1
|
Foley RA, Mirazón Lahr M. Ghosts of extinct apes: genomic insights into African hominid evolution. Trends Ecol Evol 2024; 39:456-466. [PMID: 38302324 DOI: 10.1016/j.tree.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
We are accustomed to regular announcements of new hominin fossils. There are now some 6000 hominin fossils, and up to 31 species. However, where are the announcements of African ape fossils? The answer is that there are almost none. Our knowledge of African ape evolution is based entirely on genomic analyses, which show that extant diversity is very young. This contrasts with the extensive and deep diversity of hominins known from fossils. Does this difference point to low and late diversification of ape lineages, or high rates of extinction? The comparative evolutionary dynamics of African hominids are central to interpreting living ape adaptations, as well as understanding the patterns of hominin evolution and the nature of the last common ancestor.
Collapse
Affiliation(s)
- Robert A Foley
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, The Henry Wellcome Building, Fitzwilliam Street, Cambridge, CB2 1QH, UK.
| | - Marta Mirazón Lahr
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, The Henry Wellcome Building, Fitzwilliam Street, Cambridge, CB2 1QH, UK
| |
Collapse
|
2
|
Skov L, Peyrégne S, Popli D, Iasi LNM, Devièse T, Slon V, Zavala EI, Hajdinjak M, Sümer AP, Grote S, Bossoms Mesa A, López Herráez D, Nickel B, Nagel S, Richter J, Essel E, Gansauge M, Schmidt A, Korlević P, Comeskey D, Derevianko AP, Kharevich A, Markin SV, Talamo S, Douka K, Krajcarz MT, Roberts RG, Higham T, Viola B, Krivoshapkin AI, Kolobova KA, Kelso J, Meyer M, Pääbo S, Peter BM. Genetic insights into the social organization of Neanderthals. Nature 2022; 610:519-525. [PMID: 36261548 PMCID: PMC9581778 DOI: 10.1038/s41586-022-05283-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022]
Abstract
Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1-8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11-making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father-daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals' genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range.
Collapse
Affiliation(s)
- Laurits Skov
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Stéphane Peyrégne
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Divyaratan Popli
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Leonardo N M Iasi
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Thibaut Devièse
- European Centre for Research and Education in Environmental Geosciences (CEREGE), Aix-Marseille University, CNRS, IRD, INRAE, Collège de France, Aix-en-Provence, France
| | - Viviane Slon
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anatomy and Anthropology Sackler, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elena I Zavala
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- The Francis Crick Institute, London, UK
| | - Arev P Sümer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Steffi Grote
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alba Bossoms Mesa
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - David López Herráez
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sarah Nagel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julia Richter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elena Essel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Marie Gansauge
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anna Schmidt
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Petra Korlević
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Wellcome Sanger Institute, Hinxton, UK
| | - Daniel Comeskey
- Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, UK
| | - Anatoly P Derevianko
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Aliona Kharevich
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey V Markin
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Katerina Douka
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, Vienna, Austria
| | - Maciej T Krajcarz
- Institute of Geological Sciences, Polish Academy of Sciences, Warsaw, Poland
| | - Richard G Roberts
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia
| | - Thomas Higham
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, Vienna, Austria
| | - Bence Viola
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Andrey I Krivoshapkin
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Kseniya A Kolobova
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin M Peter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
3
|
Städele V, Arandjelovic M, Nixon S, Bergl RA, Bradley BJ, Breuer T, Cameron KN, Guschanski K, Head J, Kyungu JC, Masi S, Morgan DB, Reed P, Robbins MM, Sanz C, Smith V, Stokes EJ, Thalmann O, Todd A, Vigilant L. The complex Y-chromosomal history of gorillas. Am J Primatol 2022; 84:e23363. [PMID: 35041228 DOI: 10.1002/ajp.23363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/27/2021] [Accepted: 01/08/2022] [Indexed: 11/10/2022]
Abstract
Studies of the evolutionary relationships among gorilla populations using autosomal and mitochondrial sequences suggest that male-mediated gene flow may have been important in the past, but data on the Y-chromosomal relationships among the gorilla subspecies are limited. Here, we genotyped blood and noninvasively collected fecal samples from 12 captives and 257 wild male gorillas of known origin representing all four subspecies (Gorilla gorilla gorilla, G. g. diehli, G. beringei beringei, and G. b. graueri) at 10 Y-linked microsatellite loci resulting in 102 unique Y-haplotypes for 224 individuals. We found that western lowland gorilla (G. g. gorilla) haplotypes were consistently more diverse than any other subspecies for all measures of diversity and comprised several genetically distinct groups. However, these did not correspond to geographical proximity and some closely related haplotypes were found several hundred kilometers apart. Similarly, our broad sampling of eastern gorillas revealed that mountain (G. b. beringei) and Grauer's (G. b. graueri) gorilla Y-chromosomal haplotypes did not form distinct clusters. These observations suggest structure in the ancestral population with subsequent mixing of differentiated haplotypes by male dispersal for western lowland gorillas, and postisolation migration or incomplete lineage sorting due to short divergence times for eastern gorillas.
