1
|
Barroso-Medina C, Lin SC, Tocheri MW, Sreenivasa M. Design and development of a sensorized hammerstone for accurate force measurement in stone knapping experiments. PLoS One 2024; 19:e0310520. [PMID: 39288151 PMCID: PMC11407656 DOI: 10.1371/journal.pone.0310520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
The process of making stone tools, specifically knapping, is a hominin behaviour that typically involves using the upper limb to manipulate a stone hammer and apply concentrated percussive force to another stone, causing fracture and detachment of stone chips with sharp edges. To understand the emergence and subsequent evolution of tool-related behaviours in hominins, the connections between the mechanics of stone knapping, including the delivery of percussive forces, and biomechanics and hominin anatomy, especially in the upper limb, are required. However, there is an absence of direct experimental means to measure the actual forces generated and applied to produce flakes during knapping. Our study introduces a novel solution to this problem in the form of an ergonomic hand-held synthetic hammerstone that can record the percussive forces that occur during knapping experiments. This hammerstone is composed of a deformable pneumatic 3D-printed chamber encased within a 3D-printed grip and a stone-milled striker. During knapping, hammer impact causes the pneumatic chamber to deform, which leads to a change in pressure that is measured by a sensor. Comparisons of recorded pressure data against corresponding force values measured using a force plate show that the synthetic hammer quantifies percussion forces with relatively high accuracy. The performance of this hammerstone was further validated by conducting anvil-supported knapping experiments on glass that resulted in a root mean square error of under 6%, while recording forces up to 730 N with successful flake detachments. These validation results indicate that accuracy was not sensitive to variations up to 15° from the vertical in the hammer striking angle. Our approach allows future studies to directly examine the role of percussive force during the stone knapping process and its relationship with both anatomical and technological changes during human evolution.
Collapse
Affiliation(s)
- Cecilia Barroso-Medina
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Sam C Lin
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW, Australia
| | - Matthew W Tocheri
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW, Australia
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario, Canada
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Manish Sreenivasa
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
2
|
Cosnefroy Q, Berillon G, Gilissen E, Brige P, Chaumoître K, Lamberton F, Marchal F. New insights into patterns of integration in the femur and pelvis among catarrhines. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24931. [PMID: 38491922 DOI: 10.1002/ajpa.24931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES Integration reflects the level of coordinated variation of the phenotype. The integration of postcranial elements can be studied from a functional perspective, especially with regards to locomotion. This study investigates the link between locomotion, femoral structural properties, and femur-pelvis complex morphology. MATERIALS AND METHODS We measured (1) morphological integration between femoral and pelvic morphologies using geometric morphometrics, and (2) covariation between femoral/pelvic morphologies and femoral diaphyseal cross-sectional properties, which we defined as morpho-structural integration. Morphological and morpho-structural integration patterns were measured among humans (n = 19), chimpanzees and bonobos (n = 16), and baboons (n = 14), whose locomotion are distinct. RESULTS Baboons show the highest magnitude of morphological integration and the lowest of morpho-structural integration. Chimpanzees and bonobos show intermediate magnitude of morphological and morpho-structural integration. Yet, body size seems to have a considerable influence on both integration patterns, limiting the interpretations. Finally, humans present the lowest morphological integration and the highest morpho-structural integration between femoral morphology and structural properties but not between pelvic morphology and femur. DISCUSSION Morphological and morpho-structural integration depict distinct strategies among the samples. A strong morphological integration among baboon's femur-pelvis module might highlight evidence for long-term adaptation to quadrupedalism. In humans, it is likely that distinct selective pressures associated with the respective function of the pelvis and the femur tend to decrease morphological integration. Conversely, high mechanical loading on the hindlimbs during bipedal locomotion might result in specific combination of structural and morphological features within the femur.
Collapse
Affiliation(s)
| | | | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium
| | - Pauline Brige
- Aix-Marseille Univ, CNRS, CERIMED, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Pôle Pharmacie, Radiopharmacie, Marseille, France
| | - Kathia Chaumoître
- UMR 7268 ADES, Aix-Marseille Univ-CNRS-EFS, Marseille, France
- Assistance Publique Hôpitaux de Marseille, Hôpital Nord, Aix-Marseille Univ, Service d'Imagerie Médicale, Marseille, France
| | | | | |
Collapse
|
3
|
Cazenave M, Pina M, Hammond AS, Böhme M, Begun DR, Spassov N, Gazabón AV, Zanolli C, Bergeret-Medina A, Marchi D, Macchiarelli R, Wood B. Postcranial evidence does not support habitual bipedalism in Sahelanthropus tchadensis: A reply to Daver et al. (2022). J Hum Evol 2024:103557. [PMID: 38918139 DOI: 10.1016/j.jhevol.2024.103557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Affiliation(s)
- Marine Cazenave
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany; Division of Anthropology, American Museum of Natural History (AMNH), New York, NY 10024, USA; Department of Anatomy, Faculty of Health Sciences, University of Pretoria, 0084 Pretoria, South Africa.
| | - Marta Pina
- South Bank Applied BioEngineering Research (SABER), School of Engineering, Division of Mechanical Engineering and Design, London South Bank University, SE1 0AA London, UK; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Ashley S Hammond
- Division of Anthropology, American Museum of Natural History (AMNH), New York, NY 10024, USA; New York Consortium of Evolutionary Primatology (NYCEP) at AMNH, New York, NY 10024, USA
| | - Madelaine Böhme
- Eberhard Karls University of Tübingen, Department of Geoscience, Sigwartstr. 10, 72076 Tübingen, Germany; Senckenberg Centre for Human Evolution and Paleoenvironment, Sigwartstr. 10, 72076 Tübingen, Germany
| | - David R Begun
- Department of Anthropology, University of Toronto, Toronto, ON M5S 2S2, Canada
| | - Nikolai Spassov
- Department of Paleontology and Mineralogy, National Museum of Natural History, Bulgarian Academy of Sciences, BG-1000, Sofia, Bulgaria
| | - Alessandra Vecino Gazabón
- Division of Anthropology, American Museum of Natural History (AMNH), New York, NY 10024, USA; New York Consortium of Evolutionary Primatology (NYCEP) at AMNH, New York, NY 10024, USA; Richard Gilder Graduate School (RGGS) at the American Museum of Natural History, New York, USA
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600 Pessac, France; Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa
| | | | - Damiano Marchi
- Department of Biology, University of Pisa, 56126 Pisa, Italy; Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa
| | | | - Bernard Wood
- Center for the Advanced Study of Human Paleobiology and Department of Anthropology, George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
4
|
Aramendi J, Mabulla A, Baquedano E, Domínguez-Rodrigo M. Biomechanical and taxonomic diversity in the Early Pleistocene in East Africa: Structural analysis of a recently discovered femur shaft from Olduvai Gorge (bed I). J Hum Evol 2024; 186:103469. [PMID: 38071888 DOI: 10.1016/j.jhevol.2023.103469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Recent Plio-Pleistocene hominin findings have revealed the complexity of human evolutionary history and the difficulties involved in its interpretation. Moreover, the study of hominin long bone remains is particularly problematic, since it commonly depends on the analysis of fragmentary skeletal elements that in many cases are merely represented by small diaphyseal portions and appear in an isolated fashion in the fossil record. Nevertheless, the study of the postcranial skeleton is particularly important to ascertain locomotor patterns. Here we report on the discovery of a robust hominin femoral fragment (OH 84) at the site of Amin Mturi Korongo dated to 1.84 Ma (Olduvai Bed I). External anatomy and internal bone structure of OH 84 were analyzed and compared with previously published data for modern humans and chimpanzees, as well as for Australopithecus, Paranthropus and Homo specimens ranging from the Late Pliocene to Late Pleistocene. Biomechanical analyses based on transverse cross-sections and the comparison of OH 84 with another robust Olduvai specimen (OH 80) suggest that OH 84 might be tentatively allocated to Paranthropus boisei. More importantly, the identification of a unique combination of traits in OH 84 could indicate both terrestrial bipedalism and an arboreal component in the locomotor repertoire of this individual. If interpreted correctly, OH 84 could thus add to the already mounting evidence of substantial locomotor diversity among Early Pleistocene hominins. Likewise, our results also highlight the difficulties in accurately interpreting the link between form and function in the human fossil record based on fragmentary remains, and ultimately in distinguishing between coeval hominin groups due to the heterogeneous pattern of inter- and intraspecific morphological variability detected among fossil femora.
