1
|
Khanal L, Li X, Subba A, Ulak S, Kyes RC, Jiang XL. Phylogeography of the Sinica Group of Macaques in the Himalayas: Taxonomic and Evolutionary Implications. BIOLOGY 2024; 13:795. [PMID: 39452104 PMCID: PMC11504220 DOI: 10.3390/biology13100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
Owing to the taxonomic incongruence between the morphological features and genetic relationships of the sinica group of macaques (genus Macaca), the taxonomy of this macaque group has remained inconclusive. We aimed to resolve the taxonomic quandary and improve our understanding of the historical biogeography of the group by including macaque DNA samples from previously unsampled areas in the Himalayas. We sequenced and analyzed three mitochondrial DNA loci [cytochrome b (CYTB), cytochrome oxidase subunit 1 (COI) and D-loop; 2898 bp] for sequence polymorphism, phylogenetics, species delimitation, and ancestral area reconstruction. We confirmed the occurrence of Arunachal macaque (Macaca munzala) on the southern slopes of the Eastern Himalayas in the Xizang Zizhiqu (Tibet Autonomous Region) of China. The results revealed that the sinica group of macaques is a parapatric species group composed of seven distinct species. Phylogenetic and species delimitation analyses revealed that the two previously considered subspecies of Assamese macaques (the eastern subspecies M. assamensis assamensis and the western subspecies M. a. pelops) are two distinct species. The eastern Assamese macaque is a sister species to the Tibetan macaque, whereas the western Assamese macaque and Arunachal macaque are the closest genetic sister species. The sinica group of macaques underwent five vicariance and seven dispersal radiations in the past, which mainly coincided with the Quaternary climatic oscillations between the late Pliocene and the late Pleistocene. By integrating our phylogenetic and ancestral area reconstruction results with findings from previous paleontological and molecular studies, we propose a robust hypothesis about the phylogeography of the sinica group of macaques.
Collapse
Affiliation(s)
- Laxman Khanal
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu 44618, Nepal; (A.S.); (S.U.)
| | - Xueyou Li
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China;
| | - Asmit Subba
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu 44618, Nepal; (A.S.); (S.U.)
| | - Sapana Ulak
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu 44618, Nepal; (A.S.); (S.U.)
| | - Randall C. Kyes
- Departments of Psychology, Global Health, and Anthropology, Center for Global Field Study, and Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA;
| | - Xue-Long Jiang
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China;
| |
Collapse
|
2
|
Zhou Y, Tian J, Jiang H, Han M, Wang Y, Lu J. Phylogeography and demographic history of macaques, fascicularis species group, in East Asia: Inferred from multiple genomic markers. Mol Phylogenet Evol 2024; 194:108042. [PMID: 38401812 DOI: 10.1016/j.ympev.2024.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Climate changes at larger scales have influenced dispersal and range shifts of many taxa in East Asia. The fascicularis species group of macaques is composed of four species and is widely distributed in Southeast and East Asia. However, its phylogeography and demographic histories are currently poorly understood. Herein, we assembled autosomal, mitogenome, and Y-chromosome data for 106 individuals, and combined them with 174 mtDNA dloop haplotypes of this species group, with particular focus on the demographic histories and dispersal routes of Macaca fuscata, M. cyclopis, and M. mulatta. The results showed: (1) three monophyletic clades for M. fuscata, M. cyclopis, and M. mulatta based on the multiple genomics analyses; (2) the disparate demographic trajectories of the three species after their split ∼1.0 Ma revealed that M. cyclopis and M. fuscata were derived from an ancestral M. mulatta population; (3) the speciation time of M. cyclopis was later than that of M. fuscata, and their divergence time occurred at the beginning of "Ryukyu Coral Sea Stage" (1.0-0.2 Ma) when the East China Sea land bridge was completely submerged by the sea level rose; and (4) the three parallel rivers (Nujiang, Lancangjiang, and Jinshajiang) of Southwestern China divided M. mulatta into Indian and Chinese genetic populations ∼200 kya. These results shed light on understanding not only the evolutionary history of the fascicularis species group but also the formation mechanism of faunal diversity in East Asia during the Pleistocene.