Collapse
Affiliation(s)
- Veronika Städele
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA.,Institute of Human Origins, Arizona State University, Tempe, Arizona, USA.,Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Evolutionary and Anthropocene Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Stuart Nixon
- Field Programmes and Conservation Science, Chester Zoo, North of England Zoological Society, Chester, UK
| | | | - Brenda J Bradley
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Thomas Breuer
- WWF Germany, Berlin, Germany.,Mbeli Bai Study, Wildlife Conservation Society, Congo Program, Brazzaville, Republic of the Congo
| | | | - Katerina Guschanski
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden.,Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Josephine Head
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Shelly Masi
- Eco-Anthropologie, Muséum National d'Histoire Naturelle, CNRS, Musée de l'Homme, Université de Paris, Paris, France
| | - David B Morgan
- Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Illinois, USA
| | | | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Crickette Sanz
- Department of Anthropology, Washington University in Saint Louis, Saint Louis, Missouri, USA.,Wildlife Conservation Society, Congo Program, Brazzaville, Republic of the Congo
| | | | - Emma J Stokes
- Wildlife Conservation Society, Global Conservation Program, New York City, New York, USA
| | - Olaf Thalmann
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
4
|
Sandel AA, Watts DP. Lethal Coalitionary Aggression Associated with a Community Fission in Chimpanzees ( Pan troglodytes) at Ngogo, Kibale National Park, Uganda. INT J PRIMATOL 2021; 42:26-48. [PMID: 34267410 DOI: 10.1007/s10764-020-00185-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many animals engage in aggression, but chimpanzees stand out in terms of fatal attacks against adults of their own species. Most lethal aggression occurs between groups, where coalitions of male chimpanzees occasionally kill members of neighboring communities that are strangers. However, the first observed cases of lethal violence in chimpanzees, which occurred at Gombe, Tanzania in the 1970s, involved chimpanzees that once knew each other. They followed the only observed case of a permanent community fission in chimpanzees. A second permanent fission recently transpired at Ngogo, Kibale National Park, Uganda. Members of a large western subgroup gradually ceased associating peacefully with the rest of the community and started behaving antagonistically toward them. Affiliation effectively ended by 2017. Here, we describe two subsequent lethal coalitionary attacks by chimpanzees of the new western community on males of the now separate central community, one in 2018 and the second in 2019. The first victim was a young adult male that never had strong social ties with his attackers. The second was a high-ranking male that had often associated with the western subgroup before 2017; he groomed regularly with males there and formed coalitions with several. Other central males present at the start of the second attack fled, and others nearby did not come to the scene. Several western females joined in the second attack; we suggest that female-female competition contributed to the fission. This event highlighted the limits on protection afforded by long-term familiarity and the constraints on costly cooperation among male chimpanzees.