Collapse
Affiliation(s)
- Julia Aramendi
- McDonald Institute for Archaeological Research, University of Cambridge, CB2 1TN, UK.
| | - Audax Mabulla
- Department of Archaeology and Heritage Studies, University of Dar Es Salaam, P.O. Box 35050, Dar Es Salaam, Tanzania
| | - Enrique Baquedano
- Archaeological and Paleontological Museum of the Community of Madrid, Plaza de Las Bernardas s/n, 28801, Alcalá de Henares, Spain; Institute of Evolution in Africa (IDEA), University of Alcalá and Archaeological and Paleontological Museum of the Community of Madrid, C/Covarrubias 36, 28010, Madrid, Spain
| | - Manuel Domínguez-Rodrigo
- Institute of Evolution in Africa (IDEA), University of Alcalá and Archaeological and Paleontological Museum of the Community of Madrid, C/Covarrubias 36, 28010, Madrid, Spain; University of Alcalá, Department of History and Philosophy, Area of Prehistory, C/Colegios 2, 28801, Alcalá de Henares, Spain; Rice University, Department of Anthropology, 6100 Main St., Houston, TX, 77005 1827, USA
| |
Collapse
|
5
|
Wei P, Cazenave M, Zhao Y, Xing S. Structural properties of the Late Pleistocene Liujiang femoral diaphyses from southern China. J Hum Evol 2023; 183:103424. [PMID: 37738922 DOI: 10.1016/j.jhevol.2023.103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 09/24/2023]
Abstract
The characterization of the femoral diaphysis in Pleistocene hominins with chronoecogeographical diversity plays a crucial role in evaluating evolutionary shifts in locomotor behavior and body shape. However, Pleistocene hominin fossil remains in East Asia are scarce and are widely dispersed temporally and spatially, impeding our comprehension of the nature and polarity of morphological trends. Here, we present qualitative and quantitative analyses of the cross-sectional properties and structural organization of diaphyses in two Late Pleistocene hominin femora (Liujiang PA91 and PA92) from southern China, comparing them to other Eurasian and African Pleistocene hominins. By integrating surface features and internal structure, our findings reveal that the Liujiang femora exhibit modern human-like characteristics, including a developed pilaster, a gluteal buttress, and minimum mediolateral breadth located at the midshaft. The presence of a femoral pilaster may relate to posterior cortical reinforcement and an increased anteroposterior bending rigidity along the mid-proximal to mid-distal portion of the diaphysis. Compared to archaic Homo, Liujiang and other Late Pleistocene modern human femora show a thinner mediolateral cortex and lower bending rigidity than the anteroposterior axis, and a lack of medial buttress, potentially indicating functionally related alterations in a range of pelvic and proximal femoral features throughout the Pleistocene. The femoral robusticity of the Liujiang individual resembles that of other Pleistocene hunter-gatherers from East Asia, implying comparable overall mobility or activity levels. The investigation of Liujiang femoral diaphyseal morphology contributes to a more comprehensive understanding of early modern human postcranial structural morphology in East Asia.
Collapse
Affiliation(s)
- Pianpian Wei
- Department of Cultural Heritage and Museology, Fudan University, Shanghai, 200438, China; Institute of Archaeological Science, Fudan University, Shanghai, 200438, China; Centre for the Exploration of the Deep Human Journey, Faculty of Science, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa
| | - Marine Cazenave
- Division of Anthropology, American Museum of Natural History, New York, NY, USA; Skeletal Biology Research Centre at the School of Anthropology and Conservation, University of Kent, Canterbury, UK; Department of Anatomy and Histology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Yuhao Zhao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Palaeontology and Palaeoanthropology, Chinese Academy of Sciences, Beijing, 100044, China; University of Chinese Academy of Sciences, Beijing, 100049, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China.
| | - Song Xing
- University of Chinese Academy of Sciences, Beijing, 100049, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China; Centro Nacional de Investigación Sobre La Evolución Humana (CENIEH), Paseo de La Sierra de Atapuerca S/n, 09002, Burgos, Spain
| |
Collapse
|
6
|
Antón SC, Middleton ER. Making meaning from fragmentary fossils: Early Homo in the Early to early Middle Pleistocene. J Hum Evol 2023; 179:103307. [PMID: 37030994 DOI: 10.1016/j.jhevol.2022.103307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 04/10/2023]
Abstract
In celebration of the 50th anniversary of the Journal of Human Evolution, we re-evaluate the fossil record for early Homo (principally Homo erectus, Homo habilis, and Homo rudolfensis) from early diversification and dispersal in the Early Pleistocene to the ultimate demise of H. erectus in the early Middle Pleistocene. The mid-1990s marked an important historical turning point in our understanding of early Homo with the redating of key H. erectus localities, the discovery of small H. erectus in Asia, and the recovery of an even earlier presence of early Homo in Africa. As such, we compare our understanding of early Homo before and after this time and discuss how the order of fossil discovery and a focus on anchor specimens has shaped, and in many ways biased, our interpretations of early Homo species and the fossils allocated to them. Fragmentary specimens may counter conventional wisdom but are often overlooked in broad narratives. We recognize at least three different cranial and two or three pelvic morphotypes of early Homo. Just one postcranial morph aligns with any certainty to a cranial species, highlighting the importance of explicitly identifying how we link specimens together and to species; we offer two ways of visualizing these connections. Chronologically and morphologically H. erectus is a member of early Homo, not a temporally more recent species necessarily evolved from either H. habilis or H. rudolfensis. Nonetheless, an ancestral-descendant notion of their evolution influences expectations around the anatomy of missing elements, especially the foot. Weak support for long-held notions of postcranial modernity in H. erectus raises the possibility of alternative drivers of dispersal. New observations suggest that the dearth of faces in later H. erectus may mask taxonomic diversity in Asia and suggest various later mid-Pleistocene populations could derive from either Asia or Africa. Future advances will rest on the development of nuanced ways to affiliate fossils, greater transparency of implicit assumptions, and attention to detailed life history information for comparative collections; all critical pursuits for future research given the great potential they have to enrich our evolutionary reconstructions for the next fifty years and beyond.
