uday George Zacharaiah
- Department of Hepatology, Christian Medical College & Hospital, Vellore 632004, Tamil Nadu, India
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
- Department of Hematology, Christian Medical College & Hospital, Vellore 632004, Tamil Nadu, India
| | - Srujan Marepally
- Center for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore 632002, Tamil Nadu, India
| |
Collapse
|
8
|
Zhao Y, Tan H, Zhang X, Zhu J. Roles of peroxisome proliferator-activated receptors in hepatocellular carcinoma. J Cell Mol Med 2024; 28:e18042. [PMID: 37987033 PMCID: PMC10902579 DOI: 10.1111/jcmm.18042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the main pathological type of liver cancer, is linked to risk factors such as viral hepatitis, alcohol intake and non-alcoholic fatty liver disease (NAFLD). Recent advances have greatly improved our understanding that NAFLD is playing a major risk factor for HCC. Peroxisome proliferator-activated receptors (PPARs) are a class of transcription factors divided into three subtypes: PPARα (PPARA), PPARδ/β (PPARD) and PPARγ (PPARG). As important nuclear receptors, PPARs are involved in many physiological processes, and PPARs can improve NAFLD by regulating lipid metabolism, accelerating fatty acid oxidation and inhibiting inflammation. In recent years, some studies have shown that PPARs can participate in the occurrence and development of HCC by regulating metabolic pathways. In addition, PPAR modulators have been reported to inhibit the proliferation and metastasis of HCC cells and can enhance the curative effect of conventional treatments. This article reviews the role of PPARs in the occurrence and development of HCC, as well as its value in the diagnosis, treatment and prognosis of HCC, in order to provide directions for future research.
Collapse
Affiliation(s)
- Yaqin Zhao
- Department of Abdominal Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin HospitalHubei University of MedicineShiyanHubeiChina
| | - Xiaoyu Zhang
- Division of Gastrointestinal Surgery, Department of General SurgeryThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Jing Zhu
- Nanjing Drum Tower HospitalNanjingChina
| |
Collapse
|
9
|
Mo Q, Li W, Liu L, Hao Z, Jia S, Duo Y. A nomogram based on 4-lncRNAs signature for improving prognostic prediction of hepatocellular carcinoma. Clin Transl Oncol 2024; 26:375-388. [PMID: 37368201 DOI: 10.1007/s12094-023-03244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE Long noncoding RNAs (lncRNAs) with abnormal expression are frequently seen in hepatocellular cancer patients (HCC). Previous studies have reported the correlation between lncRNA and prognosis processes of HCC patients. In this research, a graphical nomogram with lncRNAs signatures, T, M phases was developed using the rms R package to estimate the survival rates of HCC patients in year 1, 3, and 5. METHODS To find the prognostic lncRNA and create the lncRNA signatures, univariate Cox survival analysis and multivariate Cox regression analysis were chosen. The rms R software package was used to build a graphical nomogram based on lncRNAs signatures to predict the survival rates in of HCC patients in 1, 3, and 5 years. Using "edgeR", "DEseq" R packages to find the differentially expressed genes (DEGs). RESULTS Firstly, a total of 5581 DEGs including 1526 lncRNAs and 3109 mRNAs were identified through bioinformatic analysis, of which 4 lncRNAs (LINC00578, RP11-298O21.2, RP11-383H13.1, RP11-440G9.1) were identified to be strongly related to the prognosis of liver cancer (P < 0.05). Moreover, we constructed a 4-lncRNAs signature by using the calculated regression coefficient. 4-lncRNAs signature is identified to significantly correlated with clinical and pathological characteristics (such as T stage, and death status of HCC patients). CONCLUSIONS A prognostic nomogram on the base of 4-lncRNAs markers was built, which is capable to accurately predict the 1-year, 3-year, and 5-year survival of HCC patients after the construction of the 4-lncRNAs signature linked with prognosis of HCC.
Collapse
Affiliation(s)
- Qingguo Mo
- Department of Interventional Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Wenjing Li
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Lin Liu
- Department of Interventional Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Zhidong Hao
- Department of Interventional Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shengjun Jia
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yongsheng Duo
- Department of Vascular Burn Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Tiefeng District, 27 Tai Shun Street, Qiqihar, 161000, Heilongjiang Province, China.
| |
Collapse
|
10
|
Zhang L, Jiang G, Lu J, Wang L. LINC00844 suppresses tumor progression and predicts survival outcomes through inhibiting miR-19a-5p in cholangiocarcinoma. Clin Transl Oncol 2024; 26:414-423. [PMID: 37400667 DOI: 10.1007/s12094-023-03254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a heterogeneous malignancy. The aim of the study was to investigate the regulatory role of long noncoding RNA LINC00844 in CCA progression, explore the underlying molecular mechanisms, and to analyze the potential prognostic value of LINC00844 in CCA patients. METHODS Expression of LINC00844 in CCA cell lines and tissues was examined by reverse transcription-quantitative PCR. Cell counting kit-8 assay was used to assess CCA cell proliferation, and the Transwell assay was used to evaluate tumor cell migration and invasion. miRNAs sponged by LINC00844 were predicted and confirmed using a luciferase reporter assay. Kaplan-Meier survival analysis was performed to evaluate the survival prognosis of CCA patients. RESULTS The expression levels of LINC00844 were decreased in CCA tissues and cells. Overexpression of LINC00844 inhibited cell proliferation, migration and invasion in CCA cells. miR-19a-5p is directly targeted by LINC00844, mediating the inhibitory effects of LINC00844 on the proliferation, migration and invasion of CCA cells. LINC00844 and miR-19a-5p expression were associated with differentiation and tumor node metastasis stage in CCA patients. CCA patients with low LINC00844 expression or overexpression of miR-19a-5p had worse overall survival. CONCLUSION The expression levels of LINC00844 were decreased in both CCA tissues and cells, and high LINC00844 inhibited CCA cell proliferation, migration and invasion through sponging miR-19a-5p. Low LINC00844 and high miR-19a-5p expression were associated with worse overall survival in CCA patients. All the data suggested that the LINC00844/miR-19a-5p axis may provide novel therapeutic targets and prognostic biomarkers for CCA patients.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Blood Transfusion, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Guohong Jiang
- Department of Clinical Laboratory, Qingdao Chest Hospital, Qingdao, 266043, Shandong, China
| | - Juan Lu
- Department of Clinical Laboratory, The Fifth People's Hospital of Zibo, Zichuan District, No. 102 Zi Mining Bureau, Zibo, 255100, Shandong, China
| | - Lina Wang
- Department of Clinical Laboratory, The Fifth People's Hospital of Zibo, Zichuan District, No. 102 Zi Mining Bureau, Zibo, 255100, Shandong, China.
| |
Collapse
|
11
|
Shah M, Sarkar D. HCC-Related lncRNAs: Roles and Mechanisms. Int J Mol Sci 2024; 25:597. [PMID: 38203767 PMCID: PMC10779127 DOI: 10.3390/ijms25010597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health threat, particularly in regions endemic to hepatitis B and C viruses, and because of the ongoing pandemic of obesity causing metabolic-dysfunction-related fatty liver disease (MAFLD), a precursor to HCC. The molecular intricacies of HCC, genetic and epigenetic alterations, and dysregulated signaling pathways facilitate personalized treatment strategies based on molecular profiling. Epigenetic regulation, encompassing DNA methyltion, histone modifications, and noncoding RNAs, functions as a critical layer influencing HCC development. Long noncoding RNAs (lncRNAs) are spotlighted for their diverse roles in gene regulation and their potential as diagnostic and therapeutic tools in cancer. In this review, we explore the pivotal role of lncRNAs in HCC, including MAFLD and viral hepatitis, the most prevalent risk factors for hepatocarcinogenesis. The dysregulation of lncRNAs is implicated in HCC progression by modulating chromatin regulation and transcription, sponging miRNAs, and influencing structural functions. The ongoing studies on lncRNAs contribute to a deeper comprehension of HCC pathogenesis and offer promising routes for precision medicine, highlighting the utility of lncRNAs as early biomarkers, prognostic indicators, and therapeutic targets.