Collapse
Affiliation(s)
- Aaron A Sandel
- Department of Anthropology, University of Texas at Austin, Austin, TX, USA
| | - David P Watts
- Department of Anthropology, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Kuang WM, Ming C, Li HP, Wu H, Frantz L, Roos C, Zhang YP, Zhang CL, Jia T, Yang JY, Yu L. The Origin and Population History of the Endangered Golden Snub-Nosed Monkey (Rhinopithecus roxellana). Mol Biol Evol 2019; 36:487-499. [PMID: 30481341 DOI: 10.1093/molbev/msy220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The origin and population history of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) remain largely unavailable and/or controversial. We here integrate analyses of multiple genomic markers, including mitochondrial (mt) genomes, Y-chromosomes, and autosomes of 54 golden monkey individuals from all three geographic populations (SG, QL, and SNJ). Our results reveal contrasting population structures. Mt analyses suggest a division of golden monkeys into five lineages: one in SNJ, two in SG, and two in QL. One of the SG lineages (a mixed SG/QL lineage) is basal to all other lineages. In contrast, autosomal analyses place SNJ as the most basal lineage and identify one QL and three SG lineages. Notably, Y-chromosome analyses bear features similar to mt analyses in placing the SG/QL-mixed lineage as the first diverging lineage and dividing SG into two lineages, while resembling autosomal analyses in identifying one QL lineage. We further find bidirectional gene flow among all three populations at autosomal loci, while asymmetric gene flow is suggested at mt genomes and Y-chromosomes. We propose that different population structures and gene flow scenarios are the result of sex-linked differences in the dispersal pattern of R. roxellana. Moreover, our demographic simulation analyses support an origin hypothesis suggesting that the ancestral R. roxellana population was once widespread and then divided into SNJ and non-SNJ (SG and QL) populations. This differs from previous mt-based "mono-origin (SG is the source population)" and "multiorigin (SG is a fusion of QL and SNJ)" hypotheses. We provide a detailed and refined scenario for the origin and population history of this endangered primate species, which has a broader significance for Chinese biogeography. In addition, this study highlights the importance to investigate multiple genomic markers with different modes of inheritance to trace the complete evolutionary history of a species, especially for those exhibiting differential or mixed patterns of sex dispersal.
Collapse
Affiliation(s)
- Wei-Min Kuang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Chen Ming
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hai-Peng Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Laurent Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kindom.,The Palaeogenomics and Bio-Archaeology Research Network, Department of Archaeology, University of Oxford, Oxford, United Kingdom
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Cheng-Lin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
6
|
|
7
|
Mitchell MW, Locatelli S, Abwe EE, Ghobrial L, Gonder MK. Male-Driven Differences in Chimpanzee (Pan troglodytes) Population Genetic Structure Across Three Habitats in Cameroon and Nigeria. INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0053-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
McCarthy MS, Lester JD, Langergraber KE, Stanford CB, Vigilant L. Genetic analysis suggests dispersal among chimpanzees in a fragmented forest landscape in Uganda. Am J Primatol 2018; 80:e22902. [PMID: 30052284 DOI: 10.1002/ajp.22902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/26/2018] [Accepted: 07/07/2018] [Indexed: 11/05/2022]
Abstract
Habitat fragmentation is a leading threat to global biodiversity. Dispersal plays a key role in gene flow and population viability, but the impact of fragmentation on dispersal patterns remains poorly understood. Among chimpanzees, males typically remain in their natal communities while females often disperse. However, habitat loss and fragmentation may cause severe ecological disruptions, potentially resulting in decreased fitness benefits of male philopatry and limited female dispersal ability. To investigate this issue, we genotyped nearly 900 non-invasively collected chimpanzee fecal samples across a fragmented forest habitat that may function as a corridor between two large continuous forests in Uganda, and used the spatial associations among co-sampled genotypes to attribute a total of 229 individuals to 10 distinct communities, including 9 communities in the corridor habitat and 1 in continuous forest. We then used parentage analyses to infer instances of between-community dispersal. Of the 115 parent-offspring dyads detected with confidence, members of 39% (N = 26) of mother-daughter dyads were found in different communities, while members of 10% (N = 5) of father-son dyads were found in different communities. We also found direct evidence for one dispersal event that occurred during the study period, as a female's sample found first in one community was found multiple times in another community 19 months later. These findings suggest that even in fragmented habitats, chimpanzee males remain in their natal communities while females tend to disperse. Corridor enhancement in unprotected forest fragments could help maintain gene flow in chimpanzees and other species amid anthropogenic pressures.