Collapse
Affiliation(s)
- Susan C Antón
- Center for the Study of Human Origins, Department of Anthropology, New York University, NY, NY 10003, USA.
| | - Emily R Middleton
- Department of Anthropology, University of Wisconsin-Milwaukee, WI 53211, USA
| |
Collapse
|
7
|
Cazenave M, Kivell TL. Challenges and perspectives on functional interpretations of australopith postcrania and the reconstruction of hominin locomotion. J Hum Evol 2023; 175:103304. [PMID: 36563461 DOI: 10.1016/j.jhevol.2022.103304] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
In 1994, Hunt published the 'postural feeding hypothesis'-a seminal paper on the origins of hominin bipedalism-founded on the detailed study of chimpanzee positional behavior and the functional inferences derived from the upper and lower limb morphology of the Australopithecus afarensis A.L. 288-1 partial skeleton. Hunt proposed a model for understanding the potential selective pressures on hominins, made robust, testable predictions based on Au. afarensis functional morphology, and presented a hypothesis that aimed to explain the dual functional signals of the Au. afarensis and, more generally, early hominin postcranium. Here we synthesize what we have learned about Au. afarensis functional morphology and the dual functional signals of two new australopith discoveries with relatively complete skeletons (Australopithecus sediba and StW 573 'Australopithecus prometheus'). We follow this with a discussion of three research approaches that have been developed for the purpose of drawing behavioral inferences in early hominins: (1) developments in the study of extant apes as models for understanding hominin origins; (2) novel and continued developments to quantify bipedal gait and locomotor economy in extant primates to infer the locomotor costs from the anatomy of fossil taxa; and (3) novel developments in the study of internal bone structure to extract functional signals from fossil remains. In conclusion of this review, we discuss some of the inherent challenges of the approaches and methodologies adopted to reconstruct the locomotor modes and behavioral repertoires in extinct primate taxa, and notably the assessment of habitual terrestrial bipedalism in early hominins.
Collapse
Affiliation(s)
- Marine Cazenave
- Division of Anthropology, American Museum of Natural History, New York, USA; Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Department of Anatomy, Faculty of Health Sciences, University of Pretoria, South Africa.
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
O'Mahoney TG, Lowe T, Chamberlain AT, Sellers WI. Endostructural and periosteal growth of the human humerus. Anat Rec (Hoboken) 2023; 306:60-78. [PMID: 36054304 PMCID: PMC10086792 DOI: 10.1002/ar.25048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/31/2022] [Accepted: 03/22/2022] [Indexed: 01/29/2023]
Abstract
The growth and development of long bones are of considerable interests in the fields of comparative anatomy and palaeoanthropology, as evolutionary changes and adaptations to specific physical activity patterns are expected to be revealed during bone ontogeny. Traditionally, the cross-sectional geometry of long bones has been examined at discrete locations usually placed at set intervals or fixed percentage distances along the midline axis of the bone shaft. More recently, the technique of morphometric mapping has enabled the continuous analysis of shape variation along the shaft. Here we extend this technique to the full sequence of late fetal and postnatal development of the humeral shaft in a modern human population sample, with the aim of establishing the shape changes during growth and their relationship with the development of the arm musculature and activity patterns. A sample of modern human humeri from individuals of age ranging from 24 weeks in utero to 18 years was imaged using microtomography at multiple resolutions and custom Matlab scripts. Standard biomechanical properties, cortical thickness, surface curvature, and pseudo-landmarks were extracted along radial vectors spaced at intervals of 1° at each 0.5% longitudinal increment measured along the shaft axis. Heat maps were also generated for cortical thickness and surface curvature. The results demonstrate that a whole bone approach to analysis of cross-sectional geometry is more desirable where possible, as there is a continuous pattern of variation along the shaft. It is also possible to discriminate very young individuals and adolescents from other groups by relative cortical thickness, and also by periosteal surface curvature.
Collapse
Affiliation(s)
- Thomas George O'Mahoney
- School of Life SciencesAnglia Ruskin UniversityCambridgeUK
- School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK
| | - Tristan Lowe
- Henry Moseley X‐Ray Imaging FacilityUniversity of ManchesterManchesterUK
| | | | | |
Collapse
|
9
|
Two Late Pleistocene human femora from Trinil, Indonesia: Implications for body size and behavior in Southeast Asia. J Hum Evol 2022; 172:103252. [PMID: 36162353 DOI: 10.1016/j.jhevol.2022.103252] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022]
Abstract
Late Pleistocene hominin postcranial specimens from Southeast Asia are relatively rare. Here we describe and place into temporal and geographic context two partial femora from the site of Trinil, Indonesia, which are dated stratigraphically and via Uranium-series direct dating to ca. 37-32 ka. The specimens, designated Trinil 9 and 10, include most of the diaphysis, with Trinil 9 being much better preserved. Microcomputed tomography is used to determine cross-sectional diaphyseal properties, with an emphasis on midshaft anteroposterior to mediolateral bending rigidity (Ix/Iy), which has been shown to relate to both body shape and activity level in modern humans. The body mass of Trinil 9 is estimated from cortical area and reconstructed length using new equations based on a Pleistocene reference sample. Comparisons are carried out with a large sample of Pleistocene and Holocene East Asian, African, and European/West Asian femora. Our results show that Trinil 9 has a high Ix/Iy ratio, most consistent with a relatively narrow-bodied male from a mobile hunting-gathering population. It has an estimated body mass of 55.4 kg and a stature of 156 cm, which are small relative to Late Pleistocene males worldwide, but larger than the penecontemporaneous Deep Skull femur from Niah Cave, Malaysia, which is very likely female. This suggests the presence of small-bodied active hunter-gatherers in Southeast Asia during the later Late Pleistocene. Trinil 9 also contrasts strongly in morphology with earlier partial femora from Trinil dating to the late Early-early Middle Pleistocene (Femora II-V), and to a lesser extent with the well-known complete Femur I, most likely dating to the terminal Middle-early Late Pleistocene. Temporal changes in morphology among femoral specimens from Trinil parallel those observed in Homo throughout the Old World during the Pleistocene and document these differences within a single site.
Collapse
|
10
|
Postcranial evidence of late Miocene hominin bipedalism in Chad. Nature 2022; 609:94-100. [PMID: 36002567 DOI: 10.1038/s41586-022-04901-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Bipedal locomotion is one of the key adaptations that define the hominin clade. Evidence of bipedalism is known from postcranial remains of late Miocene hominins as early as 6 million years ago (Ma) in eastern Africa1-4. Bipedality of Sahelanthropus tchadensis was hitherto inferred about 7 Ma in central Africa (Chad) based on cranial evidence5-7. Here we present postcranial evidence of the locomotor behaviour of S. tchadensis, with new insights into bipedalism at the early stage of hominin evolutionary history. The original material was discovered at locality TM 266 of the Toros-Ménalla fossiliferous area and consists of one left femur and two, right and left, ulnae. The morphology of the femur is most parsimonious with habitual bipedality, and the ulnae preserve evidence of substantial arboreal behaviour. Taken together, these findings suggest that hominins were already bipeds at around 7 Ma but also suggest that arboreal clambering was probably a significant part of their locomotor repertoire.
Collapse
|
11
|
Bader C, Böhmer C, Abou M, Houssaye A. How does bone microanatomy and musculature covary? An investigation in the forelimb of two species of martens (Martes foina, Martes martes). J Anat 2022; 241:145-167. [PMID: 35266144 PMCID: PMC9178392 DOI: 10.1111/joa.13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
The long bones and associated musculature play a prominent role in the support and movement of the body and are expected to reflect the associated mechanical demands. But in addition to the functional response to adaptive changes, the conjoined effects of phylogenetic, structural and developmental constraints also shape the animal's body. In order to minimise the effect of the aforementioned constraints and to reveal the biomechanical adaptations in the musculoskeletal system to locomotor mode, we here study the forelimb of two closely related martens: the arboreal pine marten (Martes martes) and the more terrestrial stone marten (Martes foina), focusing on their forelimb muscle anatomy and long bone microanatomy; and, especially, on their covariation. To do so, we quantified muscle data and bone microanatomical parameters and created 3D and 2D maps of the cortical thickness distribution for the three long bones of the forelimb. We then analysed the covariation of muscle and bone data, both qualitatively and quantitatively. Our results reveal that species-specific muscular adaptations are not clearly reflected in the microanatomy of the bones. Yet, we observe a global thickening of the bone cortex in the radius and ulna of the more arboreal pine marten, as well a stronger flexor muscle inserting on its elbow. We attribute these differences to variation in their locomotor modes. Analyses of our 2D maps revealed a shift of cortical thickness distribution pattern linked to ontogeny, rather than species-specific patterns. We found that although intraspecific variation is not negligible, species distinction was possible when taking muscular and bone microanatomical data into consideration. Results of our covariation analyses suggest that the muscle-bone correlation is linked to ontogeny rather than to muscular strength at zones of insertion. Indeed, if we find a correlation between cortical thickness distribution and the strength of some muscles in the humerus, that is not the case for the others and in the radius and ulna. Cortical thickness distribution appears rather linked to bone contact zones and ligament insertions in the radius and ulna, and to some extent in the humerus. We conclude that inference on muscle from bone microanatomy is possible only for certain muscles in the humerus.