Collapse
Affiliation(s)
- Mimansha Shah
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, and VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
12
|
da Cunha Agostini L, Almeida TC, da Silva GN. ANRIL, H19 and TUG1: a review about critical long non-coding RNAs in cardiovascular diseases. Mol Biol Rep 2023; 51:31. [PMID: 38155319 DOI: 10.1007/s11033-023-09007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/30/2023] [Indexed: 12/30/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. They are non-transmissible diseases that affect the cardiovascular system and have different etiologies such as smoking, lipid disorders, diabetes, stress, sedentary lifestyle and genetic factors. To date, lncRNAs have been associated with increased susceptibility to the development of cardiovascular diseases such as hypertension, acute myocardial infarction, stroke, angina and heart failure. In this way, lncRNAs are becoming a very promising point for the prevention and diagnosis of cardiovascular diseases. Therefore, this review highlights the most important and recent discoveries about the mechanisms of action of the lncRNAs ANRIL, H19 and TUG1 and their clinical relevance in these pathologies. This may contribute to early detection of cardiovascular diseases in order to prevent the pathological phenotype from becoming established.
Collapse
Affiliation(s)
- Lívia da Cunha Agostini
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, s/nº, Ouro Prêto, Minas Gerais, CEP 35402-163, Brazil
| | - Tamires Cunha Almeida
- Escola Superior Instituto Butantan (ESIB), Laboratório de Dor e Sinalização, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Glenda Nicioli da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, s/nº, Ouro Prêto, Minas Gerais, CEP 35402-163, Brazil.
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Prêto, Brazil.
| |
Collapse
|
13
|
Triantaphyllopoulos KA. Long Non-Coding RNAs and Their "Discrete" Contribution to IBD and Johne's Disease-What Stands out in the Current Picture? A Comprehensive Review. Int J Mol Sci 2023; 24:13566. [PMID: 37686376 PMCID: PMC10487966 DOI: 10.3390/ijms241713566] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Non-coding RNAs (ncRNA) have paved the way to new perspectives on the regulation of gene expression, not only in biology and medicine, but also in associated fields and technologies, ensuring advances in diagnostic means and therapeutic modalities. Critical in this multistep approach are the associations of long non-coding RNA (lncRNA) with diseases and their causal genes in their networks of interactions, gene enrichment and expression analysis, associated pathways, the monitoring of the involved genes and their functional roles during disease progression from one stage to another. Studies have shown that Johne's Disease (JD), caused by Mycobacterium avium subspecies partuberculosis (MAP), shares common lncRNAs, clinical findings, and other molecular entities with Crohn's Disease (CD). This has been a subject of vigorous investigation owing to the zoonotic nature of this condition, although results are still inconclusive. In this review, on one hand, the current knowledge of lncRNAs in cells is presented, focusing on the pathogenesis of gastrointestinal-related pathologies and MAP-related infections and, on the other hand, we attempt to dissect the associated genes and pathways involved. Furthermore, the recently characterized and novel lncRNAs share common pathologies with IBD and JD, including the expression, molecular networks, and dataset analysis results. These are also presented in an attempt to identify potential biomarkers pertinent to cattle and human disease phenotypes.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
14
|
Gencel-Augusto J, Wu W, Bivona TG. Long Non-Coding RNAs as Emerging Targets in Lung Cancer. Cancers (Basel) 2023; 15:3135. [PMID: 37370745 DOI: 10.3390/cancers15123135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) are mRNA-like molecules that do not encode for proteins and that are longer than 200 nucleotides. LncRNAs play important biological roles in normal cell physiology and organism development. Therefore, deregulation of their activities is involved in disease processes such as cancer. Lung cancer is the leading cause of cancer-related deaths due to late stage at diagnosis, distant metastasis, and high rates of therapeutic failure. LncRNAs are emerging as important molecules in lung cancer for their oncogenic or tumor-suppressive functions. LncRNAs are highly stable in circulation, presenting an opportunity for use as non-invasive and early-stage cancer diagnostic tools. Here, we summarize the latest works providing in vivo evidence available for lncRNAs role in cancer development, therapy-induced resistance, and their potential as biomarkers for diagnosis and prognosis, with a focus on lung cancer. Additionally, we discuss current therapeutic approaches to target lncRNAs. The evidence discussed here strongly suggests that investigation of lncRNAs in lung cancer in addition to protein-coding genes will provide a holistic view of molecular mechanisms of cancer initiation, development, and progression, and could open up a new avenue for cancer treatment.
Collapse
Affiliation(s)
- Jovanka Gencel-Augusto
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Wei Wu
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
15
|
Cai X, Tacke F, Guillot A, Liu H. Cholangiokines: undervalued modulators in the hepatic microenvironment. Front Immunol 2023; 14:1192840. [PMID: 37261338 PMCID: PMC10229055 DOI: 10.3389/fimmu.2023.1192840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
The biliary epithelial cells, also known as cholangiocytes, line the intra- and extrahepatic bile ducts, forming a barrier between intra- and extra-ductal environments. Cholangiocytes are mostly known to modulate bile composition and transportation. In hepatobiliary diseases, bile duct injury leads to drastic alterations in cholangiocyte phenotypes and their release of soluble mediators, which can vary depending on the original insult and cellular states (quiescence, senescence, or proliferation). The cholangiocyte-secreted cytokines (also termed cholangiokines) drive ductular cell proliferation, portal inflammation and fibrosis, and carcinogenesis. Hence, despite the previous consensus that cholangiocytes are bystanders in liver diseases, their diverse secretome plays critical roles in modulating the intrahepatic microenvironment. This review summarizes recent insights into the cholangiokines under both physiological and pathological conditions, especially as they occur during liver injury-regeneration, inflammation, fibrosis and malignant transformation processes.
Collapse
Affiliation(s)
- Xiurong Cai
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Hanyang Liu
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Center of Gastrointestinal Diseases, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
16
|
Jesenko T, Brezar SK, Cemazar M, Biasin A, Tierno D, Scaggiante B, Grassi M, Grassi C, Dapas B, Truong NH, Abrami M, Zanconati F, Bonazza D, Rizzolio F, Parisi S, Pastorin G, Grassi G. Targeting Non-Coding RNAs for the Development of Novel Hepatocellular Carcinoma Therapeutic Approaches. Pharmaceutics 2023; 15:pharmaceutics15041249. [PMID: 37111734 PMCID: PMC10145575 DOI: 10.3390/pharmaceutics15041249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge, representing the third leading cause of cancer deaths worldwide. Although therapeutic advances have been made in the few last years, the prognosis remains poor. Thus, there is a dire need to develop novel therapeutic strategies. In this regard, two approaches can be considered: (1) the identification of tumor-targeted delivery systems and (2) the targeting of molecule(s) whose aberrant expression is confined to tumor cells. In this work, we focused on the second approach. Among the different kinds of possible target molecules, we discuss the potential therapeutic value of targeting non-coding RNAs (ncRNAs), which include micro interfering RNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These molecules represent the most significant RNA transcripts in cells and can regulate many HCC features, including proliferation, apoptosis, invasion and metastasis. In the first part of the review, the main characteristics of HCC and ncRNAs are described. The involvement of ncRNAs in HCC is then presented over five sections: (a) miRNAs, (b) lncRNAs, (c) circRNAs, (d) ncRNAs and drug resistance and (e) ncRNAs and liver fibrosis. Overall, this work provides the reader with the most recent state-of-the-art approaches in this field, highlighting key trends and opportunities for more advanced and efficacious HCC treatments.
Collapse
Affiliation(s)
- Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | - Alice Biasin
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Domenico Tierno
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Chiara Grassi
- Degree Course in Medicine, University of Trieste, I-34149 Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| | - Nhung Hai Truong
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City 70000, Vietnam
| | - Michela Abrami
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I-34149 Trieste, Italy
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I-34149 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, I-33081 Aviano, Italy
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, I-30172 Venezia, Italy
| | - Salvatore Parisi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, I-30172 Venezia, Italy
- Doctoral School in Molecular Biomedicine, University of Trieste, I-34149 Trieste, Italy
| | - Giorgia Pastorin
- Pharmacy Department, National University of Singapore, Block S9, Level 15, 4 Science Drive 2, Singapore 117544, Singapore
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| |
Collapse
|
17
|
Zhu M, Dong Q, Bing J, Songbuerbatu, Zheng L, Dorjee T, Liu Q, Zhou Y, Gao F. Combined lncRNA and mRNA Expression Profiles Identified the lncRNA–miRNA–mRNA Modules Regulating the Cold Stress Response in Ammopiptanthus nanus. Int J Mol Sci 2023; 24:ijms24076502. [PMID: 37047474 PMCID: PMC10095008 DOI: 10.3390/ijms24076502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 04/03/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in plants. Ammopiptanthus nanus can survive under severe low-temperature stress, and lncRNAs may play crucial roles in the gene regulation network underlying the cold stress response in A. nanus. To investigate the roles of lncRNAs in the cold stress response of A. nanus, a combined lncRNA and mRNA expression profiling under cold stress was conducted. Up to 4890 novel lncRNAs were identified in A. nanus and 1322 of them were differentially expressed under cold stress, including 543 up-regulated and 779 down-regulated lncRNAs. A total of 421 lncRNAs were found to participate in the cold stress response by forming lncRNA–mRNA modules and regulating the genes encoding the stress-related transcription factors and enzymes in a cis-acting manner. We found that 31 lncRNAs acting as miRNA precursors and 8 lncRNAs acting as endogenous competitive targets of miRNAs participated in the cold stress response by forming lncRNA–miRNA–mRNA regulatory modules. In particular, a cold stress-responsive lncRNA, TCONS00065739, which was experimentally proven to be an endogenous competitive target of miR530, contributed to the cold stress adaptation by regulating TZP in A. nanus. These results provide new data for understanding the biological roles of lncRNAs in response to cold stress in plants.