Collapse
Affiliation(s)
- Maureen S McCarthy
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jack D Lester
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona.,Institute of Human Origins, Arizona State University, Tempe, Arizona
| | - Craig B Stanford
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
| | - Linda Vigilant
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
9
|
Hagemann L, Boesch C, Robbins MM, Arandjelovic M, Deschner T, Lewis M, Froese G, Vigilant L. Long-term group membership and dynamics in a wild western lowland gorilla population (Gorilla gorilla gorilla) inferred using non-invasive genetics. Am J Primatol 2018; 80:e22898. [PMID: 30024040 DOI: 10.1002/ajp.22898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/22/2018] [Accepted: 07/01/2018] [Indexed: 01/07/2023]
Abstract
The social organization of a group-living animal is defined by a balance between group dynamic events such as group formation, group dissolution, and dispersal events and group stability in membership and over time. Understanding these processes, which are relevant for questions ranging from disease transmission patterns to the evolution of polygyny, requires long-term monitoring of multiple social units over time. Because all great ape species are long-lived and elusive, the number of studies on these key aspects of social organization are limited, especially for western lowland gorillas (Gorilla gorilla gorilla). In this study, we used non-invasive genetic samples collected within an approximately 100 km2 area of Loango National Park, Gabon to reconstruct group compositions and changes in composition over more than a decade. We identified 98 gorillas and 11 mixed sex groups sampled during 2014-2017. Using published data from 85 individuals and 12 groups surveyed between 2005 and 2009 at the same locality, we tracked groups and individuals back in time. The identification of 11 silverbacks via parentage analyses and the genetic tracking of 39 individuals across studies allowed us to infer six group formations, five group dissolutions, and 40 dispersal events within 12 years. We also observed four groups persisting across the sampling periods with a maximum inferred existence of nearly 17 years and exhibiting variation in membership stability. Our results highlight the variation in composition and stability among groups of western lowland gorillas and illustrate the power of non-invasive genetic sampling for long-term monitoring.
Collapse
Affiliation(s)
- Laura Hagemann
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christophe Boesch
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Martha M Robbins
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mimi Arandjelovic
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew Lewis
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Graden Froese
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Linda Vigilant
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
10
|
Rich AM, Wasserman MD, Deimel C, Breeden SK, Kaestle F, Hunt KD. Is genetic drift to blame for testicular dysgenesis syndrome in Semliki chimpanzees (Pan troglodytes schweinfurthii)? J Med Primatol 2018; 47:257-269. [PMID: 29799118 DOI: 10.1111/jmp.12352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND We present 3 likely cases of testicular dysgenesis syndrome (TDS) within a community of chimpanzees (Pan troglodytes schweinfurthii). We tested whether genetic drift may be the culprit, as a genetic cause has been suspected to account for TDS among other wildlife. METHODS We successfully sequenced a 367-bp segment spanning the first hypervariable region within the D-loop of the mitochondrial genome for 78 DNA samples. RESULTS We found 24 polymorphic sequence sites consisting of 7 singletons and 17 parsimony informative sites. This sample contained 9 haplotypes with a diversity index of 0.78 (SD = 0.03). All tests against the null hypothesis of neutral polymorphisms were non-significant (P > .10). The mismatch distribution of pairwise differences does not fit a Poisson's curve (raggedness index = 0.166; SSD = 0.12; P = 1). CONCLUSIONS Thus, we found no significant signs of genetic isolation, population expansion, or genetic bottleneck. Alternative causes of TDS and how they might pertain to this population are discussed.