Collapse
Affiliation(s)
- Camille Bader
- Département Adaptations du VivantUMR 7179 CNRS/Muséum National d'Histoire NaturelleParisFrance
| | - Christine Böhmer
- Département Adaptations du VivantUMR 7179 CNRS/Muséum National d'Histoire NaturelleParisFrance
- Zoological InstituteChristian‐Albrechts‐Universität zu KielKielGermany
| | - Maroua Abou
- Département Adaptations du VivantUMR 7179 CNRS/Muséum National d'Histoire NaturelleParisFrance
| | - Alexandra Houssaye
- Département Adaptations du VivantUMR 7179 CNRS/Muséum National d'Histoire NaturelleParisFrance
| |
Collapse
|
12
|
Biomechanical Evaluation on the Bilateral Asymmetry of Complete Humeral Diaphysis in Chinese Archaeological Populations. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Diaphyseal cross-sectional geometry (CSG) is an effective indicator of humeral bilateral asymmetry. However, previous studies primarily focused on CSG properties from limited locations to represent the overall bilateral biomechanical performance of humeral diaphysis. In this study, the complete humeral diaphyses of 40 pairs of humeri from three Chinese archaeological populations were scanned using high-resolution micro-CT, and their biomechanical asymmetries were quantified by morphometric mapping. Patterns of humeral asymmetry were compared between sub-groups defined by sex and population, and the representativeness of torsional rigidity asymmetry at the 35% and 50% cross-sections (J35 and J50 asymmetry) was testified. Inter-group differences were observed on the mean morphometric maps, but were not statistically significant. Analogous distribution patterns of highly asymmetrical regions, which correspond to major muscle attachments, were observed across nearly all the sexes and populations. The diaphyseal regions with high variability of bilateral asymmetry tended to present a low asymmetrical level. The J35 and J50 asymmetry were related to the overall humeral asymmetry, but the correlation was moderate and they could not reflect localized asymmetrical features across the diaphysis. This study suggests that the overall asymmetry pattern of humeral diaphysis is more complicated than previously revealed by individual sections.
Collapse
|
13
|
Wei P, Weng Z, Carlson KJ, Cao B, Jin L, Liu W. Late Pleistocene partial femora from Maomaodong, southwestern China. J Hum Evol 2021; 155:102977. [PMID: 33895609 DOI: 10.1016/j.jhevol.2021.102977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Pianpian Wei
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zekun Weng
- Guizhou Municipal Institute of Cultural Relics and Archaeology, Guiyang, 5500044, China.
| | - Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Evolutionary Studies Institute, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa.
| | - Bo Cao
- Guizhou Municipal Institute of Cultural Relics and Archaeology, Guiyang, 5500044, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China; Human Phoneme Institute, Fudan University, Shanghai, 200438, China
| | - Wu Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Palaeontology and Palaeoanthropology, Chinese Academy of Sciences, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| |
Collapse
|
14
|
Macchiarelli R, Bergeret-Medina A, Marchi D, Wood B. Nature and relationships of Sahelanthropus tchadensis. J Hum Evol 2020; 149:102898. [PMID: 33142154 DOI: 10.1016/j.jhevol.2020.102898] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023]
Abstract
A partial left femur (TM 266-01-063) was recovered in July 2001 at Toros-Menalla, Chad, at the same fossiliferous location as the late Miocene holotype of Sahelanthropus tchadensis (the cranium TM 266-01-060-1). It was recognized as a probable primate femur in 2004 when one of the authors was undertaking a taphonomic survey of the fossil assemblages from Toros-Menalla. We are confident the TM 266 femoral shaft belongs to a hominid. It could sample a hominid hitherto unrepresented at Toros-Menalla, but a more parsimonious working hypothesis is that it belongs to S. tchadensis. The differences between TM 266 and the late Miocene Orrorin tugenensis partial femur BAR 1002'00, from Kenya, are consistent with maintaining at least a species-level distinction between S. tchadensis and O. tugenensis. The results of our preliminary functional analysis suggest the TM 266 femoral shaft belongs to an individual that was not habitually bipedal, something that should be taken into account when considering the relationships of S. tchadensis. The circumstances of its discovery should encourage researchers to check to see whether there is more postcranial evidence of S. tchadensis among the fossils recovered from Toros-Menalla.
Collapse
Affiliation(s)
- Roberto Macchiarelli
- Unité de Formation Géosciences, Université de Poitiers, 86073, Poitiers, France; Département Homme & Environnement, UMR 7194 CNRS, Muséum national d'Histoire naturelle, 75116, Paris, France.
| | | | - Damiano Marchi
- Department of Biology, University of Pisa, 56126, Pisa, Italy; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Wits, 2050, South Africa
| | - Bernard Wood
- Center for the Advanced Study of Human Paleobiology and Department of Anthropology, George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
15
|
Harbers H, Zanolli C, Cazenave M, Theil JC, Ortiz K, Blanc B, Locatelli Y, Schafberg R, Lecompte F, Baly I, Laurens F, Callou C, Herrel A, Puymerail L, Cucchi T. Investigating the impact of captivity and domestication on limb bone cortical morphology: an experimental approach using a wild boar model. Sci Rep 2020; 10:19070. [PMID: 33149160 PMCID: PMC7643176 DOI: 10.1038/s41598-020-75496-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
The lack of bone morphological markers associated with the human control of wild animals has prevented the documentation of incipient animal domestication in archaeology. Here, we assess whether direct environmental changes (i.e. mobility reduction) could immediately affect ontogenetic changes in long bone structure, providing a skeletal marker of early domestication. We relied on a wild boar experimental model, analysing 24 wild-born specimens raised in captivity from 6 months to 2 years old. The shaft cortical thickness of their humerus was measured using a 3D morphometric mapping approach and compared with 23 free-ranging wild boars and 22 pigs from different breeds, taking into account sex, mass and muscle force differences. In wild boars we found that captivity induced an increase in cortical bone volume and muscle force, and a topographic change of cortical thickness associated with muscular expression along a phenotypic trajectory that differed from the divergence induced by selective breeding. These results provide an experimental proof of concept that changes in locomotor behaviour and selective breeding might be inferred from long bones morphology in the fossil and archaeological record. These trends need to be explored in the archaeological record and further studies are required to explore the developmental changes behind these plastic responses.