Collapse
Affiliation(s)
- Yanyan Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Jundong Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Haijun Jiang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Mengya Han
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuwei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Jiqi Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Cho Y, Seo CW, Jung PE, Lim YW. Global phylogeographical distribution of Gloeoporus dichrous. PLoS One 2023; 18:e0288498. [PMID: 37440580 DOI: 10.1371/journal.pone.0288498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Phylogeographic analyses are efficient in ecological and evolutionary studies to discover the origin of a lineage, its dispersal routes, and the divergence of ancestral traits. Studies on widespread wood-decay fungi have revealed the phylogenetic division of several polypores based on geographical distribution. In this study, specimens of Gloeoporus dichrous, a cosmopolitan polypore species, were collected globally and analyzed for their geographic distribution. Multi-marker Bayesian molecular clock and haplotype analyses revealed a clear division of G. dichrous populations by continent. The species diverged from its neighboring clades 10.3 (16.0-5.6) million years ago, with Asian and North American populations at the center of divergence. Possible dispersal mechanisms and pathways are predicted and discussed based on the evaluated transfer routes. The biogeography of G. dichrous analyzed in this study represents a fraction of the polypore evolution and may advance the understanding of the overall evolution of wood-decay fungi.
Collapse
Affiliation(s)
- Yoonhee Cho
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Chang Wan Seo
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Paul Eunil Jung
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Pigs as Pets: Early Human Relations with the Sulawesi Warty Pig ( Sus celebensis). Animals (Basel) 2022; 13:ani13010048. [PMID: 36611658 PMCID: PMC9817959 DOI: 10.3390/ani13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
The Sulawesi warty pig (S. celebensis) is a wild and still-extant suid that is endemic to the Indonesian island of Sulawesi. It has long been theorised that S. celebensis was domesticated and/or deliberately introduced to other islands in Indonesia prior to the advent of the Neolithic farming transition in the region. Thus far, however, there has been no empirical support for this idea, nor have scientists critiqued the argument that S. celebensis was a pre-Neolithic domesticate in detail. Here, it is proposed that early foragers could have formed a relationship with S. celebensis that was similar in essence to the close association between Late Pleistocene foragers in Eurasia and the wild wolf ancestors of domestic dogs. That is, a longstanding practice of hunter-gatherers intensively socialising wild-caught S. celebensis piglets for adoption into human society as companion animals ('pets') may have altered the predator-prey dynamic, brought aspects of wild pig behaviour and reproduction under indirect human selection and control, and caused changes that differentiated human-associated pigs from their solely wild-living counterparts.
Collapse
|
5
|
McCullough JM, Oliveros C, Benz BW, Zenil-Ferguson R, Cracraft J, Moyle RG, Andersen MJ. Wallacean and Melanesian Islands Promote Higher Rates of Diversification within the Global Passerine radiation Corvides. Syst Biol 2022; 71:1423-1439. [PMID: 35703981 DOI: 10.1093/sysbio/syac044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022] Open
Abstract
The complex island archipelagoes of Wallacea and Melanesia have provided empirical data behind integral theories in evolutionary biology, including allopatric speciation and island biogeography. Yet, questions regarding the relative impact of the layered biogeographic barriers, such as deep-water trenches and isolated island systems, on faunal diversification remain underexplored. One such barrier is Wallace's Line, a significant biogeographic boundary that largely separates Australian and Asian biodiversity. To assess the relative roles of biogeographic barriers-specifically isolated island systems and Wallace's Line-we investigated the tempo and mode of diversification in a diverse avian radiation, Corvides (Crows and Jays, Birds-of-paradise, Vangas, and allies). We combined a genus-level dataset of thousands of ultraconserved elements (UCEs) and a species-level, 12-gene Sanger sequence matrix to produce a well-resolved supermatrix tree that we leveraged to explore the group's historical biogeography and effects of biogeographic barriers on their macroevolutionary dynamics. The tree is well-resolved and differs substantially from what has been used extensively for past comparative analyses within this group. We confirmed that Corvides, and its major constituent clades, arose in Australia and that a burst of dispersals west across Wallace's Line occurred after the uplift of Wallacea during the mid-Miocene. We found that dispersal across this biogeographic barrier were generally rare, though westward dispersals were two times more frequent than eastward dispersals. Wallacea's central position between Sundaland and Sahul no doubt acted as a bridge for island-hopping dispersal out of Australia, across Wallace's Line, to colonize the rest of Earth. In addition, we found that the complex island archipelagoes east of Wallace's Line harbor the highest rates of net diversification and are a substantial source of colonists to continental systems on both sides of this biogeographic barrier. Our results support emerging evidence that island systems, particularly the geologically complex archipelagoes of the Indo-pacific, are drivers of species diversification.