Collapse
|
18
|
LncRNA XR_595552 inhibition alleviates intermittent hypoxia-induced cardiomyocyte damage via activating the PI3K/AKT pathway. Sleep Breath 2023; 27:129-136. [PMID: 35195829 DOI: 10.1007/s11325-022-02584-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Although the long noncoding RNAs (lncRNAs) expression profiles have been observed in previous study, the biological functions and underlying mechanisms of lncRNAs in OSA-related cardiac injury have not been elucidated. In the present study, we investigated a novel lncRNA, lncRNA XR_595552, and evaluated its role in intermittent hypoxia (IH)-induced damage in H9c2 cardiomyocytes. METHODS H9c2 cells were exposed to IH condition. Real-time quantitative polymerase chain reaction (RT-qPCR) was conducted to measure the expression changes of lncRNA XR_595552 in H9c2 cells stimulated by IH. H9c2 cells were subjected to IH after transfection. CCK-8 was used to evaluate cell viability, and apoptosis was analyzed by Western blotting. Additionally, the regulatory relationship between lncRNA XR_595552 and PI3K/AKT was tested by RT-qPCR and Western blot. RESULTS IH significantly induced injury in H9c2 cells (inhibited cell viability and promoted cell apoptosis). lncRNA XR_595552 was upregulated in a cell model of IH. Inhibition of lncRNA XR_595552 protected H9c2 cells against IH-induced damage, as the viability was increased, Bax, Caspase-9, and Caspase-3 were downregulated, and Bcl-2 was upregulated. More interestingly, lncRNA XR_595552 downregulation activated the PI3K/AKT pathway. Blocking the PI3K/AKT signal pathway by the use of LY294002 eliminated the myocardioprotective effects of lncRNA XR_595552 in H9c2 cells under IH condition. CONCLUSIONS The results show that lncRNA XR_595552, a novel lncRNA, may play a protective role in attenuating IH-induced injury in cardiomyocytes via a regulating PI3K/AKT pathway. The findings suggest that this lncRNA could serve as a therapeutic target to treat OSA-related cardiovascular disorders.
Collapse
|
19
|
Novel Insights into MEG3/miR664a-3p/ADH4 Axis and Its Possible Role in Hepatocellular Carcinoma from an in Silico Perspective. Genes (Basel) 2022; 13:genes13122254. [PMID: 36553522 PMCID: PMC9778073 DOI: 10.3390/genes13122254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex disease involving altered interactomes of transcripts and proteins. MicroRNAs (miRNAs) are small-noncoding RNAs that can interact with specific gene transcripts and an array of other vital endogenous non-coding RNAs (lncRNAs) that can influence gene expression. Maternally Expressed Gene 3 (MEG3) is an imprinted lncRNA that is reported to be downregulated in HCC (in both cell lines and tumors). Alcohol Dehydrogenase 4 (ADH4) is a well-known prognostic protein biomarker for predicting the survival outcomes of patients with hepatocellular carcinoma whose expression is regulated by miR-664a-3p, which is upregulated in HCC. In this study, we performed a battery of robust and systematic in silico analyses to predicate the possible lncRNA-miRNA interactions between MEG3, miR-664a-3p, and ADH4. miRNA-mRNA and lncRNA-miRNA hybrid structures were primarily obtained, and the minimum free energies (MFEs) for the 3'UTR (Untranslated Regions) of ADH4-miR-664a-3p and the 3'UTR of MEG3-miR-664a-3p interactions were assessed to predict the stability of the obtained RNA heteroduplex hybrids. The hybrid with the least minimum free energy (MFE) was considered to be the most favorable. The MFEs were around -28.1 kcal/mol and -31.3 kCal/mol for the ADH4-miR-664a-3p and MEG3-miR-66a-3p RNA hybrids, respectively. This demonstrated that lncRNA-MEG3 might be a competitive endogenous RNA that acts as a molecular sponge for miR-664a-3p. In summary, our interaction analyses results predict the significance of the MEG3/miR-664a-3p/ADH4 axis, where MEG3 downregulation results in miR-664a-3p overexpression and the subsequential underexpression of ADH4 in HCC, as a novel axis of interest that demands further validation.
Collapse
|
20
|
Wu L, Yang J, Ke RS, Liu Y, Guo P, Feng L, Li Z, Li Z. Impact of lncRNA SOX9-AS1 overexpression on the prognosis and progression of intrahepatic cholangiocarcinoma. Clin Res Hepatol Gastroenterol 2022; 46:101999. [PMID: 35870795 DOI: 10.1016/j.clinre.2022.101999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a latent and malignant tumor with a dismal prognosis. This study was to evaluate the clinical relevance and therapeutic potential of SOX9-AS1 expression in ICC. METHODS The cancerous tissues and adjacent normal tissues were collected from ICC patients. Blood samples from ICC, hepatocellular carcinoma (HCC) group, the extrahepatic cholangiocarcinoma (ECC) group and the healthy controls were collected. SOX9-AS1 levels were evaluated in tissues (versus normal tissues) and plasma samples (versus plasma from HCC and ECC by quantitative real-time RT-PCR. The diagnostic value of SOX9-AS1 for ICC was estimated using receiver operating characteristic (ROC) curves. The relevancy between SOX9-AS1 expression and overall survival or recurrence-free survival was assessed by Kaplan-Meier curves multivariate analyses. The overexpression and knockdown of SOX9-AS1 on cell behavior were assessed by CCK-8 and transwell assay. RESULTS SOX9-AS1 levels were increased in ICC, both in the tissues and the cell lines. The upregulation of SOX9-AS1 showed a highly discriminative profile, distinguishing ICC patients from healthy subjects or HCC or ECC patients. Upregulation of SOX9-AS1 was related to shorter overall survival and recurrence-free survival. Muli-variate analysis revealed that SOX9-AS1 expression was an independent prognostic purpose factor of worst overall survival and recurrence-free survival. CONCLUSIONS SOX9-AS1 drives tumor growth and metastasis in ICC. SOX9-AS1 may be applied as a new diagnostic and prognostic purposed marker, in addition to a promising therapeutic target in ICC.
Collapse
Affiliation(s)
- Lupeng Wu
- Department of Hepatobiliary Pancreatic Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Jingrui Yang
- Department of Hepatobiliary Pancreatic Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Rui-Sheng Ke
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Yujian Liu
- Department of Hepatobiliary Pancreatic Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Ping Guo
- Department of Hepatobiliary Pancreatic Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Liuxing Feng
- Department of Hepatobiliary Pancreatic Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Zhimin Li
- Department of Hepatobiliary Pancreatic Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China.
| | - Zhimin Li
- Department of Hepatobiliary Pancreatic Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China.
| |
Collapse
|
21
|
Rusu I, Pirlog R, Chiroi P, Nutu A, Puia VR, Fetti AC, Rusu DR, Berindan-Neagoe I, Al Hajjar N. The Implications of Noncoding RNAs in the Evolution and Progression of Nonalcoholic Fatty Liver Disease (NAFLD)-Related HCC. Int J Mol Sci 2022; 23:12370. [PMID: 36293225 PMCID: PMC9603983 DOI: 10.3390/ijms232012370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver pathology worldwide. Meanwhile, liver cancer represents the sixth most common malignancy, with hepatocellular carcinoma (HCC) as the primary, most prevalent subtype. Due to the rising incidence of metabolic disorders, NAFLD has become one of the main contributing factors to HCC development. However, although NAFLD might account for about a fourth of HCC cases, there is currently a significant gap in HCC surveillance protocols regarding noncirrhotic NAFLD patients, so the majority of NAFLD-related HCC cases were diagnosed in late stages when survival chances are minimal. However, in the past decade, the focus in cancer genomics has shifted towards the noncoding part of the genome, especially on the microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which have proved to be involved in the regulation of several malignant processes. This review aims to summarize the current knowledge regarding some of the main dysregulated, noncoding RNAs (ncRNAs) and their implications for NAFLD and HCC development. A central focus of the review is on miRNA and lncRNAs that can influence the progression of NAFLD towards HCC and how they can be used as potential screening tools and future therapeutic targets.
