1
|
Very N, Boulet C, Gheeraert C, Berthier A, Johanns M, Bou Saleh M, Guille L, Bray F, Strub JM, Bobowski-Gerard M, Zummo FP, Vallez E, Molendi-Coste O, Woitrain E, Cianférani S, Montaigne D, Ntandja-Wandji LC, Dubuquoy L, Dubois-Chevalier J, Staels B, Lefebvre P, Eeckhoute J. O-GlcNAcylation controls pro-fibrotic transcriptional regulatory signaling in myofibroblasts. Cell Death Dis 2024; 15:391. [PMID: 38830870 PMCID: PMC11148087 DOI: 10.1038/s41419-024-06773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Tissue injury causes activation of mesenchymal lineage cells into wound-repairing myofibroblasts (MFs), whose uncontrolled activity ultimately leads to fibrosis. Although this process is triggered by deep metabolic and transcriptional reprogramming, functional links between these two key events are not yet understood. Here, we report that the metabolic sensor post-translational modification O-linked β-D-N-acetylglucosaminylation (O-GlcNAcylation) is increased and required for myofibroblastic activation. Inhibition of protein O-GlcNAcylation impairs archetypal myofibloblast cellular activities including extracellular matrix gene expression and collagen secretion/deposition as defined in vitro and using ex vivo and in vivo murine liver injury models. Mechanistically, a multi-omics approach combining proteomic, epigenomic, and transcriptomic data mining revealed that O-GlcNAcylation controls the MF transcriptional program by targeting the transcription factors Basonuclin 2 (BNC2) and TEA domain transcription factor 4 (TEAD4) together with the Yes-associated protein 1 (YAP1) co-activator. Indeed, inhibition of protein O-GlcNAcylation impedes their stability leading to decreased functionality of the BNC2/TEAD4/YAP1 complex towards promoting activation of the MF transcriptional regulatory landscape. We found that this involves O-GlcNAcylation of BNC2 at Thr455 and Ser490 and of TEAD4 at Ser69 and Ser99. Altogether, this study unravels protein O-GlcNAcylation as a key determinant of myofibroblastic activation and identifies its inhibition as an avenue to intervene with fibrogenic processes.
Collapse
Affiliation(s)
- Ninon Very
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Clémence Boulet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Manuel Johanns
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Mohamed Bou Saleh
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Loïc Guille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Fabrice Bray
- Miniaturization for Synthesis, Analysis & Proteomics, UAR 3290, CNRS, University of Lille, Villeneuve d'Ascq Cedex, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS UMR7178, Univ. Strasbourg, IPHC, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Marie Bobowski-Gerard
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Francesco P Zummo
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Emmanuelle Vallez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Olivier Molendi-Coste
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Eloise Woitrain
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS UMR7178, Univ. Strasbourg, IPHC, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - David Montaigne
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Line Carolle Ntandja-Wandji
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | | | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
2
|
Parlati L, Regnier M, Benhamed F, Issad T, Postic C. [O-GlcNAc transferase: A nutrient sensor involved in hepatic homeostasis]. Med Sci (Paris) 2024; 40:137-139. [PMID: 38411418 DOI: 10.1051/medsci/2023210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Affiliation(s)
- Lucia Parlati
- Université Paris Cité, Institut Cochin, CNRS, Inserm, Paris, France
| | - Marion Regnier
- Université Paris Cité, Institut Cochin, CNRS, Inserm, Paris, France
| | - Fadila Benhamed
- Université Paris Cité, Institut Cochin, CNRS, Inserm, Paris, France
| | - Tarik Issad
- Université Paris Cité, Institut Cochin, CNRS, Inserm, Paris, France
| | - Catherine Postic
- Université Paris Cité, Institut Cochin, CNRS, Inserm, Paris, France
| |
Collapse
|
3
|
Hu YJ, Zhang X, Lv HM, Liu Y, Li SZ. Protein O-GlcNAcylation: The sweet hub in liver metabolic flexibility from a (patho)physiological perspective. Liver Int 2024; 44:293-315. [PMID: 38110988 DOI: 10.1111/liv.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]
Abstract
O-GlcNAcylation is a dynamic, reversible and atypical O-glycosylation that regulates various cellular physiological processes via conformation, stabilisation, localisation, chaperone interaction or activity of target proteins. The O-GlcNAcylation cycle is precisely controlled by collaboration between O-GlcNAc transferase and O-GlcNAcase. Uridine-diphosphate-N-acetylglucosamine, the sole donor of O-GlcNAcylation produced by the hexosamine biosynthesis pathway, is controlled by the input of glucose, glutamine, acetyl coenzyme A and uridine triphosphate, making it a sensor of the fluctuation of molecules, making O-GlcNAcylation a pivotal nutrient sensor for the metabolism of carbohydrates, amino acids, lipids and nucleotides. O-GlcNAcylation, particularly prevalent in liver, is the core hub for controlling systemic glucose homeostasis due to its nutritional sensitivity and precise spatiotemporal regulation of insulin signal transduction. The pathology of various liver diseases has highlighted hepatic metabolic disorder and dysfunction, and abnormal O-GlcNAcylation also plays a specific pathological role in these processes. Therefore, this review describes the unique features of O-GlcNAcylation and its dynamic homeostasis maintenance. Additionally, it explains the underlying nutritional sensitivity of O-GlcNAcylation and discusses its mechanism of spatiotemporal modulation of insulin signal transduction and liver metabolic homeostasis during the fasting and feeding cycle. This review emphasises the pathophysiological implications of O-GlcNAcylation in nonalcoholic fatty liver disease, nonalcoholic steatohepatitis and hepatic fibrosis, and focuses on the adverse effects of hyper O-GlcNAcylation on liver cancer progression and metabolic reprogramming.
Collapse
Affiliation(s)
- Ya-Jie Hu
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xu Zhang
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong-Ming Lv
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yang Liu
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shi-Ze Li
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|