Collapse
Affiliation(s)
- Jenna M McCullough
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Carl Oliveros
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - Brett W Benz
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Joel Cracraft
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| | - Robert G Moyle
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
6
|
Yan X, Terai Y, Widayati KA, Itoigawa A, Purba LHPS, Fahri F, Suryobroto B, Imai H. Functional divergence of the pigmentation gene melanocortin-1 receptor (MC1R) in six endemic Macaca species on Sulawesi Island. Sci Rep 2022; 12:7593. [PMID: 35534524 PMCID: PMC9085793 DOI: 10.1038/s41598-022-11681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
Coat color is often highly variable within and between animal taxa. Among hundreds of pigmentation-related genes, melanocortin-1 receptor (MC1R) plays key roles in regulating the synthesis of the dark eumelanin and the red-yellow pheomelanin. The six species of macaques that inhabit Sulawesi Island diverged rapidly from their common ancestor, M. nemestrina. Unlike most macaques, Sulawesi macaques commonly have a dark coat color, with divergence in shade and color pattern. To clarify the genetic and evolutionary basis for coat color in Sulawesi macaques, we investigated the MC1R sequences and functional properties, including basal cAMP production and α-MSH-induced activity in vitro. We found fixed non-synonymous substitutions in MC1R in each species. Furthermore, we found that six species-specific variants corresponded with variation in agonist-induced and basal activity of MC1R. Inconsistent with the dark coat color, four substitutions independently caused decreases in the basal activity of MC1R in M. hecki, M. nigra, M. tonkeana, and M. ochreata. Selective analysis suggested MC1R of M. nigra and M. nigrescens underwent purifying selection. Overall, our results suggest that fixed differences in MC1R resulted in different functional characteristics and might contribute to divergence in color among the six Sulawesi macaque species.
Collapse
Affiliation(s)
- Xiaochan Yan
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Yohey Terai
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, Hayama, Japan
| | | | - Akihiro Itoigawa
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | | | - Fahri Fahri
- Department of Biology, Tadulako University, Palu, Indonesia
| | | | - Hiroo Imai
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan.
| |
Collapse
|
7
|
Reid MJC, Switzer WM, Alonso SK, Lowenberger CA, Schillaci MA. Evolutionary history of orangutan plasmodia revealed by phylogenetic analysis of complete mtDNA genomes and new biogeographical divergence dating calibration models. Am J Primatol 2022; 84:e23298. [PMID: 34227139 PMCID: PMC11318573 DOI: 10.1002/ajp.23298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/30/2021] [Accepted: 06/16/2021] [Indexed: 11/06/2022]
Abstract
During the past 15 years, researchers have shown a renewed interest in the study of the Plasmodium parasites that infect orangutans. Most recently, studies examined the phylogenetic relationships and divergence dates of these parasites in orangutans using complete mitochondrial DNA genomes. Questions regarding the dating of these parasites, however, remain. In the present study, we provide a new calibration model for dating the origins of Plasmodium parasites in orangutans using a modified date range for the origin of macaques in Asia. Our Bayesian phylogenetic analyses of complete Plasmodium sp. mitochondrial DNA genomes inferred two clades of plasmodia in orangutans (Pongo 1 and Pongo 2), and that these clades likely represent the previously identified species Plasmodium pitheci and Plasmodium silvaticum. However, we cannot identify which Pongo clade is representative of the morphologically described species. The most recent common ancestor of both Pongo sp. plasmodia, Plasmodium. hylobati, and Plasmodium. inui dates to 3-3.16 million years ago (mya) (95% highest posterior density [HPD]: 2.09-4.08 mya). The Pongo 1 parasite diversified 0.33-0.36 mya (95% HPD: 0.12-0.63), while the Pongo 2 parasite diversified 1.15-1.22 mya (95% HPD: 0.63-1.82 mya). It now seems likely that the monkey Plasmodium (P. inui) is the result of a host switch event from the Pongo 2 parasite to sympatric monkeys, or P. hylobati. Our new estimates for the divergence of orangutan malaria parasites, and subsequent diversification, are all several hundred thousand years later than previous Bayesian estimates.