Collapse
Affiliation(s)
- Hugo Harbers
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum national d'Histoire naturelle, CNRS, Paris, France.
| | - Clement Zanolli
- Laboratoire PACEA, UMR 5199, Université de Bordeaux, Bordeaux, France
| | - Marine Cazenave
- School of Anthropology and Conservation, Skeletal Biology Research Centre, University of Kent, Marlowe Building, Canterbury, Kent, CT2 7NR, UK
- Department of Anatomy and Histology, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Jean-Christophe Theil
- Mécanismes Adaptatifs et Evolution, UMR 7109, Muséum national d'Histoire naturelle CNRS, Paris, France
| | - Katia Ortiz
- Réserve Zoologique de la Haute Touche, Muséum national d'Histoire naturelle, Obterre, France
| | - Barbara Blanc
- Réserve Zoologique de la Haute Touche, Muséum national d'Histoire naturelle, Obterre, France
| | - Yann Locatelli
- Réserve Zoologique de la Haute Touche, Muséum national d'Histoire naturelle, Obterre, France
- Physiologie de la Reproduction et des Comportements, UMR 7247, National Research Institute for Agriculture, Food and Environment (INRAE), CNRS Université de Tours IFCE, Nouzilly, France
| | - Renate Schafberg
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Francois Lecompte
- Plateforme CIRE, National Research Institute for Agriculture, Food and Environment (INRAE), Nouzilly, France
| | - Isabelle Baly
- Unité Bases de Données sur la Biodiversité, Écologie, Environnement et Sociétés, UMS 3468, Muséum national d'Histoire naturelle, Paris, France
| | - Flavie Laurens
- Unité Bases de Données sur la Biodiversité, Écologie, Environnement et Sociétés, UMS 3468, Muséum national d'Histoire naturelle, Paris, France
| | - Cécile Callou
- Unité Bases de Données sur la Biodiversité, Écologie, Environnement et Sociétés, UMS 3468, Muséum national d'Histoire naturelle, Paris, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution, UMR 7109, Muséum national d'Histoire naturelle CNRS, Paris, France
| | - Laurent Puymerail
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum national d'Histoire naturelle, CNRS, Paris, France
- Anthropologie bio-culturelle, droit, éthique et santé (ADES), UMR 7268, Faculté de Médecine Site Nord, Marseille, France
| | - Thomas Cucchi
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum national d'Histoire naturelle, CNRS, Paris, France.
| |
Collapse
|
16
|
Profico A, Bondioli L, Raia P, O'Higgins P, Marchi D. morphomap: An R package for long bone landmarking, cortical thickness, and cross‐sectional geometry mapping. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 174:129-139. [DOI: 10.1002/ajpa.24140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/15/2020] [Accepted: 08/11/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Antonio Profico
- PalaeoHub, Department of Archaeology University of York York UK
| | - Luca Bondioli
- Service of Bioarchaeology Service Museo delle Civiltà Rome Italy
| | - Pasquale Raia
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse Università di Napoli Federico II Naples Italy
| | - Paul O'Higgins
- PalaeoHub, Department of Archaeology University of York York UK
- Hull York Medical School University of York York UK
- Centre for Forensic Anthropology University of Western Australia Perth Australia
| | - Damiano Marchi
- Department of Biology University of Pisa Pisa Italy
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences University of the Witwatersrand Johannesburg‐Braamfontein South Africa
| |
Collapse
|
17
|
Zanolli C, Schillinger B, Kullmer O, Schrenk F, Kelley J, Rössner GE, Macchiarelli R. When X-Rays Do Not Work. Characterizing the Internal Structure of Fossil Hominid Dentognathic Remains Using High-Resolution Neutron Microtomographic Imaging. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
18
|
Cortical bone distribution in the femoral neck of Paranthropus robustus. J Hum Evol 2019; 135:102666. [DOI: 10.1016/j.jhevol.2019.102666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
|
19
|
Dental macrowear and cortical bone distribution of the Neanderthal mandible from Regourdou (Dordogne, Southwestern France). J Hum Evol 2019; 132:174-188. [PMID: 31203846 DOI: 10.1016/j.jhevol.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 01/10/2023]
Abstract
Tooth wear is an important feature for reconstructing diet, food processing and cultural habits of past human populations. In particular, occlusal wear facets can be extremely useful for detecting information about diet and non-masticatory behaviors. The aim of this study is to reconstruct the diet and cultural behavior of the Neanderthal specimen Regourdou 1 (Dordogne, Southern France) from the analysis of the macrowear pattern, using the occlusal fingerprint analysis method. In addition, we have also examined whether there is any association between the observed dental macrowear and mandibular bone distribution and root dentine thickness. The posterior dentition of Regourdou 1 is characterized by an asymmetric wear pattern, with the right side significantly more worn than the left. In contrast, the left lower P3 shows a more advanced wear than the right premolar, with unusual semicircular enamel wear facets. The results from occlusal fingerprint analysis of this unique pattern suggest tooth-tool uses for daily task activities. Moreover, the left buccal aspect of the mandibular cortical bone is thicker than its right counterpart, and the left P3 has a thicker radicular dentine layer than its antimere. These results show a certain degree of asymmetry in cortical bone topography and dentine tissue that could be associated with the observed dental macrowear pattern. The molar macrowear pattern also suggests that Regourdou 1 had a mixed diet typical of those populations living in temperate deciduous woodlands and Mediterranean habitats, including animal and plant foods. Although this study is limited to one Neanderthal individual, future analyses based on a larger sample may further assist us to better understand the existing relationship between mandibular architecture, occlusal wear and the masticatory apparatus in humans.
Collapse
|
20
|
Santos F, Lacoste Jeanson A. Diaphysator: An online application for the exhaustive cartography and user‐friendly statistical analysis of long bone diaphyses. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:377-384. [DOI: 10.1002/ajpa.23835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/25/2019] [Accepted: 03/31/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Frédéric Santos
- Université de Bordeaux – CNRS – MCC, UMR 5199 PACEA 33600 Pessac France
| | - Alizé Lacoste Jeanson
- Laboratory of 3D Imaging and Analytical Methods, Faculty of Natural Sciences, Department of Anthropology and Human GeneticsCharles University Praha Czech Republic
| |
Collapse
|
21
|
Zanolli C, Martinón-Torres M, Bernardini F, Boschian G, Coppa A, Dreossi D, Mancini L, Martínez de Pinillos M, Martín-Francés L, Bermúdez de Castro JM, Tozzi C, Tuniz C, Macchiarelli R. The Middle Pleistocene (MIS 12) human dental remains from Fontana Ranuccio (Latium) and Visogliano (Friuli-Venezia Giulia), Italy. A comparative high resolution endostructural assessment. PLoS One 2018; 13:e0189773. [PMID: 30281595 PMCID: PMC6169847 DOI: 10.1371/journal.pone.0189773] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
The penecontemporaneous Middle Pleistocene sites of Fontana Ranuccio (Latium) and Visogliano (Friuli-Venezia Giulia), set c. 450 km apart in central and northeastern Italy, respectively, have yielded some among the oldest human fossil remains testifying to a peopling phase of the Italian Peninsula broadly during the glacial MIS 12, a stage associated with one among the harshest climatic conditions in the Northern hemisphere during the entire Quaternary period. Together with the large samples from Atapuerca Sima de los Huesos, Spain, and Caune de l’Arago at Tautavel, France, the remains from Fontana Ranuccio and Visogliano are among the few mid-Middle Pleistocene dental assemblages from Western Europe available for investigating the presence of an early Neanderthal signature in their inner structure. We applied two- three-dimensional techniques of virtual imaging and geometric morphometrics to the high-resolution X-ray microtomography record of the dental remains from these two Italian sites and compared the results to the evidence from a selected number of Pleistocene and extant human specimens/samples from Europe and North Africa. Depending on their preservation quality and on the degree of occlusal wear, we comparatively assessed: (i) the crown enamel and radicular dentine thickness topographic variation of a uniquely represented lower incisor; (ii) the lateral crown tissue proportions of premolars and molars; (iii) the enamel-dentine junction, and (iv) the pulp cavity morphology of all available specimens. Our analyses reveal in both samples a Neanderthal-like inner structural signal, for some aspects also resembling the condition shown by the contemporary assemblage from Atapuerca SH, and clearly distinct from the recent human figures. This study provides additional evidence indicating that an overall Neanderthal morphological dental template was preconfigured in Western Europe at least 430 to 450 ka ago.