Collapse
Affiliation(s)
- Ioana Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Vlad Radu Puia
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Alin Cornel Fetti
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Daniel Radu Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| |
Collapse
|
22
|
Lovell CD, Anguera MC. Long Noncoding RNAs That Function in Nutrition: Lnc-ing Nutritional Cues to Metabolic Pathways. Annu Rev Nutr 2022; 42:251-274. [PMID: 35436418 DOI: 10.1146/annurev-nutr-062220-030244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long noncoding RNAs (lncRNAs) are sensitive to changing environments and play key roles in health and disease. Emerging evidence indicates that lncRNAs regulate gene expression to shape metabolic processes in response to changing nutritional cues. Here we review various lncRNAs sensitive to fasting, feeding, and high-fat diet in key metabolic tissues (liver, adipose, and muscle), highlighting regulatory mechanisms that trigger expression changes of lncRNAs themselves, and how these lncRNAs regulate gene expression of key metabolic genes in specific cell types or across tissues. Determining how lncRNAs respond to changes in nutrition is critical for our understanding of the complex downstream cascades following dietary changes and can shape how we treat metabolic disease. Furthermore, investigating sex biases that might influence lncRNA-regulated responses will likely reveal contributions toward the observed disparities between the sexes in metabolic diseases.
Collapse
Affiliation(s)
- Claudia D Lovell
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
23
|
Sommerauer C, Kutter C. Noncoding RNAs in liver physiology and metabolic diseases. Am J Physiol Cell Physiol 2022; 323:C1003-C1017. [PMID: 35968891 DOI: 10.1152/ajpcell.00232.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver holds central roles in detoxification, energy metabolism and whole-body homeostasis but can develop malignant phenotypes when being chronically overwhelmed with fatty acids and glucose. The global rise of metabolic-associated fatty liver disease (MAFLD) is already affecting a quarter of the global population. Pharmaceutical treatment options against different stages of MAFLD do not yet exist and several clinical trials against hepatic transcription factors and other proteins have failed. However, emerging roles of noncoding RNAs, including long (lncRNA) and short noncoding RNAs (sRNA), in various cellular processes pose exciting new avenues for treatment interventions. Actions of noncoding RNAs mostly rely on interactions with proteins, whereby the noncoding RNA fine-tunes protein function in a process termed riboregulation. The developmental stage-, disease stage- and cell type-specific nature of noncoding RNAs harbors enormous potential to precisely target certain cellular pathways in a spatio-temporally defined manner. Proteins interacting with RNAs can be categorized into canonical or non-canonical RNA binding proteins (RBPs) depending on the existence of classical RNA binding domains. Both, RNA- and RBP-centric methods have generated new knowledge of the RNA-RBP interface and added an additional regulatory layer. In this review, we summarize recent advances of how of RBP-lncRNA interactions and various sRNAs shape cellular physiology and the development of liver diseases such as MAFLD and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Christian Sommerauer
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
24
|
Yao X, Wang T, Sun MY, Yuming Y, Guixin D, Liu J. Diagnostic value of lncRNA HOTAIR as a biomarker for detecting and staging of non-small cell lung cancer. Biomarkers 2022; 27:526-533. [PMID: 35959801 DOI: 10.1080/1354750x.2022.2085799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Since the role of long non-coding RNA (lncRNA) HOTAIR is yet to be established in non-small cell lung cancer (NSCLC), we tried to explore the expression of lncRNA HOTAIR in NSCLC and evaluate the correlation between the combined detection of lncRNA HOTAIR and routine tumour markers and the pathological staging of lung cancer. METHODS This study prospectively included 148 patients with NSCLC selected from our hospital from January 2017 to September 2020 as the lung cancer group, and 148 healthy volunteers who referred for physical examination were selected as the control group. Fluorescence in situ hybridisation was used to detect the expression of lncRNA HOTAIR in the cancerous tissues and adjacent tissues of lung cancer patients; the immunofluorescence method was used to detect the serum NSE, CEA and CYFRA21-1 levels of the two groups of testers. Correlation analysis was used to evaluate any relation between cancer staging and markers. In addition, ROC curve analysis was used to estimate sensitivity, specificity, positive predictive value, and negative predictive value. RESULTS The expression of lncRNA HOTAIR in lung cancer tissues was higher than control or surrounding tissue (p < 0.05). Also, high levels of NSE, CEA and CYFRA21-1 were observed in lung cancer group (p < 0.05). In both N and T stage, the expression of lncRNA HOTAIR combined with NSE, CEA and CYFRA21-1 levels increased with the increase in the number of stages (p < 0.05). The results of single factor analysis showed that NSE, CEA, CYFRA21-1 and lncRNA HOTAIR all have appropriate diagnostic value for detecting lung cancer (specificity of 92.6, 91.5, 90.6, 86.9%, respectively and the sensitivity of 61.3, 62.9, 55.4, 52.3%, respectively). CONCLUSION LncRNA HOTAIR is a novel diagnostic test with high diagnostic value for detecting of pathological staging of NSCLC; however, the diagnostic accuracy of lncRNA HOTAIR is not higher than other tumour biomarkers.
Collapse
Affiliation(s)
- Xin Yao
- Medical College of Nantong University, Nantong, China
| | - Teng Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Meng Yang Sun
- Medical College of Nantong University, Nantong, China
| | - Yang Yuming
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Duan Guixin
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Jing Liu
- Nantong First People's Hospital, Nantong, China
| |
Collapse
|
25
|
Aljabban J, Rohr M, Syed S, Khorfan K, Borkowski V, Aljabban H, Segal M, Mukhtar M, Mohammed M, Panahiazar M, Hadley D, Spengler R, Spengler E. Transcriptome changes in stages of non-alcoholic fatty liver disease. World J Hepatol 2022; 14:1382-1397. [PMID: 36158924 PMCID: PMC9376779 DOI: 10.4254/wjh.v14.i7.1382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the United States and globally. The currently understood model of pathogenesis consists of a ‘multiple hit’ hypothesis in which environmental and genetic factors contribute to hepatic inflammation and injury.
AIM To examine the genetic expression of NAFLD and non-alcoholic steatohepatitis (NASH) tissue samples to identify common pathways that contribute to NAFLD and NASH pathogenesis.
METHODS We employed the Search Tag Analyze Resource for Gene Expression Omnibus platform to search the The National Center for Biotechnology Information Gene Expression Omnibus to elucidate NAFLD and NASH pathology. For NAFLD, we conducted meta-analysis of data from 58 NAFLD liver biopsies and 60 healthy liver biopsies; for NASH, we analyzed 187 NASH liver biopsies and 154 healthy liver biopsies.
RESULTS Our results from the NAFLD analysis reinforce the role of altered metabolism, inflammation, and cell survival in pathogenesis and support recently described contributors to disease activity, such as altered androgen and long non-coding RNA activity. The top upstream regulator was found to be sterol regulatory element binding transcription factor 1 (SREBF1), a transcription factor involved in lipid homeostasis. Downstream of SREBF1, we observed upregulation in CXCL10, HMGCR, HMGCS1, fatty acid binding protein 5, paternally expressed imprinted gene 10, and downregulation of sex hormone-binding globulin and insulin-like growth factor 1. These molecular changes reflect low-grade inflammation secondary to accumulation of fatty acids in the liver. Our results from the NASH analysis emphasized the role of cholesterol in pathogenesis. Top canonical pathways, disease networks, and disease functions were related to cholesterol synthesis, lipid metabolism, adipogenesis, and metabolic disease. Top upstream regulators included pro-inflammatory cytokines tumor necrosis factor and IL1B, PDGF BB, and beta-estradiol. Inhibition of beta-estradiol was shown to be related to derangement of several cellular downstream processes including metabolism, extracellular matrix deposition, and tumor suppression. Lastly, we found riciribine (an AKT inhibitor) and ZSTK-474 (a PI3K inhibitor) as potential drugs that targeted the differential gene expression in our dataset.