Collapse
Affiliation(s)
- Alicia M Rich
- Department of Anthropology, Boston University, Boston, MA, USA
- Department of Anthropology, Indiana University, Bloomington, IN, USA
| | | | - Caroline Deimel
- Department of Anthropology, Indiana University, Bloomington, IN, USA
| | - Scott K Breeden
- Marian University College of Osteopathic Medicine, Indianapolis, IN, USA
| | - Frederika Kaestle
- Department of Anthropology, Indiana University, Bloomington, IN, USA
| | - Kevin D Hunt
- Department of Anthropology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
11
|
Strier KB. Primate social behavior. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:801-812. [DOI: 10.1002/ajpa.23369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Karen B. Strier
- Department of Anthropology; University of Wisconsin-Madison; Madison Wisconsin, 53706
| |
Collapse
|
12
|
Feldblum JT, Manfredi S, Gilby IC, Pusey AE. The timing and causes of a unique chimpanzee community fission preceding Gombe's "Four-Year War". AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:730-744. [PMID: 29566432 DOI: 10.1002/ajpa.23462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/23/2018] [Accepted: 03/04/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES While permanent group fissions are documented in humans and other primate species, they are relatively rare in male philopatric primates. One of the few apparent cases occurred in 1973 in Gombe National Park, Tanzania, when a community of chimpanzees split into two separate groups, preceding the famous "Four-Year War." We tested the hypothesis that the original group was a single cohesive community that experienced permanent fission, and investigated several potential catalysts. MATERIALS AND METHODS We calculated association, grooming, and ranging metrics from historical data and used community detection algorithms and matrix permutation tests to determine the timing, dynamics, and causes of changes in social network subgrouping structure. RESULTS We found that the two communities indeed split from one cohesive community, albeit one with incipient subgrouping. The degree of subgrouping in grooming and association networks increased sharply in 1971 and 1972, a period characterized by a dominance struggle between three high-ranking males and unusually high male:female sex ratios. Finally, we found a relationship between post-split community membership and previous association, grooming and ranging patterns in most periods of analysis, one that became more pronounced as the fission approached. DISCUSSION Our analysis suggests that the community began to split during a time of an unusually male-biased sex ratio and a protracted dominance struggle, and that adult males remained with those with whom they had preferentially associated prior to the split. We discuss the costs and benefits of group membership in chimpanzees and contrast these results with group fissions in humans and other taxa.
Collapse
Affiliation(s)
- Joseph T Feldblum
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, 27708
| | - Sofia Manfredi
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, 27708
| | - Ian C Gilby
- School of Human Evolution and Social Change, and Institute of Human Origins, Arizona State University, Tempe, Arizona, 85287
| | - Anne E Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, 27708
| |
Collapse
|
13
|
Hernandez-Rodriguez J, Arandjelovic M, Lester J, de Filippo C, Weihmann A, Meyer M, Angedakin S, Casals F, Navarro A, Vigilant L, Kühl HS, Langergraber K, Boesch C, Hughes D, Marques-Bonet T. The impact of endogenous content, replicates and pooling on genome capture from faecal samples. Mol Ecol Resour 2017; 18:319-333. [PMID: 29058768 PMCID: PMC5900898 DOI: 10.1111/1755-0998.12728] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/06/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
Abstract
Target-capture approach has improved over the past years, proving to be very efficient tool for selectively sequencing genetic regions of interest. These methods have also allowed the use of noninvasive samples such as faeces (characterized by their low quantity and quality of endogenous DNA) to be used in conservation genomic, evolution and population genetic studies. Here we aim to test different protocols and strategies for exome capture using the Roche SeqCap EZ Developer kit (57.5 Mb). First, we captured a complex pool of DNA libraries. Second, we assessed the influence of using more than one faecal sample, extract and/or library from the same individual, to evaluate its effect on the molecular complexity of the experiment. We validated our experiments with 18 chimpanzee faecal samples collected from two field sites as a part of the Pan African Programme: The Cultured Chimpanzee. Those two field sites are in Kibale National Park, Uganda (N = 9) and Loango National Park, Gabon (N = 9). We demonstrate that at least 16 libraries can be pooled, target enriched through hybridization, and sequenced allowing for the genotyping of 951,949 exome markers for population genetic analyses. Further, we observe that molecule richness, and thus, data acquisition, increase when using multiple libraries from the same extract or multiple extracts from the same sample. Finally, repeated captures significantly decrease the proportion of off-target reads from 34.15% after one capture round to 7.83% after two capture rounds, supporting our conclusion that two rounds of target enrichment are advisable when using complex faecal samples.