Collapse
Affiliation(s)
- Clément Zanolli
- Laboratoire AMIS, UMR 5288 CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
- * E-mail:
| | - María Martinón-Torres
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
- Department of Anthropology, University College London (UCL), London, United Kingdom
| | - Federico Bernardini
- Centro Fermi, Museo Storico della Fisica e Centro di Studi e Ricerche "Enrico Fermi", Rome, Italy
- Multidisciplinary Laboratory, The "Abdus Salam" International Centre for Theoretical Physics, Trieste, Italy
| | - Giovanni Boschian
- Dipartimento di Civiltà e Forme del Sapere, Università di Pisa, Pisa, Italy
| | - Alfredo Coppa
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Rome, Italy
| | - Diego Dreossi
- SYRMEP Group, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza (Trieste), Italy
| | - Lucia Mancini
- SYRMEP Group, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza (Trieste), Italy
| | - Marina Martínez de Pinillos
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
- Department of Anthropology, University College London (UCL), London, United Kingdom
| | - Laura Martín-Francés
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
- Laboratoire PACEA, UMR 5199, Université de Bordeaux, Bordeaux, France
| | - José María Bermúdez de Castro
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
- Department of Anthropology, University College London (UCL), London, United Kingdom
| | - Carlo Tozzi
- Dipartimento di Civiltà e Forme del Sapere, Università di Pisa, Pisa, Italy
| | - Claudio Tuniz
- Centro Fermi, Museo Storico della Fisica e Centro di Studi e Ricerche "Enrico Fermi", Rome, Italy
- Multidisciplinary Laboratory, The "Abdus Salam" International Centre for Theoretical Physics, Trieste, Italy
- Centre for Archaeological Science, University of Wollongong, Wollongong, Australia
| | - Roberto Macchiarelli
- Laboratoire HNHP, UMR 7194 CNRS, Muséum national d'Histoire naturelle (MNHN), Paris, France
- Unité de Formation Géosciences, Université de Poitiers, Poitiers, France
| |
Collapse
|
22
|
Houssaye A, Taverne M, Cornette R. 3D quantitative comparative analysis of long bone diaphysis variations in microanatomy and cross-sectional geometry. J Anat 2018; 232:836-849. [PMID: 29411354 DOI: 10.1111/joa.12783] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2018] [Indexed: 12/25/2022] Open
Abstract
Long bone inner structure and cross-sectional geometry display a strong functional signal, leading to convergences, and are widely analyzed in comparative anatomy at small and large taxonomic scales. Long bone microanatomical studies have essentially been conducted on transverse sections but also on a few longitudinal ones. Recent studies highlighted the interest in analyzing variations of the inner structure along the diaphysis using a qualitative as well as a quantitative approach. With the development of microtomography, it has become possible to study three-dimensional (3D) bone microanatomy and, in more detail, the form-function relationships of these features. This study focused on the selection of quantitative parameters to describe in detail the cross-sectional shape changes and distribution of the osseous tissue along the diaphysis. Two-dimensional (2D) virtual transverse sections were also performed in the two usual reference planes and results were compared with those obtained based on the whole diaphysis analysis. The sample consisted in 14 humeri and 14 femora of various mammalian taxa that are essentially terrestrial. Comparative quantitative analyses between different datasets made it possible to highlight the parameters that are strongly impacted by size and phylogeny and the redundant ones, and thus to estimate their relevance for use in form-function analyses. The analysis illustrated that results based on 2D transverse sections are similar for both sectional planes; thus if a strong bias exists when mixing sections from the two reference planes in the same analysis, it would not problematic to use either one plane or the other in comparative studies. However, this may no longer hold for taxa showing a much stronger variation in bone microstructure along the diaphysis. Finally, the analysis demonstrated the significant contribution of the parameters describing variations along the diaphysis, and thus the interest in performing 3D analyses; this should be even more fruitful for heterogeneous diaphyses. In addition, covariation analyses showed that there is a strong interest in removing the size effect to access the differences in the microstructure of the humerus and femur. This methodological study provides a reference for future quantitative analyses on long bone inner structure and should make it possible, through a detailed knowledge of each descriptive parameter, to better interpret results from the multivariate analyses associated with these studies. This will have direct implications for studies in vertebrate anatomy, but also in paleontology and anthropology.
Collapse
Affiliation(s)
- Alexandra Houssaye
- Département Adaptations du Vivant, UMR 7179 CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Maxime Taverne
- Département Adaptations du Vivant, UMR 7179 CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Raphaël Cornette
- UMR CNRS/MNHN/UPMC/EPHE 7205, Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
23
|
Morimoto N, Nakatsukasa M, Ponce de León MS, Zollikofer CPE. Femoral ontogeny in humans and great apes and its implications for their last common ancestor. Sci Rep 2018; 8:1930. [PMID: 29386644 PMCID: PMC5792642 DOI: 10.1038/s41598-018-20410-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/18/2018] [Indexed: 11/09/2022] Open
Abstract
Inferring the morphology of the last common ancestor of humans, chimpanzees and gorillas is a matter of ongoing debate. Recent findings and reassessment of fossil hominins leads to the hypothesis that the last common ancestor was not extant African ape-like. However, an African great-ape-like ancestor with knuckle walking features still remains plausible and the most parsimonious scenario. Here we address this question via an evolutionary developmental approach, comparing taxon-specific patterns of shape change of the femoral diaphysis from birth to adulthood in great apes, humans, and macaques. While chimpanzees and gorillas exhibit similar locomotor behaviors, our data provide evidence for distinct ontogenetic trajectories, indicating independent evolutionary histories of femoral ontogeny. Our data further indicate that anthropoid primates share a basic pattern of femoral diaphyseal ontogeny that reflects shared developmental constraints. Humans escaped from these constraints via differential elongation of femur.
Collapse
Affiliation(s)
- Naoki Morimoto
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | - Masato Nakatsukasa
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
24
|
Xing S, Carlson KJ, Wei P, He J, Liu W. Morphology and structure of Homo erectus humeri from Zhoukoudian, Locality 1. PeerJ 2018; 6:e4279. [PMID: 29372121 PMCID: PMC5777375 DOI: 10.7717/peerj.4279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/29/2017] [Indexed: 11/20/2022] Open
Abstract
Background Regional diversity in the morphology of the H. erectus postcranium is not broadly documented, in part, because of the paucity of Asian sites preserving postcranial fossils. Yet, such an understanding of the initial hominin taxon to spread throughout multiple regions of the world is fundamental to documenting the adaptive responses to selective forces operating during this period of human evolution. Methods The current study reports the first humeral rigidity and strength properties of East Asian H. erectus and places its diaphyseal robusticity into broader regional and temporal contexts. We estimate true cross-sectional properties of Zhoukoudian Humerus II and quantify new diaphyseal properties of Humerus III using high resolution computed tomography. Comparative data for African H. erectus and Eurasian Late Pleistocene H. sapiens were assembled, and new data were generated from two modern Chinese populations. Results Differences between East Asian and African H. erectus were inconsistently expressed in humeral cortical thickness. In contrast, East Asian H. erectus appears to exhibit greater humeral robusticity compared to African H. erectus when standardizing diaphyseal properties by the product of estimated body mass and humeral length. East Asian H. erectus humeri typically differed less in standardized properties from those of side-matched Late Pleistocene hominins (e.g., Neanderthals and more recent Upper Paleolithic modern humans) than did African H. erectus, and often fell in the lower range of Late Pleistocene humeral rigidity or strength properties. Discussion Quantitative comparisons indicate that regional variability in humeral midshaft robusticity may characterize H. erectus to a greater extent than presently recognized. This may suggest a temporal difference within H. erectus, or possibly different ecogeographical trends and/or upper limb loading patterns across the taxon. Both discovery and analysis of more adult H. erectus humeri are critical to further evaluating and potentially distinguishing between these possibilities.