CONCLUSION In this study we describe several molecular processes that may correlate with NAFLD disease and progression. We also identified ricirbine and ZSTK-474 as potential therapy.
Collapse
Affiliation(s)
- Jihad Aljabban
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Michael Rohr
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, United States
| | - Saad Syed
- Department of Medicine, Northwestern Memorial Hospital, Chicago, IL 60611, United States
| | - Kamal Khorfan
- Department of Gastroenterology and Hepatology, University of California San Francisco-Fresno , Fresno, CA 93701, United States
| | - Vincent Borkowski
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Hisham Aljabban
- Department of Medicine, Barry University, Miami, FL 33161, United States
| | - Michael Segal
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Mohamed Mukhtar
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI 49503, United States
| | - Mohammed Mohammed
- Department of Medicine, Windsor University School of Medicine, Saint Kitts 1621, Cayon, Saint Kitts and Nevis
| | - Maryam Panahiazar
- Department of Surgery, University of California San Francisco, San Francisco, CA 94305, United States
| | - Dexter Hadley
- Department of Artificial Intelligence, Pathology, University of Central Florida College of Medicine , Orlando, FL 32827, United States
| | - Ryan Spengler
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Erin Spengler
- Department of Gastroenterology and Hepatology, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| |
Collapse
|
26
|
Goldfarb CN, Karri K, Pyatkov M, Waxman DJ. Interplay Between GH-regulated, Sex-biased Liver Transcriptome and Hepatic Zonation Revealed by Single-Nucleus RNA Sequencing. Endocrinology 2022; 163:6580481. [PMID: 35512247 PMCID: PMC9154260 DOI: 10.1210/endocr/bqac059] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/19/2022]
Abstract
The zonation of liver metabolic processes is well-characterized; however, little is known about the cell type-specificity and zonation of sexually dimorphic gene expression or its growth hormone (GH)-dependent transcriptional regulators. We address these issues using single-nucleus RNA-sequencing of 32 000 nuclei representing 9 major liver cell types. Nuclei were extracted from livers from adult male and female mice; from males infused with GH continuously, mimicking the female plasma GH pattern; and from mice exposed to TCPOBOP, a xenobiotic agonist ligand of the nuclear receptor CAR that perturbs sex-biased gene expression. Analysis of these rich transcriptomic datasets revealed the following: 1) expression of sex-biased genes and their GH-dependent transcriptional regulators is primarily restricted to hepatocytes and is not a feature of liver nonparenchymal cells; 2) many sex-biased transcripts show sex-dependent zonation within the liver lobule; 3) gene expression is substantially feminized both in periportal and pericentral hepatocytes when male mice are infused with GH continuously; 4) sequencing nuclei increases the sensitivity for detecting thousands of nuclear-enriched long-noncoding RNAs (lncRNAs) and enables determination of their liver cell type-specificity, sex-bias and hepatocyte zonation profiles; 5) the periportal to pericentral hepatocyte cell ratio is significantly higher in male than female liver; and 6) TCPOBOP exposure disrupts both sex-specific gene expression and hepatocyte zonation within the liver lobule. These findings highlight the complex interconnections between hepatic sexual dimorphism and zonation at the single-cell level and reveal how endogenous hormones and foreign chemical exposure can alter these interactions across the liver lobule with large effects both on protein-coding genes and lncRNAs.
Collapse
Affiliation(s)
- Christine N Goldfarb
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Kritika Karri
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program Boston University, Boston, Massachusetts 02215, USA
| | - Maxim Pyatkov
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Correspondence: David J. Waxman, PhD, Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
27
|
Koguchi D, Matsumoto K, Ikeda M, Taoka Y, Hirayama T, Murakami Y, Utsunomiya T, Matsuda D, Okuno N, Irie A, Iwamura M. Impact of salvage cytotoxic chemotherapy on prognosis in patients with recurrence after radical cystectomy: a multi-institutional retrospective study. BMC Urol 2022; 22:75. [PMID: 35549909 PMCID: PMC9103293 DOI: 10.1186/s12894-022-01026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background In patients experiencing disease recurrence after radical cystectomy (RC) for bladder cancer, data about the impact of clinicopathologic factors, including salvage treatment using cytotoxic chemotherapy, on the survival are scarce. We investigated the prognostic value of clinicopathologic factors and the treatment effect of salvage cytotoxic chemotherapy (SC) in such patients. Methods In this retrospective study, we evaluated the clinical data for 86 patients who experienced recurrence after RC. Administration of SC or of best supportive care (BSC) was determined in consultation with the urologist in charge and in accordance with each patient’s performance status, wishes for treatment, and renal function. Statistical analyses explored for prognostic factors and evaluated the treatment effect of SC compared with BSC in terms of cancer-specific survival (CSS). Results Multivariate analyses showed that liver metastasis after RC (hazard ratio [HR] 2.13; 95% confidence interval [CI] 1.17 to 3.85; P = 0.01) and locally advanced disease at RC (HR 1.92; 95% CI 1.06 to 3.46; P = 0.03) are independent risk factors for worse CSS in patients experiencing recurrence after RC. In a risk stratification model, patients were assigned to one of two groups based on liver metastasis and locally advanced stage. In the high-risk group, which included 68 patients with 1–2 risk factors, CSS was significantly better for patients receiving SC than for those receiving BSC (median survival duration: 9.4 months vs. 2.4 months, P = 0.005). The therapeutic effect of SC was not related to a history of adjuvant chemotherapy. Conclusions The present study indicated the potential value of 1st-line SC in patients experiencing recurrence after RC even with advanced features, such as liver metastasis after RC and locally advanced disease at RC.
Collapse
Affiliation(s)
- Dai Koguchi
- Department of Urology, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku Sagamihara, Kanagawa, 252-0374, Japan
| | - Kazumasa Matsumoto
- Department of Urology, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku Sagamihara, Kanagawa, 252-0374, Japan.
| | - Masaomi Ikeda
- Department of Urology, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshinori Taoka
- Department of Urology, Kitasato University Medical Center, Saitama, Japan
| | - Takahiro Hirayama
- Department of Urology, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Yasukiyo Murakami
- Department of Urology, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Takuji Utsunomiya
- Department of Urology, Kanagawa Prefectural Federation of Agricultural Cooperatives for Health and Welfare Sagamihara Kyodo Hospital, Kanagawa, Japan
| | | | - Norihiko Okuno
- Department of Urology, National Hospital Organization Sagamihara Hospital, Kanagawa, Japan
| | - Akira Irie
- Department of Urology, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Masatsugu Iwamura
- Department of Urology, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
28
|
Pellegrino R, Castoldi M, Ticconi F, Skawran B, Budczies J, Rose F, Schwab C, Breuhahn K, Neumann UP, Gaisa NT, Loosen SH, Luedde T, Costa IG, Longerich T. LINC00152 Drives a Competing Endogenous RNA Network in Human Hepatocellular Carcinoma. Cells 2022; 11:cells11091528. [PMID: 35563834 PMCID: PMC9103153 DOI: 10.3390/cells11091528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/16/2022] Open
Abstract
Genomic and epigenomic studies revealed dysregulation of long non-coding RNAs in many cancer entities, including liver cancer. We identified an epigenetic mechanism leading to upregulation of the long intergenic non-coding RNA 152 (LINC00152) expression in human hepatocellular carcinoma (HCC). Here, we aimed to characterize a potential competing endogenous RNA (ceRNA) network, in which LINC00152 exerts oncogenic functions by sponging miRNAs, thereby affecting their target gene expression. Database and gene expression data of human HCC were integrated to develop a potential LINC00152-driven ceRNA in silico. RNA immunoprecipitation and luciferase assay were used to identify miRNA binding to LINC00152 in human HCC cells. Functionally active players in the ceRNA network were analyzed using gene editing, siRNA or miRNA mimic transfection, and expression vectors in vitro. RNA expression in human HCC in vivo was validated by RNA in situ hybridization. Let-7c-5p, miR-23a-3p, miR-125a-5p, miR-125b-5p, miR-143a-3p, miR-193-3p, and miR-195-5p were detected as new components of the potential LINC00152 ceRNA network in human HCC. LINC00152 was confirmed to sponge miR143a-3p in human HCC cell lines, thereby limiting its binding to their respective target genes, like KLC2. KLC2 was identified as a central mediator promoting pro-tumorigenic effects of LINC00152 overexpression in HCC cells. Furthermore, co-expression of LINC00152 and KLC2 was observed in human HCC cohorts and high KLC2 expression was associated with shorter patient survival. Functional assays demonstrated that KLC2 promoted cell proliferation, clonogenicity and migration in vitro. The LINC00152-miR-143a-3p-KLC2 axis may represent a therapeutic target in human HCC.