Collapse
Affiliation(s)
- Michael J. C. Reid
- School of Interdisciplinary Studies, Durham College, Oshawa, Ontario, Canada
- Canadian Cameroon Ape Network, Toronto, Ontario, Canada
| | - William M. Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Carl A. Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael A. Schillaci
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Kumpai P, Hamada Y, Kanthaswamy S, Malaivijitnond S. Gene flow from rhesus (Macaca mulatta) to cynomolgus macaques (M. fascicularis) and effects of introgressive hybridization on reproduction in two biomedically relevant non-human primate species. J Med Primatol 2022; 51:108-118. [PMID: 35132636 DOI: 10.1111/jmp.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND We compared the reproductive patterns of wild Indochinese and Sundaic cynomolgus macaques (Mf) exhibiting different levels of genetic admixture with rhesus macaques (Mm). METHODS Ten adult females from each Indochinese (WHM) and Sundaic (KN/KTK) Mf populations, which exhibited 50% and 15% of Mm autosomal SNPs, were selected as focal animals. Animals were observed for 12 months, and the frequencies of sexual proceptivity, attractivity and receptivity, number of newborns, and changes in sex skin were recorded. RESULTS Both populations showed all three sexual behaviors throughout the year, but they were classified as moderately seasonal breeders because their 3-month birth counts were as high as ~50%. The fecundity of WHM was lower than the KN/KTK. Changes in sex skin of WHM were more prone to Mm's pattern than the KN/KTK. CONCLUSION The introgressive gene flow from Mm to Mf does not affect Mf's sexual behaviors; however, it can impact fecundity and physiological (sex skin) changes.
Collapse
Affiliation(s)
- Prangmas Kumpai
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Yuzuru Hamada
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, Thailand
| | - Sree Kanthaswamy
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University West Campus, Glendale, Arizona, USA.,California National Primate Research Center, University of California, Davis, California, USA
| | - Suchinda Malaivijitnond
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, Thailand
| |
Collapse
|
9
|
Genomic resources for rhesus macaques (Macaca mulatta). Mamm Genome 2022; 33:91-99. [PMID: 34999909 PMCID: PMC8742695 DOI: 10.1007/s00335-021-09922-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 11/10/2022]
Abstract
Rhesus macaques (Macaca mulatta) are among the most extensively studied of nonhuman primates. This species has been the subject of many investigations concerning basic primate biology and behavior, including studies of social organization, developmental psychology, physiology, endocrinology, and neurodevelopment. Rhesus macaques are also critically important as a nonhuman primate model of human health and disease, including use in studies of infectious diseases, metabolic diseases, aging, and drug or alcohol abuse. Current research addressing fundamental biological and/or applied biomedical questions benefits from various genetic and genomic analyses. As a result, the genome of rhesus macaques has been the subject of more study than most nonhuman primates. This paper briefly discusses a number of information resources that can provide interested researchers with access to genetic and genomic data describing the content of the rhesus macaque genome, available information regarding genetic variation within the species, results from studies of gene expression, and other aspects of genomic analysis. Specific online databases are discussed, including the US National Center for Biotechnology Information, the University of California Santa Cruz genome browser, Ensembl genome browser, the Macaque Genotype and Phenotype database (mGAP), Rhesusbase, and others.