Collapse
Affiliation(s)
- Song Xing
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Pianpian Wei
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianing He
- School of Archaeology and Museology, Peking University, Beijing, China
| | - Wu Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Ruff CB, Burgess ML, Squyres N, Junno JA, Trinkaus E. Lower limb articular scaling and body mass estimation in Pliocene and Pleistocene hominins. J Hum Evol 2018; 115:85-111. [PMID: 29331230 DOI: 10.1016/j.jhevol.2017.10.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 01/02/2023]
Abstract
Previous attempts to estimate body mass in pre-Holocene hominins have relied on prediction equations derived from relatively limited extant samples. Here we derive new equations to predict body mass from femoral head breadth and proximal tibial plateau breadth based on a large and diverse sample of modern humans (avoiding the problems associated with using diaphyseal dimensions and/or cadaveric reference samples). In addition, an adjustment for the relatively small femoral heads of non-Homo taxa is developed based on observed differences in hip to knee joint scaling. Body mass is then estimated for 214 terminal Miocene through Pleistocene hominin specimens. Mean body masses for non-Homo taxa range between 39 and 49 kg (39-45 kg if sex-specific means are averaged), with no consistent temporal trend (6-1.85 Ma). Mean body mass increases in early Homo (2.04-1.77 Ma) to 55-59 kg, and then again dramatically in Homo erectus and later archaic middle Pleistocene Homo, to about 70 kg. The same average body mass is maintained in late Pleistocene archaic Homo and early anatomically modern humans through the early/middle Upper Paleolithic (0.024 Ma), only declining in the late Upper Paleolithic, with regional variation. Sexual dimorphism in body mass is greatest in Australopithecus afarensis (log[male/female] = 1.54), declines in Australopithecus africanus and Paranthropus robustus (log ratio 1.36), and then again in early Homo and middle and late Pleistocene archaic Homo (log ratio 1.20-1.27), although it remains somewhat elevated above that of living and middle/late Pleistocene anatomically modern humans (log ratio about 1.15).
Collapse
Affiliation(s)
- Christopher B Ruff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD 21205, USA.
| | - M Loring Burgess
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD 21205, USA
| | - Nicole Squyres
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD 21205, USA
| | - Juho-Antti Junno
- Department of Archeology, University of Oulu, Oulu 90014, Finland
| | - Erik Trinkaus
- Department of Anthropology, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
26
|
Dupej J, Lacoste Jeanson A, Pelikán J, Brůžek J. Semiautomatic extraction of cortical thickness and diaphyseal curvature from CT scans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:868-876. [DOI: 10.1002/ajpa.23315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/01/2017] [Accepted: 08/29/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Ján Dupej
- Department of Anthropology and Human Genetics, Faculty of Sciences; Charles University, Viničná 7; Praha 2, 128 43 Czech Republic
- Department of Software and Computer Science Education; Charles University, Faculty of Mathematics and Physics, Malostranské Náměstí 25; Praha 1, 118 00 Czech Republic
| | - Alizé Lacoste Jeanson
- Department of Anthropology and Human Genetics, Faculty of Sciences; Charles University, Viničná 7; Praha 2, 128 43 Czech Republic
| | - Josef Pelikán
- Department of Software and Computer Science Education; Charles University, Faculty of Mathematics and Physics, Malostranské Náměstí 25; Praha 1, 118 00 Czech Republic
| | - Jaroslav Brůžek
- Department of Anthropology and Human Genetics, Faculty of Sciences; Charles University, Viničná 7; Praha 2, 128 43 Czech Republic
- PACEA, UMR 5199, CNRS; Université de Bordeaux, Bâtiment B8, Allée Geoffroy Saint Hilaire, CS 50023; Talence, F-33400 France
| |
Collapse
|
27
|
Ruff C. Mechanical Constraints on the Hominin Pelvis and the “Obstetrical Dilemma”. Anat Rec (Hoboken) 2017; 300:946-955. [DOI: 10.1002/ar.23539] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/28/2016] [Accepted: 10/09/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Christopher Ruff
- Center for Functional Anatomy and Evolution; Johns Hopkins University School of Medicine; 1830 E. Monument St Baltimore Maryland 21205
| |
Collapse
|
28
|
The thigh and leg of Homo naledi. J Hum Evol 2017; 104:174-204. [DOI: 10.1016/j.jhevol.2016.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 01/25/2023]
|
29
|
Ruff CB, Burgess ML, Ketcham RA, Kappelman J. Limb Bone Structural Proportions and Locomotor Behavior in A.L. 288-1 ("Lucy"). PLoS One 2016; 11:e0166095. [PMID: 27902687 PMCID: PMC5130205 DOI: 10.1371/journal.pone.0166095] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
While there is broad agreement that early hominins practiced some form of terrestrial bipedality, there is also evidence that arboreal behavior remained a part of the locomotor repertoire in some taxa, and that bipedal locomotion may not have been identical to that of modern humans. It has been difficult to evaluate such evidence, however, because of the possibility that early hominins retained primitive traits (such as relatively long upper limbs) of little contemporaneous adaptive significance. Here we examine bone structural properties of the femur and humerus in the Australopithecus afarensis A.L. 288-1 ("Lucy", 3.2 Myr) that are known to be developmentally plastic, and compare them with other early hominins, modern humans, and modern chimpanzees. Cross-sectional images were obtained from micro-CT scans of the original specimens and used to derive section properties of the diaphyses, as well as superior and inferior cortical thicknesses of the femoral neck. A.L. 288-1 shows femoral/humeral diaphyseal strength proportions that are intermediate between those of modern humans and chimpanzees, indicating more mechanical loading of the forelimb than in modern humans, and by implication, a significant arboreal locomotor component. Several features of the proximal femur in A.L. 288-1 and other australopiths, including relative femoral head size, distribution of cortical bone in the femoral neck, and cross-sectional shape of the proximal shaft, support the inference of a bipedal gait pattern that differed slightly from that of modern humans, involving more lateral deviation of the body center of mass over the support limb, which would have entailed increased cost of terrestrial locomotion. There is also evidence consistent with increased muscular strength among australopiths in both the forelimb and hind limb, possibly reflecting metabolic trade-offs between muscle and brain development during hominin evolution. Together these findings imply significant differences in both locomotor behavior and ecology between australopiths and later Homo.
Collapse
Affiliation(s)
- Christopher B. Ruff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - M. Loring Burgess
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard A. Ketcham
- Department of Geological Sciences, The University of Texas Austin, Austin, Texas, United States of America
| | - John Kappelman
- Department of Geological Sciences, The University of Texas Austin, Austin, Texas, United States of America
- Department of Anthropology, The University of Texas Austin, Austin, Texas, United States of America
| |
Collapse
|
30
|
Homo floresiensis-like fossils from the early Middle Pleistocene of Flores. Nature 2016; 534:245-8. [DOI: 10.1038/nature17999] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/13/2016] [Indexed: 11/09/2022]
|
31
|
Mongle CS, Wallace IJ, Grine FE. Cross-sectional structural variation relative to midshaft along hominine diaphyses. II. The hind limb. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 158:398-407. [PMID: 26174045 DOI: 10.1002/ajpa.22802] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/28/2015] [Accepted: 06/12/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVES In comparative analyses of hominine hind limb diaphyseal structure, homologous cross sections are located according to half bone length (midshaft). Here, we address three questions. First, how accurately must midshaft be defined to yield comparable data? Second, does variation in midshaft location due to different ways of measuring length fall within error ranges such that data gathered using different metrics are comparable? Third, do error ranges and length metric effects differ between elements or taxa such that certain bones or species are more prone to issues of comparability? MATERIALS AND METHODS Femora and tibiae of Homo, Pan, and Gorilla were CT-scanned longitudinally and error ranges for multiple structural parameters (CSA, J, Imax /Imin ) were calculated around midshafts. RESULTS Distances proximally and distally from midshaft where structural values differ significantly from midshaft values vary between bones, species, and structural traits. Femoral error ranges are typically larger than tibial ranges. In the femur, error ranges are generally largest for chimpanzees and smallest for gorillas. A similar taxonomic pattern is not evident in the tibia. No structural trait consistently displays larger or smaller error ranges across both elements and all species. Variation in midshaft locations stemming from different length definitions is small and falls within observed error ranges defined by any one metric. DISCUSSION Incorporating fragmentary specimens (e.g., fossils) for which midshaft location is unknown in comparisons of diaphyseal structure necessitates evaluation on a case-by-case basis, with thought to element, taxon, and structural traits of interest. Midshaft data recorded from distinct length measurements are generally comparable.