Collapse
Affiliation(s)
- Rossella Pellegrino
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (F.R.); (C.S.); (K.B.); (T.L.)
- Correspondence: ; Tel.: +49-(0)6221-56-34094
| | - Mirco Castoldi
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.C.); (S.H.L.); (T.L.)
| | - Fabio Ticconi
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (F.T.); (I.G.C.)
| | - Britta Skawran
- Institute of Human Genetics, Hannover Medical School, 30625 Hannover, Germany;
| | - Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (F.R.); (C.S.); (K.B.); (T.L.)
| | - Fabian Rose
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (F.R.); (C.S.); (K.B.); (T.L.)
| | - Constantin Schwab
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (F.R.); (C.S.); (K.B.); (T.L.)
| | - Kai Breuhahn
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (F.R.); (C.S.); (K.B.); (T.L.)
| | - Ulf P. Neumann
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany;
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Nadine T. Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.C.); (S.H.L.); (T.L.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.C.); (S.H.L.); (T.L.)
| | - Ivan G. Costa
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (F.T.); (I.G.C.)
| | - Thomas Longerich
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (F.R.); (C.S.); (K.B.); (T.L.)
| |
Collapse
|
29
|
Navarro-Corcuera A, Sehrawat TS, Jalan-Sakrikar N, Gibbons HR, Pirius NE, Khanal S, Hamdan FH, Aseem SO, Cao S, Banales JM, Kang N, Faubion WA, LaRusso NF, Shah VH, Huebert RC. Long non-coding RNA ACTA2-AS1 promotes ductular reaction by interacting with the p300/ELK1 complex. J Hepatol 2022; 76:921-933. [PMID: 34953958 PMCID: PMC8934273 DOI: 10.1016/j.jhep.2021.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 11/01/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Biliary disease is associated with a proliferative/fibrogenic ductular reaction (DR). p300 is an epigenetic regulator that acetylates lysine 27 on histone 3 (H3K27ac) and is activated during fibrosis. Long non-coding RNAs (lncRNAs) are aberrantly expressed in cholangiopathies, but little is known about how they recruit epigenetic complexes and regulate DR. We investigated epigenetic complexes, including transcription factors (TFs) and lncRNAs, contributing to p300-mediated transcription during fibrosis. METHODS We evaluated p300 in vivo using tamoxifen-inducible, cholangiocyte-selective, p300 knockout (KO) coupled with bile duct ligation (BDL) and Mdr KO mice treated with SGC-CBP30. Primary cholangiocytes and liver tissue were analyzed for expression of Acta2-as1 lncRNA by qPCR and RNA in situ hybridization. In vitro, we performed RNA-sequencing in human cholangiocytes with a p300 inhibitor. Cholangiocytes were exposed to lipopolysaccharide (LPS) as an injury model. We confirmed formation of a p300/ELK1 complex by immunoprecipitation (IP). RNA IP was used to examine interactions between ACTA2-AS1 and p300. Chromatin IP assays were used to evaluate p300/ELK1 occupancy and p300-mediated H3K27ac. Organoids were generated from ACTA2-AS1-depleted cholangiocytes. RESULTS BDL-induced DR and fibrosis were reduced in Krt19-CreERT/p300fl/fl mice. Similarly, Mdr KO mice were protected from DR and fibrosis after SGC-CBP30 treatment. In vitro, depletion of ACTA2-AS1 reduced expression of proliferative/fibrogenic markers, reduced LPS-induced cholangiocyte proliferation, and impaired organoid formation. ACTA2-AS1 regulated transcription by facilitating p300/ELK1 binding to the PDGFB promoter after LPS exposure. Correspondingly, LPS-induced H3K27ac was mediated by p300/ELK1 and was reduced in ACTA2-AS1-depleted cholangiocytes. CONCLUSION Cholangiocyte-selective p300 KO or p300 inhibition attenuate DR/fibrosis in mice. ACTA2-AS1 influences recruitment of p300/ELK1 to specific promoters to drive H3K27ac and epigenetic activation of proliferative/fibrogenic genes. This suggests that cooperation between epigenetic co-activators and lncRNAs facilitates DR/fibrosis in biliary diseases. LAY SUMMARY We identified a three-part complex containing an RNA molecule, a transcription factor, and an epigenetic enzyme. The complex is active in injured bile duct cells and contributes to activation of genes involved in proliferation and fibrosis.
Collapse
Affiliation(s)
- Amaia Navarro-Corcuera
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, United States; Gastroenterology Research Unit; Mayo Clinic and Foundation, Rochester, MN, United States
| | - Tejasav S Sehrawat
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, United States; Gastroenterology Research Unit; Mayo Clinic and Foundation, Rochester, MN, United States
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, United States; Gastroenterology Research Unit; Mayo Clinic and Foundation, Rochester, MN, United States
| | - Hunter R Gibbons
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, United States; Gastroenterology Research Unit; Mayo Clinic and Foundation, Rochester, MN, United States
| | - Nicholas E Pirius
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, United States
| | - Shalil Khanal
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, United States; Gastroenterology Research Unit; Mayo Clinic and Foundation, Rochester, MN, United States
| | - Feda H Hamdan
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, United States; Gastroenterology Research Unit; Mayo Clinic and Foundation, Rochester, MN, United States
| | - Sayed Obaidullah Aseem
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, United States; Gastroenterology Research Unit; Mayo Clinic and Foundation, Rochester, MN, United States
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, United States; Gastroenterology Research Unit; Mayo Clinic and Foundation, Rochester, MN, United States
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, CIBERehd, Ikerbasque, San Sebastian, Spain
| | - Ningling Kang
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, United States; Gastroenterology Research Unit; Mayo Clinic and Foundation, Rochester, MN, United States
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, United States
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, United States; Gastroenterology Research Unit; Mayo Clinic and Foundation, Rochester, MN, United States
| | - Robert C Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN, United States; Gastroenterology Research Unit; Mayo Clinic and Foundation, Rochester, MN, United States.
| |
Collapse
|
30
|
Brodnicki TC. A Role for lncRNAs in Regulating Inflammatory and Autoimmune Responses Underlying Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:97-118. [DOI: 10.1007/978-3-030-92034-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Wang Z, Yang X, Gui S, Yang F, Cao Z, Cheng R, Xia X, Li C. The Roles and Mechanisms of lncRNAs in Liver Fibrosis. Front Pharmacol 2021; 12:779606. [PMID: 34899344 PMCID: PMC8652206 DOI: 10.3389/fphar.2021.779606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can potentially regulate all aspects of cellular activity including differentiation and development, metabolism, proliferation, apoptosis, and activation, and benefited from advances in transcriptomic and genomic research techniques and database management technologies, its functions and mechanisms in physiological and pathological states have been widely reported. Liver fibrosis is typically characterized by a reversible wound healing response, often accompanied by an excessive accumulation of extracellular matrix. In recent years, a range of lncRNAs have been investigated and found to be involved in several cellular-level regulatory processes as competing endogenous RNAs (ceRNAs) that play an important role in the development of liver fibrosis. A variety of lncRNAs have also been shown to contribute to the altered cell cycle, proliferation profile associated with the accelerated development of liver fibrosis. This review aims to discuss the functions and mechanisms of lncRNAs in the development and regression of liver fibrosis, to explore the major lncRNAs involved in the signaling pathways regulating liver fibrosis, to elucidate the mechanisms mediated by lncRNA dysregulation and to provide new diagnostic and therapeutic strategies for liver fibrosis.