Collapse
Affiliation(s)
- Jessica Hernandez-Rodriguez
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Barcelona, Spain
| | - Mimi Arandjelovic
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jack Lester
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cesare de Filippo
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Antje Weihmann
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Samuel Angedakin
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ferran Casals
- Genomics Core Facility, Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Arcadi Navarro
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Barcelona, Spain.,Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Linda Vigilant
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hjalmar S Kühl
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Leipzig, Germany
| | - Kevin Langergraber
- School of Human Evolution & Social Change, Arizona State University, Tempe, AZ, USA
| | - Christophe Boesch
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - David Hughes
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Barcelona, Spain.,MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tomas Marques-Bonet
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Barcelona, Spain.,Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
14
|
Haslam M, Hernandez-Aguilar RA, Proffitt T, Arroyo A, Falótico T, Fragaszy D, Gumert M, Harris JWK, Huffman MA, Kalan AK, Malaivijitnond S, Matsuzawa T, McGrew W, Ottoni EB, Pascual-Garrido A, Piel A, Pruetz J, Schuppli C, Stewart F, Tan A, Visalberghi E, Luncz LV. Primate archaeology evolves. Nat Ecol Evol 2017; 1:1431-1437. [DOI: 10.1038/s41559-017-0286-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/19/2017] [Indexed: 11/09/2022]
|
15
|
Group augmentation, collective action, and territorial boundary patrols by male chimpanzees. Proc Natl Acad Sci U S A 2017. [PMID: 28630310 DOI: 10.1073/pnas.1701582114] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How can collective action evolve when individuals benefit from cooperation regardless of whether they pay its participation costs? According to one influential perspective, collective action problems are common, especially when groups are large, but may be solved when individuals who have more to gain from the collective good or can produce it at low costs provide it to others as a byproduct. Several results from a 20-y study of one of the most striking examples of collective action in nonhuman animals, territorial boundary patrolling by male chimpanzees, are consistent with these ideas. Individuals were more likely to patrol when (i) they had more to gain because they had many offspring in the group; (ii) they incurred relatively low costs because of their high dominance rank and superior physical condition; and (iii) the group size was relatively small. However, several other findings were better explained by group augmentation theory, which proposes that individuals should bear the short-term costs of collective action even when they have little to gain immediately if such action leads to increases in group size and long-term increases in reproductive success. In support of this theory, (i) individual patrolling effort was higher and less variable than participation in intergroup aggression in other primate species; (ii) males often patrolled when they had no offspring or maternal relatives in the group; and (iii) the aggregate patrolling effort of the group did not decrease with group size. We propose that group augmentation theory deserves more consideration in research on collective action.
Collapse
|
16
|
Abstract
The great apes (orangutans, gorillas, chimpanzees, bonobos and humans) descended from a common ancestor around 13 million years ago, and since then their sex chromosomes have followed very different evolutionary paths. While great-ape X chromosomes are highly conserved, their Y chromosomes, reflecting the general lability and degeneration of this male-specific part of the genome since its early mammalian origin, have evolved rapidly both between and within species. Understanding great-ape Y chromosome structure, gene content and diversity would provide a valuable evolutionary context for the human Y, and would also illuminate sex-biased behaviours, and the effects of the evolutionary pressures exerted by different mating strategies on this male-specific part of the genome. High-quality Y-chromosome sequences are available for human and chimpanzee (and low-quality for gorilla). The chromosomes differ in size, sequence organisation and content, and while retaining a relatively stable set of ancestral single-copy genes, show considerable variation in content and copy number of ampliconic multi-copy genes. Studies of Y-chromosome diversity in other great apes are relatively undeveloped compared to those in humans, but have nevertheless provided insights into speciation, dispersal, and mating patterns. Future studies, including data from larger sample sizes of wild-born and geographically well-defined individuals, and full Y-chromosome sequences from bonobos, gorillas and orangutans, promise to further our understanding of population histories, male-biased behaviours, mutation processes, and the functions of Y-chromosomal genes.