Collapse
|
10
|
OUP accepted manuscript. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
11
|
Evans BJ, Peter BM, Melnick DJ, Andayani N, Supriatna J, Zhu J, Tosi AJ. Mitonuclear interactions and introgression genomics of macaque monkeys ( Macaca) highlight the influence of behaviour on genome evolution. Proc Biol Sci 2021; 288:20211756. [PMID: 34610767 PMCID: PMC8493204 DOI: 10.1098/rspb.2021.1756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
In most macaques, females are philopatric and males migrate from their natal ranges, which results in pronounced divergence of mitochondrial genomes within and among species. We therefore predicted that some nuclear genes would have to acquire compensatory mutations to preserve compatibility with diverged interaction partners from the mitochondria. We additionally expected that these sex-differences would have distinctive effects on gene flow in the X and autosomes. Using new genomic data from 29 individuals from eight species of Southeast Asian macaque, we identified evidence of natural selection associated with mitonuclear interactions, including extreme outliers of interspecies differentiation and metrics of positive selection, low intraspecies polymorphism and atypically long runs of homozygosity associated with nuclear-encoded genes that interact with mitochondria-encoded genes. In one individual with introgressed mitochondria, we detected a small but significant enrichment of autosomal introgression blocks from the source species of her mitochondria that contained genes which interact with mitochondria-encoded loci. Our analyses also demonstrate that sex-specific demography sculpts genetic exchange across multiple species boundaries. These findings show that behaviour can have profound but indirect effects on genome evolution by influencing how interacting components of different genomic compartments (mitochondria, the autosomes and the sex chromosomes) move through time and space.
Collapse
Affiliation(s)
- Ben J. Evans
- Biology Department, Life Sciences Building Room 328, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Benjamin M. Peter
- Department of Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig Germany
| | - Don J. Melnick
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 10th floor Schermerhorn Extension, 119th Street and Amsterdam Avenue, New York, NY 10027 USA
| | - Noviar Andayani
- Department of Biology, Universitas Indonesia, Gedung E, Kampus UI Depok, Depok 16424, Indonesia
| | - Jatna Supriatna
- Department of Biology, Universitas Indonesia, Gedung E, Kampus UI Depok, Depok 16424, Indonesia
- Institute for Sustainable Earth and Resources (I-SER), Gedung Laboratorium Multidisiplin, Universitas Indonesia, Gedung E, Kampus UI Depok, Depok 16424, Indonesia
- Research Center for Climate Change (RCCC-UI), Gedung Laboratorium Multidisiplin, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Gedung E, Kampus UI Depok, Depok 16424, Indonesia
| | - Jianlong Zhu
- Biology Department, Life Sciences Building Room 328, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Anthony J. Tosi
- Anthropology Department, Kent State University, 238 Lowry Hall, Kent, OH 44242, USA
| |
Collapse
|
12
|
A new subspecies of Trypanosoma cyclops found in the Australian terrestrial leech Chtonobdella bilineata. Parasitology 2021; 148:1125-1136. [PMID: 33843511 PMCID: PMC8311967 DOI: 10.1017/s0031182021000639] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previously, it was suggested that haemadipsid leeches represent an important vector of trypanosomes amongst native animals in Australia. Consequently, Chtonobdella bilineata leeches were investigated for the presence of trypanosome species by polymerase chain reaction (PCR), DNA sequencing and in vitro isolation. Phylogenetic analysis ensued to further define the populations present. PCR targeting the 28S rDNA demonstrated that over 95% of C. bilineata contained trypanosomes; diversity profiling by deep amplicon sequencing of 18S rDNA indicated the presence of four different clusters related to the Trypanosoma (Megatrypanum) theileri. Novy–MacNeal–Nicolle slopes with liquid overlay were used to isolate trypanosomes into culture that proved similar in morphology to Trypanosoma cyclops in that they contained a large numbers of acidocalcisomes. Phylogeny of 18S rDNA/GAPDH/ND5 DNA sequences from primary cultures and subclones showed the trypanosomes were monophyletic, with T. cyclops as a sister group. Blood-meal analysis of leeches showed that leeches primarily contained blood from swamp wallaby (Wallabia bicolour), human (Homo sapiens) or horse (Equus sp.). The leech C. bilineata is a host for at least five lineages of Trypanosoma sp. and these are monophyletic with T. cyclops; we propose Trypanosoma cyclops australiensis as a subspecies of T. cyclops based on genetic similarity and biogeography considerations.