Collapse
Affiliation(s)
- Zhifa Wang
- Department of Rehabilitation Medicine, Chaohu Hospital of Anhui Medical University, Hefei Anhui, China
| | - Xiaoke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Yang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Zhuo Cao
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Rong Cheng
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Hefei, China
| | - Xiaowei Xia
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Hefei, China
| | - Chuanying Li
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Hefei, China
| |
Collapse
|
32
|
Zheng Y, Bian Y, Wu R, Chen W, Fu L, Li P, Wang Y, Yang X, Zhao S, Shi Y. High-Throughput Sequencing Profiles About lncRNAs and mRNAs of Ovarian Granulosa Cells in Polycystic Ovary Syndrome. Front Med (Lausanne) 2021; 8:741803. [PMID: 34881258 PMCID: PMC8645594 DOI: 10.3389/fmed.2021.741803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/26/2021] [Indexed: 02/01/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age, which is characterized by ovulatory dysfunction, clinical and/or biochemical androgen excess, polycystic ovaries on ultrasound and genetic heterogeneity. It was well-accepted that many lncRNAs and mRNAs were associated with PCOS, however, remain unclear. Therefore, the purpose of our study was to examine different expression profiles of lncRNAs and mRNAs in ovarian granulosa cells (GCs) in PCOS and Controls, and identify the correlation between lncRNAs, mRNAs and clinical parameters. Sixty five PCOS patients and 65 Controls were enrolled in this study and adopted standard long agonist protocols or GnRH antagonist protocols. Then 6 GCs samples in each group were subjected to high-thoughput sequencing and the remaining samples were used for the further verification by quantitative real-time PCR (qRT-PCR). Gene Oncology (GO), Kyoto Encyclopedia Genes and Genomes (KEGG) enrichment analysis were performed. We predicted the relationship between lncRNAs and mRNAs by Cytoscape software. According to the expression level of lncRNAs, mRNAs and the clinical parameters, we also explored their relationship and evaluate their predictive values for embryos quality and PCOS. We identified 1,049 differential expressed lncRNAs and 3,246 mRNAs (fold-change ≥2, p-value < 0.05). Seven lncRNAs (NONHSAT101926.2, NONHSAT136825.2, NONHSAT227177.1, NONHSAT010538.2, NONHSAT191377.1, NONHSAT230904.1, ENST00000607307) and 3 mRNAs (EREG, ENTPD6, YAP1) were validated consistent with sequence profile. Seven lncRNAs were related to hormone level and follicle counts, 3 mRNAs had connections with lipid metabolism. The area under curve (AUC) of 7 lncRNAs were valuable in distinguishing patients with PCOS from Controls. The AUC of NONHSAT230904.1 and NONHSAT227177.1 were 0.6807 and 0.6410, respectively, for distinguishing whether the rate of high-quality embryos exceeds 50%. Our study showed that the GCs lncRNAs and mRNAs were involved in the occurrence and development of PCOS, which contribute to clarify the pathogenesis mechanism of PCOS.
Collapse
Affiliation(s)
- Yanjun Zheng
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yuehong Bian
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Richao Wu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Wei Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Linlin Fu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Ping Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Ying Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Xiao Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yuhua Shi
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| |
Collapse
|
33
|
Maestro S, Weber ND, Zabaleta N, Aldabe R, Gonzalez-Aseguinolaza G. Novel vectors and approaches for gene therapy in liver diseases. JHEP Rep 2021; 3:100300. [PMID: 34159305 PMCID: PMC8203845 DOI: 10.1016/j.jhepr.2021.100300] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is becoming an increasingly valuable tool to treat many genetic diseases with no or limited treatment options. This is the case for hundreds of monogenic metabolic disorders of hepatic origin, for which liver transplantation remains the only cure. Furthermore, the liver contains 10-15% of the body's total blood volume, making it ideal for use as a factory to secrete proteins into the circulation. In recent decades, an expanding toolbox has become available for liver-directed gene delivery. Although viral vectors have long been the preferred approach to target hepatocytes, an increasing number of non-viral vectors are emerging as highly efficient vehicles for the delivery of genetic material. Herein, we review advances in gene delivery vectors targeting the liver and more specifically hepatocytes, covering strategies based on gene addition and gene editing, as well as the exciting results obtained with the use of RNA as a therapeutic molecule. Moreover, we will briefly summarise some of the limitations of current liver-directed gene therapy approaches and potential ways of overcoming them.
Collapse
Key Words
- AAT, α1-antitrypsin
- AAV, adeno-associated virus
- AHP, acute hepatic porphyrias
- AIP, acute intermittent porphyria
- ALAS1, aminolevulic synthase 1
- APCs, antigen-presenting cells
- ASGCT, American Society of Gene and Cell Therapy
- ASGPR, asialoglycoprotein receptor
- ASOs, antisense oligonucleotides
- Ad, adenovirus
- CBS, cystathionine β-synthase
- CN, Crigel-Najjar
- CRISPR, clustered regularly interspaced short palindromic repeats
- CRISPR/Cas9, CRISPR associated protein 9
- DSBs, double-strand breaks
- ERT, enzyme replacement therapy
- FH, familial hypercholesterolemia
- FSP27, fat-specific protein 27
- GO, glycolate oxidase
- GSD1a, glycogen storage disorder 1a
- GT, gene therapy
- GUSB, β-glucuronidase
- GalNAc, N-acetyl-D-galactosamine
- HDAd, helper-dependent adenovirus
- HDR, homology-directed repair
- HT, hereditary tyrosinemia
- HemA/B, haemophilia A/B
- IDS, iduronate 2-sulfatase
- IDUA, α-L-iduronidase
- IMLD, inherited metabolic liver diseases
- ITR, inverted terminal repetition
- LDH, lactate dehydrogenase
- LDLR, low-density lipoprotein receptor
- LNP, Lipid nanoparticles
- LTR, long terminal repeat
- LV, lentivirus
- MMA, methylmalonic acidemia
- MPR, metabolic pathway reprograming
- MPS type I, MPSI
- MPS type VII, MPSVII
- MPS, mucopolysaccharidosis
- NASH, non-alcoholic steatohepatitis
- NHEJ, non-homologous end joining
- NHPs, non-human primates
- Non-viral vectors
- OLT, orthotopic liver transplantation
- OTC, ornithine transcarbamylase
- PA, propionic acidemia
- PB, piggyBac
- PCSK9, proprotein convertase subtilisin/kexin type 9
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PFIC3, progressive familial cholestasis type 3
- PH1, Primary hyperoxaluria type 1
- PKU, phenylketonuria
- RV, retrovirus
- S/MAR, scaffold matrix attachment regions
- SB, Sleeping Beauty
- SRT, substrate reduction therapy
- STK25, serine/threonine protein kinase 25
- TALEN, transcription activator-like effector nucleases
- TTR, transthyretin
- UCD, urea cycle disorders
- VLDLR, very-low-density lipoprotein receptor
- WD, Wilson’s disease
- ZFN, zinc finger nucleases
- apoB/E, apolipoprotein B/E
- dCas9, dead Cas9
- efficacy
- gene addition
- gene editing
- gene silencing
- hepatocytes
- immune response
- lncRNA, long non-coding RNA
- miRNAs, microRNAs
- siRNA, small-interfering RNA
- toxicity
- viral vectors
Collapse
Affiliation(s)
- Sheila Maestro
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
| | | | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA
| | - Rafael Aldabe
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
- Corresponding authors. Address: CIMA, Universidad de Navarra. Av. Pio XII 55 31008 Pamplona. Spain
| | - Gloria Gonzalez-Aseguinolaza
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
- Vivet Therapeutics, Pamplona, Spain
- Corresponding authors. Address: CIMA, Universidad de Navarra. Av. Pio XII 55 31008 Pamplona. Spain
| |
Collapse
|
34
|
Xu F, Jiang L, Zhao Q, Zhang Z, Liu Y, Yang S, Yu M, Chen H, Zhang J, Zhang J. Whole-transcriptome and proteome analyses identify key differentially expressed mRNAs, miRNAs, lncRNAs and circRNAs associated with HCC. Oncogene 2021; 40:4820-4831. [PMID: 34155346 DOI: 10.1038/s41388-021-01908-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer and one of the leading causes of cancer-related death worldwide. To gain more insights into the transcriptomic landscape and molecular mechanism of HCC, we performed TMT-labelled tandem mass spectrometry (n = 4) and whole-transcriptome sequencing (n = 3) based on HCC tumour (T) and adjacent normal (N) tissues from seven HCC patients. To comprehensively evaluate the gene-regulatory circuits in HCC, differential expression and enrichment analyses were performed on the differentially expressed proteins (DEPs), genes (DEGs), miRNAs (555), lncRNAs (29) and circRNAs (895). A total of 977 proteins and 243 genes were found to be differentially expressed in HCC tumours compared with adjacent normal tissues. HCC data from The Cancer Genome Atlas were used to validate the results. Combined with the results above, 56 DEP-DEGs with common changes in relative quantity were identified. Functional pathway analysis showed that the DEP-DEGs were mainly enriched in the spliceosome and various metabolic processes. Bioinformatics analysis showed that hsa-miR-1266-5p, hsa-miR-128-1-5p, hsa-miR-139-5p, hsa-miR-34b-3p and hsa-miR-570-3p were involved in the regulation of the hub genes mentioned above. The crucial coexpression (lncRNA-mRNA, circRNA-mRNA) and competing endogenous RNA interaction axes showed the possible functions of the lncRNAs and circRNAs. We explored potential cancer biomarkers by combining proteomic and transcriptomic studies. Our study provides a valuable resource for understanding regulatory mechanisms at the RNA level and may ultimately further assist in the development of diagnostic and/or therapeutic targets for HCC.