Collapse
|
17
|
Hallast P, Maisano Delser P, Batini C, Zadik D, Rocchi M, Schempp W, Tyler-Smith C, Jobling MA. Great ape Y Chromosome and mitochondrial DNA phylogenies reflect subspecies structure and patterns of mating and dispersal. Genome Res 2016; 26:427-39. [PMID: 26883546 PMCID: PMC4817767 DOI: 10.1101/gr.198754.115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/25/2016] [Indexed: 12/30/2022]
Abstract
The distribution of genetic diversity in great ape species is likely to have been affected by patterns of dispersal and mating. This has previously been investigated by sequencing autosomal and mitochondrial DNA (mtDNA), but large-scale sequence analysis of the male-specific region of the Y Chromosome (MSY) has not yet been undertaken. Here, we use the human MSY reference sequence as a basis for sequence capture and read mapping in 19 great ape males, combining the data with sequences extracted from the published whole genomes of 24 additional males to yield a total sample of 19 chimpanzees, four bonobos, 14 gorillas, and six orangutans, in which interpretable MSY sequence ranges from 2.61 to 3.80 Mb. This analysis reveals thousands of novel MSY variants and defines unbiased phylogenies. We compare these with mtDNA-based trees in the same individuals, estimating time-to-most-recent common ancestor (TMRCA) for key nodes in both cases. The two loci show high topological concordance and are consistent with accepted (sub)species definitions, but time depths differ enormously between loci and (sub)species, likely reflecting different dispersal and mating patterns. Gorillas and chimpanzees/bonobos present generally low and high MSY diversity, respectively, reflecting polygyny versus multimale–multifemale mating. However, particularly marked differences exist among chimpanzee subspecies: The western chimpanzee MSY phylogeny has a TMRCA of only 13.2 (10.8–15.8) thousand years, but that for central chimpanzees exceeds 1 million years. Cross-species comparison within a single MSY phylogeny emphasizes the low human diversity, and reveals species-specific branch length variation that may reflect differences in long-term generation times.
Collapse
Affiliation(s)
- Pille Hallast
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom; Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | | | - Chiara Batini
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Daniel Zadik
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mariano Rocchi
- Department of Biology, University of Bari, 70124 Bari, Italy
| | - Werner Schempp
- Institute of Human Genetics, University of Freiburg, 79106 Freiburg, Germany
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Mark A Jobling
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
18
|
McCarthy MS, Lester JD, Howe EJ, Arandjelovic M, Stanford CB, Vigilant L. Genetic censusing identifies an unexpectedly sizeable population of an endangered large mammal in a fragmented forest landscape. BMC Ecol 2015; 15:21. [PMID: 26303656 PMCID: PMC4549125 DOI: 10.1186/s12898-015-0052-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/15/2015] [Indexed: 12/02/2022] Open
Abstract
Background As habitat degradation and fragmentation continue to impact wildlife populations around the world, it is critical to understand the behavioral flexibility of species in these environments. In Uganda, the mostly unprotected forest fragment landscape between the Budongo and Bugoma Forests is a potential corridor for chimpanzees, yet little is known about the status of chimpanzee populations in these fragments. Results From 2011 through 2013, we noninvasively collected 865 chimpanzee fecal samples across 633 km2 and successfully genotyped 662 (77%) at up to 14 microsatellite loci. These genotypes corresponded to 182 chimpanzees, with a mean of 3.5 captures per individual. We obtained population size estimates of 256 (95% confidence interval 246–321) and 319 (288–357) chimpanzees using capture-with-replacement and spatially explicit capture–recapture models, respectively. The spatial clustering of associated genotypes suggests the presence of at least nine communities containing a minimum of 8–33 individuals each. Putative community distributions defined by the locations of associated genotypes correspond well with the distribution of 14 Y-chromosome haplotypes. Conclusions These census figures are more than three times greater than a previous estimate based on an extrapolation from small-scale nest count surveys that tend to underestimate population size. The distribution of genotype clusters and Y-chromosome haplotypes together indicate the presence of numerous male philopatric chimpanzee communities throughout the corridor habitat. Our findings demonstrate that, despite extensive habitat loss and fragmentation, chimpanzees remain widely distributed and exhibit distinct community home ranges. Our results further imply that elusive and rare species may adapt to degraded habitats more successfully than previously believed. Their long-term persistence is unlikely, however, if protection is not afforded to them and habitat loss continues unabated. Electronic supplementary material The online version of this article (doi:10.1186/s12898-015-0052-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maureen S McCarthy
- Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 107, Los Angeles, CA, 90089-0371, USA. .,Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
| | - Jack D Lester
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
| | - Eric J Howe
- Centre for Research into Ecological and Environmental Modelling, The Observatory, Buchanan Gardens, University of St Andrews, Fife, KY16 9LZ, UK.