Collapse
Affiliation(s)
- Carrie S Mongle
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, 11794
| | - Ian J Wallace
- Department of Anthropology, Stony Brook University, Stony Brook, NY, 11794
| | - Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY, 11794.,Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, 11794
| |
Collapse
|
32
|
Chevalier T, Özçelik K, de Lumley MA, Kösem B, de Lumley H, Yalçinkaya I, Taşkiran H. The endostructural pattern of a middle pleistocene human femoral diaphysis from the Karain E site (Southern Anatolia, Turkey). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 157:648-58. [DOI: 10.1002/ajpa.22762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/26/2015] [Accepted: 04/26/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Tony Chevalier
- Université de Perpignan Via Domitia, UMR7194/HNHP; Perpignan 66100 France
- Centre Européen de Recherches Préhistoriques/EPCC; Tautavel 66720 France
- Laboratoire Histoire Naturelle de l'Homme Préhistorique (HNHP), UMR7194, Département de Préhistoire du Muséum National d'Histoire Naturelle, Paris 75016; France
| | - Kadriye Özçelik
- Faculty of Letters; Department of Prehistory; University of Ankara; Sıhhıye Ankara 06100 Turkey
| | - Marie-Antoinette de Lumley
- Centre Européen de Recherches Préhistoriques/EPCC; Tautavel 66720 France
- Laboratoire Histoire Naturelle de l'Homme Préhistorique (HNHP), UMR7194, Département de Préhistoire du Muséum National d'Histoire Naturelle, Paris 75016; France
| | - Beray Kösem
- Faculty of Letters; Department of Prehistory; University of Ankara; Sıhhıye Ankara 06100 Turkey
| | - Henry de Lumley
- Centre Européen de Recherches Préhistoriques/EPCC; Tautavel 66720 France
- Institut De Paléontologie Humaine; Paris 75013 France
| | - Işin Yalçinkaya
- Faculty of Letters; Department of Prehistory; University of Ankara; Sıhhıye Ankara 06100 Turkey
| | - Harun Taşkiran
- Faculty of Letters; Department of Prehistory; University of Ankara; Sıhhıye Ankara 06100 Turkey
| |
Collapse
|
33
|
Ruff CB, Puymerail L, Macchiarelli R, Sipla J, Ciochon RL. Structure and composition of the Trinil femora: Functional and taxonomic implications. J Hum Evol 2015; 80:147-58. [DOI: 10.1016/j.jhevol.2014.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/24/2014] [Accepted: 12/29/2014] [Indexed: 10/24/2022]
|
34
|
Jashashvili T, Dowdeswell MR, Lebrun R, Carlson KJ. Cortical structure of hallucal metatarsals and locomotor adaptations in hominoids. PLoS One 2015; 10:e0117905. [PMID: 25635768 PMCID: PMC4311976 DOI: 10.1371/journal.pone.0117905] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/29/2014] [Indexed: 11/18/2022] Open
Abstract
Diaphyseal morphology of long bones, in part, reflects in vivo loads experienced during the lifetime of an individual. The first metatarsal, as a cornerstone structure of the foot, presumably expresses diaphyseal morphology that reflects loading history of the foot during stance phase of gait. Human feet differ substantially from those of other apes in terms of loading histories when comparing the path of the center of pressure during stance phase, which reflects different weight transfer mechanisms. Here we use a novel approach for quantifying continuous thickness and cross-sectional geometric properties of long bones in order to test explicit hypotheses about loading histories and diaphyseal structure of adult chimpanzee, gorilla, and human first metatarsals. For each hallucal metatarsal, 17 cross sections were extracted at regularly-spaced intervals (2.5% length) between 25% and 65% length. Cortical thickness in cross sections was measured in one degree radially-arranged increments, while second moments of area were measured about neutral axes also in one degree radially-arranged increments. Standardized thicknesses and second moments of area were visualized using false color maps, while penalized discriminant analyses were used to evaluate quantitative species differences. Humans systematically exhibit the thinnest diaphyseal cortices, yet the greatest diaphyseal rigidities, particularly in dorsoplantar regions. Shifts in orientation of maximum second moments of area along the diaphysis also distinguish human hallucal metatarsals from those of chimpanzees and gorillas. Diaphyseal structure reflects different loading regimes, often in predictable ways, with human versus non-human differences probably resulting both from the use of arboreal substrates by non-human apes and by differing spatial relationships between hallux position and orientation of the substrate reaction resultant during stance. The novel morphological approach employed in this study offers the potential for transformative insights into form-function relationships in additional long bones, including those of extinct organisms (e.g., fossils).
Collapse
Affiliation(s)
- Tea Jashashvili
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
- Department of Geology and Palaeontology, Georgian National Museum, Tbilisi, Georgia
- * E-mail:
| | - Mark R. Dowdeswell
- School of Statistics and Actuarial Science, University of the Witwatersrand, Wits, South Africa
| | - Renaud Lebrun
- Institut des Sciences de l’Evolution de Montpellier—UMR 5554, Montpellier, France
| | - Kristian J. Carlson
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
- Department of Anthropology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
35
|
|
36
|
Morimoto N, Ponce de León MS, Zollikofer CPE. Phenotypic variation in infants, not adults, reflects genotypic variation among chimpanzees and bonobos. PLoS One 2014; 9:e102074. [PMID: 25013970 PMCID: PMC4094530 DOI: 10.1371/journal.pone.0102074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/13/2014] [Indexed: 11/18/2022] Open
Abstract
Studies comparing phenotypic variation with neutral genetic variation in modern humans have shown that genetic drift is a main factor of evolutionary diversification among populations. The genetic population history of our closest living relatives, the chimpanzees and bonobos, is now equally well documented, but phenotypic variation among these taxa remains relatively unexplored, and phenotype-genotype correlations are not yet documented. Also, while the adult phenotype is typically used as a reference, it remains to be investigated how phenotype-genotye correlations change during development. Here we address these questions by analyzing phenotypic evolutionary and developmental diversification in the species and subspecies of the genus Pan. Our analyses focus on the morphology of the femoral diaphysis, which represents a functionally constrained element of the locomotor system. Results show that during infancy phenotypic distances between taxa are largely congruent with non-coding (neutral) genotypic distances. Later during ontogeny, however, phenotypic distances deviate from genotypic distances, mainly as an effect of heterochronic shifts between taxon-specific developmental programs. Early phenotypic differences between Pan taxa are thus likely brought about by genetic drift while late differences reflect taxon-specific adaptations.
Collapse
Affiliation(s)
- Naoki Morimoto
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto, Japan
- * E-mail: (NM); (CPEZ)
| | | | | |
Collapse
|