1
|
Friedl L, Claxton AG, Walker CS, Churchill SE, Holliday TW, Hawks J, Berger LR, DeSilva JM, Marchi D. Femoral neck and shaft structure in Homo naledi from the Dinaledi Chamber (Rising Star System, South Africa). J Hum Evol 2019; 133:61-77. [PMID: 31358184 DOI: 10.1016/j.jhevol.2019.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 01/27/2023]
Abstract
The abundant femoral assemblage of Homo naledi found in the Dinaledi Chamber provides a unique opportunity to test hypotheses regarding the taxonomy, locomotion, and loading patterns of this species. Here we describe neck and shaft cross-sectional structure of all the femoral fossils recovered in the Dinaledi Chamber and compare them to a broad sample of fossil hominins, recent humans, and extant apes. Cross-sectional geometric (CSG) properties from the femoral neck (base of neck and midneck) and diaphysis (subtrochanteric region and midshaft) were obtained through CT scans for H. naledi and through CT scans or from the literature for the comparative sample. The comparison of CSG properties of H. naledi and the comparative samples shows that H. naledi femoral neck is quite derived with low superoinferior cortical thickness ratio and high relative cortical area. The neck appears superoinferiorly elongated because of two bony pilasters on its superior surface. Homo naledi femoral shaft shows a relatively thick cortex compared to the other hominins. The subtrochanteric region of the diaphysis is mediolaterally elongated resembling early hominins while the midshaft is anteroposteriorly elongated, indicating high mobility levels. In term of diaphyseal robusticity, the H. naledi femur is more gracile that other hominins and most apes. Homo naledi shows a unique combination of characteristics in its femur that undoubtedly indicate a species committed to terrestrial bipedalism but with a unique loading pattern of the femur possibly consequence of the unique postcranial anatomy of the species.
Collapse
Affiliation(s)
- Lukas Friedl
- Department of Anthropology, University of West Bohemia, Plzeň, Czech Republic
| | - Alex G Claxton
- Department of Anthropology, Dartmouth College, 409 Silsby, HB 6047, Hanover, USA
| | - Christopher S Walker
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa; Department of Evolutionary Anthropology, Duke University, 04 Bio Sci Bldg, Durham, NC, 27708, USA
| | - Steven E Churchill
- Department of Evolutionary Anthropology, Duke University, 04 Bio Sci Bldg, Durham, NC, 27708, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Trenton W Holliday
- Department of Anthropology, Tulane University, 417 Dinwiddie Hall, New Orleans, LA, 70118, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - John Hawks
- Department of Anthropology, University of Wisconsin, 5325 Sewell Social Science Building, Madison, WI, 53706, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Lee R Berger
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Jeremy M DeSilva
- Department of Anthropology, Dartmouth College, 409 Silsby, HB 6047, Hanover, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Damiano Marchi
- Department of Biology, University of Pisa, vis Derna 1, Pisa, 56126, Italy; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa.
| |
Collapse
|
2
|
Lague MR, Chirchir H, Green DJ, Mbua E, Harris JWK, Braun DR, Griffin NL, Richmond BG. Cross-sectional properties of the humeral diaphysis of Paranthropus boisei: Implications for upper limb function. J Hum Evol 2018; 126:51-70. [PMID: 30583844 DOI: 10.1016/j.jhevol.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022]
Abstract
A ∼1.52 Ma adult upper limb skeleton of Paranthropus boisei (KNM-ER 47000) recovered from the Koobi Fora Formation, Kenya (FwJj14E, Area 1A) includes most of the distal half of a right humerus (designated KNM-ER 47000B). Natural transverse fractures through the diaphysis of KNM-ER 470000B provide unobstructed views of cortical bone at two sections typically used for analyzing cross-sectional properties of hominids (i.e., 35% and 50% of humerus length from the distal end). Here we assess cross-sectional properties of KNM-ER 47000B and two other P. boisei humeri (OH 80-10, KNM-ER 739). Cross-sectional properties for P. boisei associated with bending/torsional strength (section moduli) and relative cortical thickness (%CA; percent cortical area) are compared to those reported for nonhuman hominids, AL 288-1 (Australopithecus afarensis), and multiple species of fossil and modern Homo. Polar section moduli (Zp) are assessed relative to a mechanically relevant measure of body size (i.e., the product of mass [M] and humerus length [HL]). At both diaphyseal sections, P. boisei exhibits %CA that is high among extant hominids (both human and nonhuman) and similar to that observed among specimens of Pleistocene Homo. High values for Zp relative to size (M × HL) indicate that P. boisei had humeral bending strength greater than that of modern humans and Neanderthals and similar to that of great apes, A. afarensis, and Homo habilis. Such high humeral strength is consistent with other skeletal features of P. boisei (reviewed here) that suggest routine use of powerful upper limbs for arboreal climbing.