Collapse
Affiliation(s)
- Fang Xu
- Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, China
| | - Liya Jiang
- Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianwei Zhao
- Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, China
| | - Zhibiao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yixian Liu
- Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, China
| | - Shuangshuang Yang
- Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, China
| | - Mengdan Yu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huiping Chen
- Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, China
| | - Jianying Zhang
- Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China.
| | - Jintao Zhang
- Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory for Tumor Epidemiology, Zhengzhou University, Zhengzhou, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
35
|
Esteves F, Rueff J, Kranendonk M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism-A Brief Review on a Fascinating Enzyme Family. J Xenobiot 2021; 11:94-114. [PMID: 34206277 PMCID: PMC8293344 DOI: 10.3390/jox11030007] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Human Cytochrome P450 (CYP) enzymes constitute a superfamily of membrane-bound hemoproteins that are responsible for the metabolism of a wide variety of clinically, physiologically, and toxicologically important compounds. These heme-thiolate monooxygenases play a pivotal role in the detoxification of xenobiotics, participating in the metabolism of many structurally diverge compounds. This short-review is intended to provide a summary on the major roles of CYPs in Phase I xenobiotic metabolism. The manuscript is focused on eight main topics that include the most relevant aspects of past and current CYP research. Initially, (I) a general overview of the main aspects of absorption, distribution, metabolism, and excretion (ADME) of xenobiotics are presented. This is followed by (II) a background overview on major achievements in the past of the CYP research field. (III) Classification and nomenclature of CYPs is briefly reviewed, followed by (IV) a summary description on CYP's location and function in mammals. Subsequently, (V) the physiological relevance of CYP as the cornerstone of Phase I xenobiotic metabolism is highlighted, followed by (VI) reviewing both genetic determinants and (VI) nongenetic factors in CYP function and activity. The last topic of the review (VIII) is focused on the current challenges of the CYP research field.
Collapse
Affiliation(s)
- Francisco Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.R.); (M.K.)
| | | | | |
Collapse
|
36
|
Alfano V, Zeisel MB, Levrero M, Guerrieri F. The lncRNAs in HBV-Related HCCs: Targeting Chromatin Dynamics and Beyond. Cancers (Basel) 2021; 13:3115. [PMID: 34206504 PMCID: PMC8268133 DOI: 10.3390/cancers13133115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents the fourth leading and fastest rising cause of cancer death (841,000 new cases and 782,000 deaths annually), and hepatitis B (HBV), with 250 million people chronically infected at risk of developing HCC, accounts for >50% of the cases worldwide. Long non-coding RNAs (lncRNAs), untranslated transcripts longer than 200 nucleotides, are implicated in gene regulation at the transcriptional and post-transcriptional levels, exerting their activities both in the nuclear and cytoplasmic compartments. Thanks to high-throughput sequencing techniques, several lncRNAs have been shown to favor the establishment of chronic HBV infection, to change the host transcriptome to establish a pro-carcinogenic environment, and to directly participate in HCC development and progression. In this review, we summarize current knowledge on the role of lncRNAs in HBV infection and HBV-related liver carcinogenesis and discuss the potential of lncRNAs as predictive or diagnostic biomarkers.
Collapse
Affiliation(s)
- Vincenzo Alfano
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France; (V.A.); (M.B.Z.)
| | - Mirjam B. Zeisel
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France; (V.A.); (M.B.Z.)
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France; (V.A.); (M.B.Z.)
- Hospices Civils de Lyon, Hôpital Croix Rousse, Service d’Hépato-Gastroentérologie, 69004 Lyon, France
- Department of Medicine SCIAC, University of Rome La Sapienza, 00161 Rome, Italy
| | - Francesca Guerrieri
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France; (V.A.); (M.B.Z.)
| |
Collapse
|
37
|
Role of Nitric Oxide in Gene Expression Regulation during Cancer: Epigenetic Modifications and Non-Coding RNAs. Int J Mol Sci 2021; 22:ijms22126264. [PMID: 34200849 PMCID: PMC8230456 DOI: 10.3390/ijms22126264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) has been identified and described as a dual mediator in cancer according to dose-, time- and compartment-dependent NO generation. The present review addresses the different epigenetic mechanisms, such as histone modifications and non-coding RNAs (ncRNAs), miRNA and lncRNA, which regulate directly or indirectly nitric oxide synthase (NOS) expression and NO production, impacting all hallmarks of the oncogenic process. Among lncRNA, HEIH and UCA1 develop their oncogenic functions by inhibiting their target miRNAs and consequently reversing the inhibition of NOS and promoting tumor proliferation. The connection between miRNAs and NO is also involved in two important features in cancer, such as the tumor microenvironment that includes key cellular components such as tumor-associated macrophages (TAMs), cancer associated fibroblasts (CAFs) and cancer stem cells (CSCs).
Collapse
|
38
|
Wu J, Nagy LE, Wang L. The long and the small collide: LncRNAs and small heterodimer partner (SHP) in liver disease. Mol Cell Endocrinol 2021; 528:111262. [PMID: 33781837 PMCID: PMC8087644 DOI: 10.1016/j.mce.2021.111262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a large and diverse class of RNA molecules that are transcribed but not translated into proteins, with a length of more than 200 nucleotides. LncRNAs are involved in gene expression and regulation. The abnormal expression of lncRNAs is associated with disease pathogenesis. Small heterodimer partner (SHP, NR0B2) is a unique orphan nuclear receptor that plays a pivotal role in many biological processes by acting as a transcriptional repressor. In this review, we present the critical roles of SHP and summarize recent findings demonstrating the regulation between lncRNAs and SHP in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Li Wang
- Independent Researcher, Tucson, AZ, USA
| |
Collapse
|
39
|
Goldfarb CN, Waxman DJ. Global analysis of expression, maturation and subcellular localization of mouse liver transcriptome identifies novel sex-biased and TCPOBOP-responsive long non-coding RNAs. BMC Genomics 2021; 22:212. [PMID: 33761883 PMCID: PMC7992343 DOI: 10.1186/s12864-021-07478-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND While nuclear transcription and RNA processing and localization are well established for protein coding genes (PCGs), these processes are poorly understood for long non-coding (lnc)RNAs. Here, we characterize global patterns of transcript expression, maturation and localization for mouse liver RNA, including more than 15,000 lncRNAs. PolyA-selected liver RNA was isolated and sequenced from four subcellular fractions (chromatin, nucleoplasm, total nucleus, and cytoplasm), and from the chromatin-bound fraction without polyA selection. RESULTS Transcript processing, determined from normalized intronic to exonic sequence read density ratios, progressively increased for PCG transcripts in going from the chromatin-bound fraction to the nucleoplasm and then on to the cytoplasm. Transcript maturation was similar for lncRNAs in the chromatin fraction, but was significantly lower in the nucleoplasm and cytoplasm. LncRNA transcripts were 11-fold more likely to be significantly enriched in the nucleus than cytoplasm, and 100-fold more likely to be significantly chromatin-bound than nucleoplasmic. Sequencing chromatin-bound RNA greatly increased the sensitivity for detecting lowly expressed lncRNAs and enabled us to discover and localize hundreds of novel regulated liver lncRNAs, including lncRNAs showing sex-biased expression or responsiveness to TCPOBOP a xenobiotic agonist ligand of constitutive androstane receptor (Nr1i3). CONCLUSIONS Integration of our findings with prior studies and lncRNA annotations identified candidate regulatory lncRNAs for a variety of hepatic functions based on gene co-localization within topologically associating domains or transcription divergent or antisense to PCGs associated with pathways linked to hepatic physiology and disease.
Collapse
Affiliation(s)
- Christine N Goldfarb
- Department of Biology and Bioinformatics Program, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
40
|
Lotersztajn S. Celebrating the third year of JHEP Reports in the COVID-19 era. JHEP Rep 2021; 3:100225. [PMID: 33458626 PMCID: PMC7797781 DOI: 10.1016/j.jhepr.2021.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sophie Lotersztajn
- Université de Paris, Centre de Recherche sur l’Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France
| |
Collapse
|