Collapse
|
13
|
Trébouet F, Malaivijitnond S, Reichard UH. Reproductive seasonality in wild northern pig-tailed macaques (Macaca leonina). Primates 2021; 62:491-505. [PMID: 33738636 DOI: 10.1007/s10329-021-00901-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/25/2021] [Indexed: 11/28/2022]
Abstract
Macaque reproductive patterns range from strictly seasonal breeding to non-seasonal breeding, but factors explaining this variation are not fully understood. Valid reproductive seasonality data are also still lacking for many wild macaque populations because the majority of birth data are from captive animals living outside of their geographic range. We evaluated whether the reproductive seasonality of wild northern pig-tailed macaques falls as expected by the ecological (latitude) or phylogenetic inertia hypotheses in comparison with other macaque species. We recorded monthly occurrences of births (N = 22), copulations (N = 563), and females exhibiting sex skin swellings (N = 18) in one group at Khao Yai National Park (KYNP), Thailand. Births, copulations, and females exhibiting sex skin swellings were significantly different from a random distribution. Using measures of circular statistics and the van Schaik and colleagues' (Schaik et al. Lee (ed), Comparative primate socioecology, Cambridge University Press, Cambridge, 1999) seasonality categorizations, the population at KYNP is best characterized as moderately seasonal breeding. Despite some inconsistency, macaque reproductive seasonality was significantly influenced by latitudinal location. We broadly found that: (1) non-seasonal breeding macaque populations (birth r-vector < 0.3) lived at latitudes close to the equator between 1°S and 3°N, (2) moderately seasonal breeding macaque populations (0.3 < birth r-vector < 0.7) were found between 3°N and 14°N and at 5°S, and (3) strictly seasonal breeding macaque populations (birth r-vector > 0.7) ranged ≥ 12°N. A strong phylogenetic signal in reproductive seasonality on the macaque phylogeny was also detected. However, further studies of wild macaque populations are still needed to better characterize reproductive seasonality in this taxon.
Collapse
Affiliation(s)
- Florian Trébouet
- Department of Anthropology, Southern Illinois University Carbondale, Carbondale, USA.
| | - Suchinda Malaivijitnond
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,National Primate Research Center of Thailand-Chulalongkorn University, Saraburi, Thailand
| | - Ulrich H Reichard
- Department of Anthropology, Southern Illinois University Carbondale, Carbondale, USA.,Center for Ecology, Southern Illinois University Carbondale, Carbondale, USA
| |
Collapse
|
14
|
Khanal L, Chalise MK, Fan PF, Kyes RC, Jiang XL. Multilocus phylogeny suggests a distinct species status for the Nepal population of Assam macaques ( Macaca assamensis): implications for evolution and conservation. Zool Res 2021; 42:3-13. [PMID: 33410309 PMCID: PMC7840459 DOI: 10.24272/j.issn.2095-8137.2020.279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/05/2021] [Indexed: 11/23/2022] Open
Abstract
Phylogenetic relationships within the sinica-group of macaques based on morphological, behavioral, and molecular characteristics have remained controversial. The Nepal population of Assam macaques ( Macaca assamensis) (NPAM), the westernmost population of the species, is morphologically distinct but has never been used in phylogenetic analyses. Here, the phylogenetic relationship of NPAM with other congeners was tested using multiple mitochondrial and Y-chromosomal loci. The divergence times and evolutionary genetic distances among macaques were also estimated. Results revealed two major mitochondrial DNA clades of macaques under the sinica-group: the first clade included M. thibetana, M. sinica, and eastern subspecies of Assam macaque ( M. assamensis assamensis); the second clade included M. radiata together with species from the eastern and central Himalaya, namely, M. leucogenys, M. munzala, and NPAM. Among the second-clade species, NPAM was the first to diverge from the other members of the clade around 1.9 million years ago. Our results revealed that NPAM is phylogenetically distinct from the eastern Assam macaques and closer to other species and hence may represent a separate species. Because of its phylogenetic distinctiveness, isolated distribution, and small population size, the Nepal population of sinica-group macaques warrants detailed taxonomic revision and high conservation priority.
Collapse
Affiliation(s)
- Laxman Khanal
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu 44613, Nepal
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China. E-mail:
| | - Mukesh Kumar Chalise
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu 44613, Nepal
- Nepal Biodiversity Research Society (NEBORS), Lalitpur 23513, Nepal
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Randall C Kyes
- Department of Psychology, Global Health, and Anthropology, Center for Global Field Study, and Washington National Primate Research Center, University of Washington, Seattle 98195, USA
| | - Xue-Long Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China. E-mail:
| |
Collapse
|