Collapse
Affiliation(s)
- Michael R Lague
- School of Natural Sciences and Mathematics, Stockton University, 101 Vera King Farris Drive, Galloway, NJ 08205, USA.
| | - Habiba Chirchir
- Department of Biological Sciences, Marshall University, USA; Human Origins Program, National Museum of Natural History, Smithsonian Institution, USA
| | - David J Green
- Department of Anatomy, Campbell University School of Osteopathic Medicine, USA; Department of Anatomy, Midwestern University, USA
| | - Emma Mbua
- Department of Biological Sciences, Mount Kenya University, Kenya
| | | | - David R Braun
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, USA; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Germany
| | - Nicole L Griffin
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, USA
| | - Brian G Richmond
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Germany; Division of Anthropology, American Museum of Natural History, USA
| |
Collapse
|
4
|
Ibáñez-Gimeno P, Manyosa J, Galtés I, Jordana X, Moyà-Solà S, Malgosa A. Forearm pronation efficiency in A.L. 288-1 (Australopithecus afarensis) and MH2 (Australopithecus sediba): Insights into their locomotor and manipulative habits. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:788-800. [PMID: 28949001 DOI: 10.1002/ajpa.23319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/13/2017] [Accepted: 09/10/2017] [Indexed: 11/12/2022]
Abstract
OBJECTIVES The locomotor and manipulative abilities of australopithecines are highly debated in the paleoanthropological context. Australopithecus afarensis and Australopithecus sediba likely engaged in arboreal locomotion and, especially the latter, in certain activities implying manipulation. Nevertheless, their degree of arboreality and the relevance of their manipulative skills remain unclear. Here we calculate the pronation efficiency of the forearm (Erot ) in these taxa to explore their arboreal and manipulative capabilities using a biomechanical approach. MATERIALS AND METHODS Three-dimensional humeral images and upper limb measurements of A.L. 288-1 (Au. afarensis) and MH2 (Au. sediba) were used to calculate Erot using a previously described biomechanical model. RESULTS Maximal Erot in elbow flexion occurs in a rather supinated position of the forearm in Au. afarensis, similarly to Pan troglodytes. In elbow extension, maximal Erot in this fossil taxon occurs in the same forearm position as in Pongo spp. In Au. sediba the forearm positions where Erot is maximal are largely coincident with those for Hylobatidae. CONCLUSIONS The pattern in Au. afarensis suggests relevant arboreal capabilities, which would include vertical climbing, although it is suggestive of poorer manipulative skills than in modern humans. The similarity between Au. sediba and Hylobatidae is difficult to interpret, but the differences between Au. sediba and Au. afarensis suggest that the capacity to rotate the forearm followed different evolutionary processes in these australopithecine species. Although functional inferences from the upper limb are complex, the observed differences between both taxa point to the existence of two distinct anatomical models.
Collapse
Affiliation(s)
- Pere Ibáñez-Gimeno
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra Barcelona, Catalonia 08193, Spain.,PAVE Research Group, Department of Archaeology and Anthropology, University of Cambridge, Pembroke Street, Cambridge, CB2 3DX, United Kingdom.,McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, United Kingdom
| | - Joan Manyosa
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Bellaterra Barcelona, Catalonia 08193, Spain
| | - Ignasi Galtés
- Unitat d'Antropologia Forense, Institut de Medicina Legal de Catalunya, Ciutat de la Justícia, Gran Via de les Corts Catalanes 111, Edifici G, Barcelona, Catalonia 08075, Spain.,Unitat de Medicina Legal i Forense, Departament de Psiquiatria i de Medicina Legal, Universitat Autònoma de Barcelona, Bellaterra Barcelona, Catalonia 08193, Spain
| | - Xavier Jordana
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra Barcelona, Catalonia 08193, Spain.,Institut Català de Paleontologia Miquel Crusafont (ICP), Universitat Autònoma de Barcelona, Bellaterra Barcelona, Catalonia 08193, Spain
| | - Salvador Moyà-Solà
- ICREA at Institut Català de Paleontologia Miquel Crusafont (ICP), Universitat Autònoma de Barcelona, Bellaterra Barcelona, Catalonia 08193, Spain
| | - Assumpció Malgosa
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra Barcelona, Catalonia 08193, Spain
| |
Collapse
|