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
| | - Craig B Stanford
- Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 107, Los Angeles, CA, 90089-0371, USA.
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
| |
Collapse
|
19
|
Basabose AK, Inoue E, Kamungu S, Murhabale B, Akomo-Okoue EF, Yamagiwa J. Estimation of chimpanzee community size and genetic diversity in Kahuzi-Biega National Park, Democratic Republic of Congo. Am J Primatol 2015; 77:1015-1025. [PMID: 26118671 DOI: 10.1002/ajp.22435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 05/17/2015] [Accepted: 05/21/2015] [Indexed: 11/11/2022]
Abstract
A small chimpanzee habitat in the montane forest of Kahuzi-Biega National Park, Democratic Republic of Congo, is connected with the lowland forest of this park through a corridor, which is affected by human encroachment. To assess the conservation status of the chimpanzee population in this small habitat, we estimated the size of the community and evaluated its genetic diversity by using 279 fecal samples collected in the montane forest of Kahuzi. Using autosomal microsatellite (or short tandem repeat, STR) loci, we identified 32 individuals, comprising 19 females and 13 males. Samples from 24 individuals were collected at least twice and a genetic mark-recapture analysis estimated that the community size was 36 (range: 32-42). Data on nest site sharing confirmed that all the samples belonged to the same community. Nest site sharing information may be useful in population studies of unhabituated chimpanzees. The genetic structure and diversity of the 32 genotyped individuals was assessed using Y-chromosomal short tandem repeat (Y-STR) loci and mitochondrial D-loops. One dominant Y-STR haplotype was found, whereas there was no dominant haplotype in the mitochondrial region, reflecting a female-biased dispersal pattern, which is typical of chimpanzees. The genetic diversity for three markers in Kahuzi chimpanzees was comparable to that in other eastern chimpanzee populations. A relatively high heterozygosity and negative inbreeding coefficient (FIS ) for STR loci suggests that the study community belongs to an outbreeding chimpanzee population. These findings suggest that individuals of the study community may have reproductive contact with other chimpanzee individuals from neighboring communities in Kahuzi-Biega National Park, at least in the recent past. Am. J. Primatol. 77:1015-1025, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Augustin K Basabose
- Laboratoire de Primatologie, Centre de Recherche en Science Naturelles de Lwiro, Democratic Republic of Congo
| | - Eiji Inoue
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Sebulimbwa Kamungu
- Laboratoire de Primatologie, Centre de Recherche en Science Naturelles de Lwiro, Democratic Republic of Congo
| | - Bertin Murhabale
- Laboratoire de Primatologie, Centre de Recherche en Science Naturelles de Lwiro, Democratic Republic of Congo
| | | | | |
Collapse
|
20
|
Genetic Analyses Suggest Male Philopatry and Territoriality in Savanna-Woodland Chimpanzees (Pan troglodytes schweinfurthii) of Ugalla, Tanzania. INT J PRIMATOL 2015. [DOI: 10.1007/s10764-015-9830-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Evolutionary biology: Dating chimpanzees. Nature 2014; 508:322-3. [PMID: 24740060 DOI: 10.1038/508322a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|